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Abstract

Individuals with Parkinson’s disease (PD) present respiratory dysfunctions, mainly due to

decreased chest wall expansion, which worsens with the course of the disease. These find-

ings contribute to the restrictive respiratory pattern and the reduction in chest wall volume.

According to literature, inspiratory muscle thixotropic conditioning maneuvers may improve

lung volumes in these patients. The study aimed to determine the after-effects of respiratory

muscle thixotropic maneuvers on breathing patterns and chest wall volumes of PD. A cross-

over study was performed with twelve patients with PD (8 males; mean age 63.9±8.8 years,

FVC%pred 89.7±13.9, FEV1%pred 91.2±15, FEV1/FVC%pred 83.7±5.7). Chest wall volumes

were assessed using OEP during thixotropic maneuvers. Increases in EIVCW (mean of

126mL, p = 0.01) and EEVCW (mean of 150mL, p = 0.005) were observed after DITLC (deep

inspiration from total lung capacity) due to increases in pulmonary (RCp) and abdominal

(RCa) ribcage compartments. Changes in ICoTLC (inspiratory contraction from TLC) led to

significant EIVCW (mean of 224mL, p = 0.001) and EEVCW (mean of 229mL, p = 0.02)

increases that were mainly observed in the RCp. No significant changes were found when

performing DERV (deep expiration from residual volume) and ICoRV (Inspiratory contraction

from RV). Positive correlations were also observed between the degree of inspiratory con-

traction during ICoTLC and EEVRCp (rho = 0.613, p = 0.03) and EIVRCp (rho = 0.697, p =

0.01) changes. Thixotropy conditioning of inspiratory muscles at an inflated chest wall vol-

ume increases EIVCW and EEVCW in the ten subsequent breaths in PD patients. These

maneuvers are easy to perform, free of equipment, low-cost, and may help patients improve

chest wall volumes during rehabilitation.
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Introduction

Parkinson’s disease (PD) is a common and complex neurological disorder. The main clinical

feature of PD is related to postural and movement disorders due to the destruction of the sub-

stantia nigra and loss of dopaminergic neurons [1, 2]. Nevertheless, respiratory dysfunction

(e.g., impaired upper airway function and decreased chest wall compliance) leads to problems

that predispose to pneumonia, the leading cause of mortality in PD [1, 2]. The restrictive pat-

tern is the main spirometric finding [1, 3], and respiratory muscle strength may also decrease

with the course of the disease [4]. Some studies demonstrate that respiratory muscles can be

impaired even in the early stages of the disease [5]. Together, these events contribute to the

restrictive pattern and reduced chest wall compliance and volume [6–9].

In restrictive diseases, reduced chest wall compliance is associated with decreased chest wall

volumes. Therefore, new techniques were proposed in the medical literature to improve chest

wall volumes based on the physiological behavior of muscles, such as thixotropy. Thixotropy is

a biophysical property that makes the stiffness and resting tension at a given muscle length

dependent on previous movements and contractions. The history-dependent passive proper-

ties of inspiratory muscles are one relevant component of expiration since expiratory move-

ments need to stretch inspiratory muscles to reduce chest wall volume [10].

Homma and Hagbarth [10] proposed that the thixotropy conditioning of respiratory mus-

cles could temporarily increase end-expiratory volume during resting breathing. This hypothe-

sis is based on the muscle thixotropy characteristic: mechanical properties of the muscle

change with movement and recover after the movement stops. In this sense, inspiratory mus-

cles must be brought from an intermediate to a shorter length, and an inspiratory muscle con-

traction is performed to detach cross-bridges. After the effort, the muscle is held at the

acquired length for a few seconds and brought back slowly to its intermediate length [11–13].

As a result, passive stiffness and resting tension in inspiratory muscles are combined with a

slackness of expiratory muscles [14]. In a recent study published by Lima et al., it was possible

to observe a significant increase in end-inspiratory volume (EIV) after the contraction of inspi-

ratory muscles from residual volume (RV) and total lung capacity (TLC) in healthy individuals

[15].

In this context, the present study aimed to determine whether thixotropic conditionings of

inspiratory muscles would acutely increase the operational chest wall volumes of PD patients.

For this, we used optoelectronic plethysmography (OEP), a system that accurately measures

chest wall volumes in a non-invasive way and on a three-compartmental basis (i.e., pulmonary

ribcage [RCp], abdominal ribcage [RCa], and abdomen [AB]) [16]. Additionally, the volumes

acquired by this system during inspiration and expiration to produce an index of overall inspi-

ratory and expiratory muscle length [17, 18], respectively, which facilitates the observation of

the thixotropic after-effects.

Material and methods

Subjects

This is a randomized crossover study conducted following the Declaration of Helsinki and

approved by the ethics committee of the Hospital Universitário Onofre Lopes (HUOL/

EBSERH—Brazil) under number 1.662.429/2016. Patients were recruited between July 2015

and December 2016. Before participation in the study, all subjects gave written, signed, and

informed consent.

Stable patients with a confirmed diagnosis of PD by clinical examination (experienced neu-

rologist), non- and ex-smokers, and with a maximal score of II on the Hoehn & Yahr scale
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[19] were recruited from the neurology outpatient clinics of the hospital mentioned above.

Patients who self-reported cardiopulmonary or musculoskeletal diseases were excluded. The

study sample was calculated based on a pilot study considering the variables of interest. All

patients during the study maintained their pharmacological treatment defined by the neurolo-

gist, and assessments were always conducted at the same time of day. Ex-smoker patients were

omitted. Those patients who missed the assessments or failed to perform tests were excluded

from the study.

Spirometry

A Koko Digidoser spirometer was used to assess pulmonary function according to ATS/ERS

recommendations [20]. Forced vital capacity (FVC), forced expiratory volume in the first sec-

ond (FEV1), and FEV1/FVC ratio was considered in their absolute and percentage of predicted

values for the Brazilian population [21]; the best curve obtained from three acceptable maneu-

vers was considered in the study. As reduced FVC does not confirm a restrictive pulmonary

defect, this condition was inferred if Forced Vital Capacity was reduced, FEV1/FVC increased

(between 85–90% of predicted values), and the flow-volume curve presented a convex pattern

[22].

Respiratory muscle strength

Respiratory muscle strength was assessed through MIP and MEP using a digital manovacu-

ometer according to ATS/ERS recommendations [23]. Inspiratory muscle strength was also

assessed through sniff nasal inspiratory pressure test. All values obtained were compared with

reference values [24, 25]. MEP/MIP ratio was also reported in their absolute and percentage of

predicted values [26]. The lower limits of normal values were used to determine respiratory

muscle weakness [27].

Chest wall and compartmental volumes

Chest wall (VCW) and compartmental volumes (VRCp, VRCa, and VAB) were assessed using

OEP. This system consisted of six TV cameras (three in front and three behind the subject),

previous calibrated at a frequency of 60 frames�s-1that captured the signal of 89 photosensitive

markers placed at predetermined points of the trunk surface [28]. After data collection, vol-

umes were obtained through a mathematical model based on the Gaussian Theorem [16].

From OEP, chest wall, compartmental volumes, operational end-inspiratory (EIVCW,

EIVRCp, EIVRCa, and EIVAB) and end-expiratory volumes (EEVCW, EEVRCp, EEVRCa, and

EEVAB), and variables of breathing pattern (inspiratory and expiratory times) were analyzed.

Shortening velocity index of the diaphragm (Vt,ab/inspiratory time), inspiratory ribcage (Vt,

rcp/inspiratory time), and expiratory muscles (Vt, rcp/expiratory time) were also calculated

according to Aliverti et al. [29].

Pneumotachography

A heated pneumotachograph connected to a mouthpiece measured pressure during the thixo-

tropic conditionings. The pressure transducer was calibrated before tests using a water

manometer and measuring positive and negative pressure variations from 0 to 100 cmH2O,

with intervals of 5 seconds in between. During data acquisition, patients used a nose clip and

were instructed to perform the thixotropic conditionings while wearing a mouthpiece. Pres-

sure data was always acquired synchronously with the OEP data.
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Thixotropic conditionings

One pneumatic valve was coupled with the pneumotachograph, and an automated controller

was used to manually trigger the opening and occlusion of the valves during the conditioning

maneuvers. Mouth pressure (in cmH2O) was acquired during all thixotropic conditionings to

establish the intensity level of the maneuvers during inspiratory contraction. These values

were described as a percentage of predicted MIP.

Before each conditioning, patients were taught how to perform the thixotropic maneuvers.

Afterward, patients were allowed to rest for 10 minutes before starting the experiment. All

thixotropic conditionings performed by the patients initiated from an inflated (TLC) or

deflated (RV) chest wall [10]. For this study, four different thixotropic maneuvers were per-

formed: deep inspiration until Total Lung Capacity (DITLC); deep expiration until Residual

Volume (DERV); inspiratory contraction from Total Lung Capacity (ICoTLC); and inspiratory

contraction from Residual Volume (ICoRV). For DITLC and DERV, patients were instructed to

fully inflate or deflate, respectively, the chest wall and then the shutter of the pneumatic valve

closed the airway for five seconds. At the same time, the patient remained in the same chest

wall position without breathing. Right after, voluntary muscle relaxation was performed at the

acquired chest wall position for three seconds, and then the shutter was reopened, allowing the

subject to resume breathing. For ICoTLC and ICoRV, the pneumatic valve closed the airway

after chest wall inflation or deflation. The patients were asked to make a forceful inspiratory

contraction using the ribcage muscles for 5 seconds. After the effort, voluntary muscle relaxa-

tion was performed, the airway was opened, and breathing was resumed [10, 14].

Study design and data analysis

Measurements were performed in two different visits with a one-week interval in between. In

the first visit, anthropometric, lung function, and respiratory muscle strength data were

acquired, and two thixotropic conditionings with 30 minutes in between were performed. In

the second visit, the remaining two thixotropic conditionings were performed with the same

time interval between them. Thixotropic conditionings were randomized using the website

"randomization.com" (Fig 1). In each subject, the after-effects of the maneuvers on operational

volumes were studied in detail immediately after each contraction (the first sten respiratory

cycles) and compared to baseline.

After positioning the pneumotachograph and OEP markers, patients were asked to wear a

nose clip and sit on a chair with the arms supported away from the sides of the body to allow

the visualization of the markers by the TV cameras. After data acquisition during one minute

of quiet breathing (QB), patients were asked to perform one of the above-mentioned thixotro-

pic maneuvers. Immediately after each maneuver and consequently reopening the shuttle

valve, patients reassumed breathing, and one minute of QB was recorded.

For data analysis, the chest wall and compartmental EIV and EEV, shortening velocity

indexes, inspiratory and expiratory times, and total time of respiratory cycle were analyzed on

a breath-by-breath basis during the first ten respiratory cycles immediately after each maneu-

ver and compared with baseline values obtained during one minute of QB performed before

each conditioning maneuver.

Statistical analyses

The sample size was calculated a priori according to EEVCW changes after ICoTLC, collected

from 4 volunteers. Effect sizes were calculated (ηp = .417 and Cohen’s f = .845) considering a

significance level of< .05 and a statistical power of .90, and the optimal number was estimated

as 12 patients.
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Results are expressed as mean ± SD otherwise stated. Data normality or symmetry was tested

using the Shapiro-Wilk test. Unpaired t-test or Mann–Whitney test was used to compare the

after-effects of EIV and EEV between thixotropic conditionings performed from the same chest

wall position. One-way ANOVA for repeated measures or Friedman test was used to compare

OEP data obtained in the ten respiratory cycles with those during QB. In the case of statistical sig-

nificance, Bonferroni’s or Dunn’s post hoc tests were applied to identify differences. Relationships

between mouth pressure during conditionings and the mean chest wall and operational volume

changes after the maneuvers were studied using Spearman’s rho correlation coefficient.

Descriptive and inferential analyses were conducted using GraphPad Prism1 Software, ver-

sion 7.04 (Graphpad Inc., La Jolla, United States). P-values < .05 were considered statistically

significant.

Results

Participants

Eighteen PD patients were recruited. Six were excluded due to their inability to understand or

perform the thixotropic conditionings (Fig 1). The final sample comprised twelve PD patients

(8 males and 4 females) characterized by restrictive patterns. Mean MIP%pred (83.5±33.3) and

SNIP%pred (63.6±15.6) were lower than the mean MEP%pred (100.6±22.2) (Table 1); mean

MIP/MEP%pred ratio was 1.35±0.6.

Fig 1. Flowchart of the study. DITLC: Deep inspiration from total lung capacity; ICoTLC: Inspiratory contraction from full lung capacity; DERV: Deep

inspiration from residual volume; ICoRV: Inspiratory contraction from residual volume.

https://doi.org/10.1371/journal.pone.0275584.g001
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Chest wall and compartmental volumes

Thixotropic conditionings from TLC. As shown in Fig 2, both DITLC and ICoTLC condi-

tionings significantly increased EEVCW and EIVCW in PD patients. Increases in EEVCW after

DITLC (mean of 150 mL, p = .005) were mainly due to increases in EEVRCp (p = .03) and

EEVRCa (p = .02); whereas increases after ICoTLC (mean of 229 mL, p = .02) were due to

changes in the RCp compartment only (p = .03). Regarding EIVCW, changes after DITLC

(mean of 126 mL, p = .01) and ICoTLC (mean of 224 mL, p = .001) conditionings were mainly

due to increases in EIVRCp; however, the duration was shorter than the after-effects observed

in EEV.

None of the thixotropic conditionings performed from TLC significantly changed the oper-

ational volumes of the AB compartment. Additionally, no significant changes were observed

in VCW, VRCp, VRCa, and VAB (Table 2). No significant differences were observed when com-

paring the volume changes of both DITLC and ICoTLC conditionings.

Thixotropic conditionings from RV. No significant differences were observed in chest

wall and operational volumes after DIRV or ICoRV conditionings (Fig 3 and Table 3). No signif-

icant differences were observed between the after-effects of DIRV and ICoRV conditionings.

Breathing pattern and shortening velocity indexes. Compared with QB, no significant

differences in inspiratory and expiratory times, total time of the respiratory cycle, and shorten-

ing velocity indexes were found after the conditionings (Tables 2 and 3).

Correlations. Mean mouth pressure during ICoTLC and ICoRV were -28.8 ±13.2 and

-57.9 ±15.1 cmH2O, respectively. No significant relationships were observed between chest

wall and operational volume changes and ICoRV conditioning; however, mouth pressure dur-

ing ICoTLC strongly correlated with EEVRCp (rho = .613, p = .03) and EIVRCp (rho = .697, p

= .01) changes. Considering the predicted value of maximal inspiratory pressure, the contrac-

tion intensity was approximately 30% and 60% of MIP and in the ICoTLC and ICoRV,

respectively.

Table 1. Anthropometric and spirometric data.

Patients Gender Age

years

BMI kg/

m
2

FVC L FVC %

pred

FEV1 L FEV1%

pred

FEV1/FVC %

pred

MIP

cmH2O

MIP %

pred

MEP

cmH2O

MEP %

pred

SNIP

cmH2O

SNIP %

pred

#1 M 66 21.3 3.76 82 3.32 94 114.6 96 93.6 78 68.7 61 58.3

#2 M 76 24.9 3.9 96.2 2.91 95.2 98.9 116 122.7 116 111.8 57 57.1

#3 M 67 30.5 3.48 88.6 2.81 91.6 103.3 41 40.3 88 79.2 71 68.2

#4 M 72 32.3 3.23 89.2 2.74 97.6 109.44 81 82.91 116 108.4 66 65

#5 M 67 20 4.1 94.4 3.16 94 99.5 130 117.1 102 100.3 105 98

#6 M 63 32.7 3.9 102.6 3.15 104 101.3 69 65.8 140 122.5 80 75.5

#7 M 69 26.6 3.06 83.9 2.15 74.9 89.2 154 153.8 116 106 55 53.3

#8 M 68 19.6 3.96 85.2 3.01 84.7 99.4 67 66.4 103 93.4 51 49.21

#9 F 62 18.3 2.51 87.7 1.97 86.1 95.4 44 55 63 81 40 45.5

#10 F 42 23.1 2.19 60.2 1.86 62.5 103.7 57 63.4 75 83.3 66 69.5

#11 F 59 29.3 3.76 120 3.1 123.8 103.3 70 85.9 81 101.7 66 74.2

#12 F 56 23.5 2.6 86.2 2.1 86 99.9 46 55.4 123 151 42 46.7

Mean 63.9 25.2 3.37 89.7 2.69 91.2 101.5 80.92 83.5 100.1 100.6 63.33 63.6

SD 8.8 5.1 0.64 13.9 0.52 15 6.4 36.20 33.3 23.15 22.2 17.48 15.6

In the left column are the participant’s numbers. FVC: Forced vital capacity; FEV1: Forced expiratory volume in the first second; MIP: Maximum inspiratory pressure;

MEP: Maximum expiratory pressure; SNIP: Sniff nasal inspiratory pressure; SD: Standard deviation; m: Meters; kg: Kilograms; L: Liters; cmH2O: centimeters of water;

%pred: Percentage of predicted; F: Female; M: Male. Shapiro-Wilk test was used to determine normality or symmetry.

https://doi.org/10.1371/journal.pone.0275584.t001
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Fig 2. After-effects of thixotropic conditionings performed from total lung capacity on end-inspiratory (EIV) and end-

expiratory (EEV) volumes of the chest wall (CW) and its compartments (pulmonary ribcage [RCp], abdominal ribcage [RCa]

and abdominal [AB]). Data of the first ten respiratory cycles (x-axis) immediately after the conditionings were compared with

mean values (mean of the 60 seconds) of quiet breathing (dotted lines) performed before the maneuvers. Data are shown as

mean ± SE. L: Liters; ���p< .0001, ��p< .001, and �p< .05 compared with quiet breathing using one-way ANOVA (CW, RCp,

and RCa) and Friedman test (AB), and Dunn’s post hoc test.

https://doi.org/10.1371/journal.pone.0275584.g002
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Discussion

In the present study, the main findings were that only thixotropic conditionings performed

from TLC increased EIVCW and EEVCW of PD patients, mainly due to changes in the upper

ribcage compartments. Additionally, strong correlations were observed between the degree of

inspiratory contraction and operational volume changes of the RCp compartment.

Disturbances of ventilation and breathing pattern are common in PD. They are related to

the stiffness of the chest wall or factors affecting respiratory rhythm generation at the brain

stem level [30, 31]. Difficulties in attaining maximum pressures and flows during rapid and

forceful respiratory maneuvers may result from a complex restrictive-type defect [32, 33]. A

link between respiratory muscle disturbance and impaired lung volumes has also been sug-

gested [34]. In the present study, despite decreases in both FVC%pred and FEV1%pred, the mean

FEV1/FVC was higher than 70% of predicted in all patients, indicating a restrictive pattern [8,

22]. The mechanism of this pattern in PD patients is not well understood and has been attrib-

uted to respiratory muscle rigidity, bradykinesia, and loss of chest wall compliance [35]. MIP

Table 2. Effects of deep inspiration (A) and inspiratory contraction (B) from total lung capacity on chest wall volumes.

A)

Quiet

breathing

1˚ cycle 2˚ cycle 3˚ cycle 4˚ cycle 5˚ cycle 6˚ cycle 7˚ cycle 8˚ cycle 9˚ cycle 10˚ cycle

VCW (L) 0.693 ± 0.22 0.763 ± 0.35 0.682 ± 0.34 0.645 ± 0.25 0.641 ± 0.22 0.649 ± 0.19 0.695 ± 0.24 0.646 ± 0.20 0.650 ± 0.21 0.570 ± 0.16 0.658 ± 0.22

VRCp (L) 0.172 ± 0.15 0.205 ±0.16 0.158 ± 0.14 0.152 ± 0.12 0.163 ± 0.13 0.191 ± 0.14 0.181 ± 0.16 0.154 ± 0.16 0.152 ± 0.15 0.132 ± 0.11 0.151 ± 0.14

VRCa (L) 0.122 ± 0.10 0.120 ± 0.06 0.122 ± 0.06 0.112 ± 0.06 0.129 ± 0.08 0.115 ± 0.06 0.132 ± 0.10 0.127 ± 0.10 0.125 ± 0.09 0.105 ± 0.06 0.122 ± 0.09

VAB (L) 0.399 ± 0.15 0.438 ± 0.18 0.401 ± 0.21 0.381 ± 0.18 0.348 ± 0.16 0.342 ± 0.12 0.381 ± 0.13 0.364 ± 0.11 0.371 ± 0.13 0.332 ± 0.12 0.384 ± 0.14

Ti (s) 1.55 ± 0.25 1.63 ± 0.39 1.72 ± 0.78 1.61 ± 0.71 1.46 ± 0.29 1.44 ± 0.27 1.50 ± 0.30 1.47 ± 0.33 1.46 ± 0.25 1.30 ± 0.24 1.50 ± 0.30

Te (s) 2.01 ± 0.62 2.21 ± 1.28 2.39 ± 1.23 2.12 ± 1.02 2.03 ± 0.70 1.97 ± 0.62 1.99 ± 0.50 2.05 ± 0.78 2.02 ± 0.50 1.99 ± 0.52 2.01 ± 0.74

Ttot (s) 3.57 ± 0.80 3.84 ± 1.52 4.11 ± 1.82 3.74 ± 1.53 3.49 ± 0.89 3.41 ± 0.80 3.49 ± 0.59 3.52 ± 1.07 3.48 ± 0.61 3.30 ± 0.72 3.51 ± 0.86

ΔVRCp/Ti

(L/s)

0.11 ± 0.10 0.13 ± 0.11 0.10 ± 0.09 0.09 ± 0.08 0.11 ± 0.10 0.13 ± 0.09 0.11 ± 0.09 0.10 ± 0.10 0.10 ± 0.09 0.10 ± 0.09 0.09 ± 0.09

ΔVAB/Ti

(L/s)

0.25 ± 0.08 0.27 ± 0.11 0.23 ± 0.09 0.24 ± 0.10 0.23 ± 0.08 0.24 ± 0.07 0.25 ± 0.06 0.25 ± 0.08 0.25 ± 0.08 0.26 ± 0.10 0.25 ± 0.08

ΔVAB/Te

(L/s)

0.22 ± 0.12 0.24 ± 0.15 0.19 ± 0.15 0.21 ± 0.13 0.19 ± 0.13 0.19 ± 0.10 0.21 ±0.11 0.20 ± 0.10 0.20 ± 0.11 0.17 ± 0.07 0.21 ±0.10

B)

Quiet

breathing

1˚ cycle 2˚ cycle 3˚ cycle 4˚ cycle 5˚ cycle 6˚ cycle 7˚ cycle 8˚ cycle 9˚ cycle 10˚ cycle

VCW (L) 0.744 ± 0.31 0.766 ± 0.35 0.671 ± 0.33 0.741 ± 0.33 0.715 ± 0.34 0.700 ± 0.31 0.663 ± 0.26 0.649 ± 0.32 0.639 ± 0.25 0.676 ± 0.25 0.799 ± 0.52

VRCp (L) 0.173 ± 0.15 0.166 ± 0.17 0.137 ± 0.16 0.151 ± 0.12 0.158 ± 0.14 0.136 ± 0.13 0.138 ± 0.12 0.146 ± 0.16 0.131 ± 0.11 0.136 ± 0.11 0.200 ± 0.26

VRCa (L) 0.140 ± 0.11 0.147 ± 0.14 0.140 ± 0.14 0.141 ± 0.11 0.132 ± 0.10 0.134 ± 0.11 0.122 ± 0.10 0.121 ± 0.10 0.128 ± 0.09 0.137 ± 0.10 0.150 ± 0.16

VAB (L) 0.431 ± 0.13 0.451 ± 0.14 0.392 ± 0.13 0.447 ± 0.21 0.424 ± 0.20 0.429 ± 0.17 0.402 ± 0.14 0.381 ± 0.15 0.379 ± 0.13 0.402 ± 0.19 0.450 ± 0.22

Ti (s) 1.49 ± 0.40 1.67 ± 0.61 1.39 ± 0.32 1.45 ± 0.42 1.39 ± 0.36 1.43 ± 0.49 1.69 ± 1.03 1.27 ± 0.35 1.32 ± 0.31 1.27 ± 0.24 1.46 ± 0.50

Te (s) 2.06 ± 0.55 2.03 ± 0.86 2.28 ± 0.70 2.08 ± 1.10 2.21 ± 1.12 1.92 ± 0.65 1.97 ± 0.65 2.18 ± 1.03 1.95 ± 0.73 1.90 ± 0.47 1.80 ± 0.55

Ttot (s) 3.55 ± 0.93 3.70 ± 1.39 3.67 ± 1.00 3.53 ± 1.48 3.61 ± 1.41 3.36 ± 1.00 3.66 ± 1.15 3.46 ± 1.27 3.27 ± 1.00 3.17 ± 0.67 3.26 ± 0.95

ΔVRCp/Ti

(L/s)

0.12 ± 0.11 0.10 ± 0.09 0.10 ± 0.10 0.10 ± 0.08 0.10 ± 0.08 0.09 ± 0.09 0.09 ± 0.09 0.10 ± 0.10 0.10 ± 0.09 0.11 ± 0.10 0.13 ± 0.14

ΔVAB/Ti

(L/s)

0.28 ± 0.07 0.28 ± 0.09 0.29 ± 0.12 0.30 ± 0.11 0.29 ± 0.08 0.29 ± 0.07 0.28 ± 0.11 0.29 ± 0.05 0.28 ± 0.06 0.30 ± 0.09 0.30 ± 0.08

ΔVAB/Te

(L/s)

0.21 ± 0.06 0.25 ± 0.12 0.18 ± 0.07 0.23 ± 0.09 0.20 ± 0.07 0.22 ± 0.05 0.21 ± 0.06 0.19 ± 0.06 0.20 ± 0.04 0.20 ± 0.06 0.25 ± 0.09

Data are shown as mean ± SD. S: Seconds; L: Liters.

https://doi.org/10.1371/journal.pone.0275584.t002
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Fig 3. After-effects of thixotropic conditionings performed from residual volume on end-inspiratory (EIV) and end-expiratory

(EEV) volumes of the chest wall (CW) and its compartments (pulmonary ribcage [RCp], abdominal ribcage [RCa] and

abdominal [AB]). Data of the first ten respiratory cycles (x-axis) immediately after the conditionings were compared with mean

values (mean of 60 seconds) of quiet breathing (dotted lines) performed before the maneuvers. Data are shown as mean ± SE. L:

Liters.

https://doi.org/10.1371/journal.pone.0275584.g003
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values were lower than MEP in 8 out of 12 patients, while SNIP values were consistently lower

than the MIP, suggesting diaphragmatic impairment [5, 36].

Using OEP, Frazão et al. [7] observed that the upper ribcage compartments (RCp and RCa)

of PD patients displaced less volume than healthy subjects, and the use of positive expiratory

pressure led to increases in EEVRCp and EEVRCa. Homma and Hagbarth [10] hypothesized

that EEV of the upper ribcage compartments would also increase immediately after a thixotro-

pic muscle conditioning with inspiratory muscle contraction at an inflated lung volume in

healthy subjects. However, this was never tested in restrictive pulmonary diseases. Our group

demonstrated results in a recent study conducted with healthy subjects, in which we observed

a significant increase in EIVCW compared with EEVCW after performing three inspiratory con-

traction maneuvers from TLC and RV. The compartments that contributed most to EIVCW

results were the RCp and RCa. The significant increase of this variable in the RCa compart-

ment suggests a possible thixotropic effect on the diaphragm. On the other hand, no differ-

ences were observed in EIVCW and EEVCW after expiratory contraction maneuvers starting

from TLC or RV [15].

Table 3. Effects of deep expiration (A) and inspiratory contraction (B) from the residual volume on the chest wall volumes.

A)

Quiet

breathing

1˚ cycle 2˚ cycle 3˚ cycle 4˚ cycle 5˚ cycle 6˚ cycle 7˚ cycle 8˚ cycle 9˚ cycle 10˚ cycle

VCW (L) 0.693 ± 0.22 0.763 ± 0.35 0.682 ± 0.34 0.645 ± 0.25 0.641 ± 0.22 0.649 ± 0.19 0.695 ± 0.24 0.646 ± 0.20 0.650 ± 0.21 0.570 ± 0.16 0.658 ± 0.22

VRCp (L) 0.172 ± 0.15 0.205 ±0.16 0.158 ± 0.14 0.152 ± 0.12 0.163 ± 0.13 0.191 ± 0.14 0.181 ± 0.16 0.154 ± 0.16 0.152 ± 0.15 0.132 ± 0.11 0.151 ± 0.14

VRCa (L) 0.122 ± 0.10 0.120 ± 0.06 0.122 ± 0.06 0.112 ± 0.06 0.129 ± 0.08 0.115 ± 0.06 0.132 ± 0.10 0.127 ± 0.10 0.125 ± 0.09 0.105 ± 0.06 0.122 ± 0.09

VAB (L) 0.399 ± 0.15 0.438 ± 0.18 0.401 ± 0.21 0.381 ± 0.18 0.348 ± 0.16 0.342 ± 0.12 0.381 ± 0.13 0.364 ± 0.11 0.371 ± 0.13 0.332 ± 0.12 0.384 ± 0.14

Ti (s) 1.55 ± 0.25 1.63 ± 0.39 1.72 ± 0.78 1.61 ± 0.71 1.46 ± 0.29 1.44 ± 0.27 1.50 ± 0.30 1.47 ± 0.33 1.46 ± 0.25 1.30 ± 0.24 1.50 ± 0.30

Te (s) 2.01 ± 0.62 2.21 ± 1.28 2.39 ± 1.23 2.12 ± 1.02 2.03 ± 0.70 1.97 ± 0.62 1.99 ± 0.50 2.05 ± 0.78 2.02 ± 0.50 1.99 ± 0.52 2.01 ± 0.74

Ttot (s) 3.57 ± 0.80 3.84 ± 1.52 4.11 ± 1.82 3.74 ± 1.53 3.49 ± 0.89 3.41 ± 0.80 3.49 ± 0.59 3.52 ± 1.07 3.48 ± 0.61 3.30 ± 0.72 3.51 ± 0.86

ΔVRCp/Ti

(L/s)

0.11 ± 0.10 0.13 ± 0.11 0.10 ± 0.09 0.09 ± 0.08 0.11 ± 0.10 0.13 ± 0.09 0.11 ± 0.09 0.10 ± 0.10 0.10 ± 0.09 0.10 ± 0.09 0.09 ± 0.09

ΔVAB/Ti

(L/s)

0.25 ± 0.08 0.27 ± 0.11 0.23 ± 0.09 0.24 ± 0.10 0.23 ± 0.08 0.24 ± 0.07 0.25 ± 0.06 0.25 ± 0.08 0.25 ± 0.08 0.26 ± 0.10 0.25 ± 0.08

ΔVAB/Te

(L/s)

0.22 ± 0.12 0.24 ± 0.15 0.19 ± 0.15 0.21 ± 0.13 0.19 ± 0.13 0.19 ± 0.10 0.21 ±0.11 0.20 ± 0.10 0.20 ± 0.11 0.17 ± 0.07 0.21 ±0.10

B)

Quiet

breathing

1˚ cycle 2˚ cycle 3˚ cycle 4˚ cycle 5˚ cycle 6˚ cycle 7˚ cycle 8˚ cycle 9˚ cycle 10˚ cycle

VCW (L) 0.700 ± 0.32 1.011 ± 0.48 0.877 ± 0.41 0.837 ± 0.39 0.732 ± 0.30 0.722 ± 0.46 0.763 ± 0.35 0.710 ± 0.41 0.683 ± 0.39 0.628 ± 0.36 0.735 ± 0.60

VRCp (L) 0.198 ± 0.18 0.251 ± 0.21 0.230 ± 0.20 0.232 ± 0.20 0.219 ± 0.19 0.206 ± 0.24 0.213 ± 0.19 0.192 ± 0.22 0.194 ± 0.21 0.180 ± 0.19 0.256 ± 0.29

VRCa (L) 0.118 ± 0.08 0.178 ± 0.14 0.166 ± 0.14 0.147 ± 0.12 0.126 ± 0.11 0.134 ± 0.13 0.134 ± 0.11 0.114 ± 0.10 0.114 ± 0.10 0.102 ± 0.10 0.126 ± 0.17

VAB (L) 0.382 ± 0.14 0.580 ± 0.32 0.480 ± 0.23 0.457 ± 0.20 0.386 ± 0.17 0.380 ± 0.19 0.416 ± 0.17 0.403 ± 0.21 0.374 ± 0.19 0.344 ± 0.16 0.351 ± 0.18

Ti (s) 1.42 ± 0.27 1.33 ± 0.38 1.43 ± 0.31 1.49 ± 0.41 1.34 ± 0.34 1.21 ± 0.31 1.49 ± 0.29 1.37 ± 0.33 1.34 ± 0.36 1.20 ± 0.32 1.35 ± 0.46

Te (s) 2.13 ± 0.67 1.77 ± 0.50 2.10 ± 1.10 2.02 ± 0.83 2.28 ± 0.90 2.43 ± 1.70 1.95 ± 0.58 1.92 ± 0.76 1.99 ± 0.64 1.81 ± 0.68 1.78 ± 0.74

Ttot (s) 3.56 ± 0.86 3.11 ± 0.84 3.53 ± 1.35 3.51 ± 1.13 3.63 ± 1.20 3.65 ± 1.92 3.45 ± 0.72 3.30 ± 1.01 3.34 ± 0.82 3.02 ± 0.98 3.14 ± 1.05

ΔVRCp/Ti

(L/s)

0.14 ± 0.12 0.18 ± 0.14 0.16 ± 0.14 0.16 ± 0.13 0.17 ± 0.16 0.16 ± 0.15 0.14 ± 0.13 0.13 ± 0.14 0.14 ± 0.16 0.14 ± 0.13 0.16 ± 0.15

ΔVAB/Ti

(L/s)

0.26 ± 0.07 0.41 ± 0.17 0.35 ± 0.18 0.31 ± 0.13 0.28 ± 0.11 0.30 ± 0.11 0.28 ± 0.10 0.27 ± 0.09 0.26 ± 0.08 0.28 ± 0.09 0.24 ± 0.07

ΔVAB/Te

(L/s)

0.18 ± 0.05 0.31 ± 0.13 0.24 ± 0.10 0.24 ± 0.09 0.18 ± 0.09 0.19 ± 0.11 0.22 ± 0.10 0.21 ± 0.10 0.20 ± 0.11 0.19 ± 0.07 0.20 ± 0.08

Data are shown as mean ± SD. Seconds; L: Liters

https://doi.org/10.1371/journal.pone.0275584.t003
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In our study, increases in EIVCW and EEVCW were observed mainly due to changes in vol-

umes of the upper ribcage compartments, with no alterations in breathing patterns. Especially

regarding EEV, the duration of EEVRCp changes was longer than those observed for the EIV

during DITLC and ICoTLC. In healthy, stiffness of the expiratory muscles is reduced following a

large passive stretch of the muscles and voluntary lengthening contractions [10]; thus, favoring

operational volume elevation. However, in PD patients, stretching a muscle may lead to

increased muscle stiffness due to physical modifications of the muscles or neural mechanisms

[37]. Several studies support the notion that non-neural alterations in the biomechanical prop-

erties of the stretched tissues may contribute to rigidity [38–41]. In this sense, we hypothesized

that both muscle rigidity and impairment of expiratory muscle relaxation after large passive

stretches have somehow accounted for the elevation of the EEVRCp after the conditionings.

Interestingly, the increase in EEVRCa and EIVRCa suggests that the diaphragm may have

also influenced the EEVCW and EIVCW, respectively. Thus, increases in EEVCW through dia-

phragmatic thixotropy may be a valuable therapeutic option in PD patients. Improvement in

EEV and EIV strongly indicates improvement in tidal volume and ventilation efficiency. How-

ever, it is not known whether diaphragmatic thixotropy can act in patients with slight dia-

phragmatic impairment and those without diaphragmatic alterations [31, 42, 43].

Despite the lack of mouth pressure control, strong associations were observed between

mouth pressure generation during ICoTLC conditioning and EIVRCp and EEVRCp. These

results corroborate with Izumizaki et al. [44], suggesting that the strength of the respiratory

muscles is an essential activator of thixotropy [45, 46] in PD patients. However, the after-

effects observed during ICoTLC did not differ significantly from those after the DITLC condi-

tioning. Although plastic mechanical behavior of other respiratory tissues may account for the

thixotropic inspiratory muscle behavior of the DITLC conditioning in healthy individuals [10,

47], in PD patients, this result is probably due to (or favored by) increased rigidity of central

neural pathway origin [48, 49], enhanced passive stiffness [50], and the long-latency stretch

response of muscles caused by atrophy and replacement by connective tissue [51–54]. Changes

in intrinsic mechanical properties of skeletal muscles of PD patients lead to augmented stretch

reflexes, which increase motor activity [49, 55–57] and may be potentiated by voluntary efforts

[58]. Excessive motor unity recruitment and continuous electromyographic activity of rigid

muscles are presented even at rest [51]. Although no reports are presented in literature about

the increased passive stiffness of inspiratory muscles in PD patients, the scalene and paraster-

nal muscles may show continuous abnormal activity due to extrapyramidal impairment [42].

Fontana et al. [59] observed that the electromyographic activity was slower in PD patients dur-

ing forceful contractions suggesting impaired recruitment and derecruitment of abdominal

motor units. Thus, if these responses are also valid for the inspiratory ribcage muscles, then the

magnitude of the inspiratory effort may not be the only factor influencing the observed volume

changes. Moreover, apart from the diaphragm that may not always be affected [42, 60], it can-

not be maintained that ribcage respiratory muscles alone were responsible for the observed

after-effects in PD patients. Activation of muscles other than those from the ribcage could

have contributed to the results.

No changes in operational volumes were observed after thixotropic conditionings per-

formed from RV. This result was expected since the main benefit of these conditionings would

be the decrease of the EEV of patients with increased FRC [44]. Several studies reported the

presence of an obstructive pattern in PD patients [61–64]; however, this was not the case for

our patients. Although ribcage compliance was not measured, its decrease with a restrictive

pattern and normal MEP may have probably accounted for the maintenance of operational

volumes of RCp and RCa compartments after DIRV and ICoRV conditionings. Moreover,

although changes in EEVAB are insignificant and have no benefits for PD patients with a
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restrictive pattern, its decrease may be attributed to some thixotropic effect [44, 65]. Finally,

the breath-holding during the conditionings may have affected breathing via central and

peripheral chemoreceptors [31, 65]. Nevertheless, no significant changes were observed in

breathing patterns and shortening velocity indexes after the conditionings, indicating no

changes in the respiratory drive of PD patients.

From a clinical point of view, the results shown have attractive therapeutic potential. Thixo-

tropic conditioning maneuvers can be used as a therapeutic strategy for patients with PD.

They are easy to understand, low cost, easy to perform, and can be used in different environ-

ments, such as hospitals and at home. Clinical therapeutic strategies for patients with chronic

diseases should involve treatments that are easy to incorporate into the daily lives of these

patients, such as thixotropic conditioning maneuvers. From the point of view of clinical impli-

cations, new studies, especially clinical trials, should be carried out to confirm the results

found.

Study limitations

The main limitation of this study was the low number of patients included, Hoehn & Yahr

scale class limited to II and III, and lack of a control group composed of healthy subjects. The

lack of absolute volume quantification would also define the restrictive pattern completely.

However, this is the first study that reports the after-effects of thixotropic conditionings in PD

patients and using OEP. Regarding the protocol, more studies must be performed to under-

stand whether the effects of the studied thixotropic conditionings are cumulative in PD

patients and other restrictive diseases. Another limitation was the impossibility of confirming

the presence or not of a restrictive ventilatory defect. Unfortunately, at the time of the study,

TLC measurement was unavailable in our facility. Finally, another significant limitation was

the lack of sEMG data acquisition. Data derived from sEMG could be relevant to monitoring

muscle activation after a period of apnea.

Conclusion

Thixotropic conditionings performed from an inflated chest wall position increase EEVCW

and EIVCW of PD patients after the ten subsequent breaths, mainly due to changes in the

upper ribcage volume.
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