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The complement system is a dynamic subset of the innate immune system, playing

roles in host defense, clearance of immune complexes and cell debris, and priming the

adaptive immune response. Over the last 40 years our understanding of the complement

system has evolved from identifying its presence and recognizing its role in the blood

to now focusing on understanding the role of local complement synthesis in health

and disease. In particular, the local synthesis of complement was found to have an

involvement in mediating ischaemic injury, including following transplantation. Recent

work on elucidating the triggers of local complement synthesis and activation in renal

tissue have led to the finding that Collectin-11 (CL-11) engages with L-fucose at the

site of ischaemic stress, namely at the surface of the proximal tubular epithelial cells.

What remains unknown is the precise structure of the damage-associated ligand that

participates in CL-11 binding and subsequent complement activation. In this article,

we will discuss our hypothesis regarding the role of CL-11 as an integral tissue-based

pattern recognition molecule which we postulate has a significant contributory role in

complement-mediated ischaemic injury.

Keywords: collectin-11, lectin pathway, complement system, innate immunity, renal ischaemia, renal

transplantation

INTRODUCTION

We have seen over many years that innate immune defense systems mounted at epithelial surfaces
perform multiple and often non-immune roles. The toll-like receptor system is a classic example
that has transformed our perception about the origins of innate immunity and its roles in insect
development (1, 2), antimicrobial defense (3) and in the pathogenesis of some inflammatory
conditions (4–6). The complement system Figure 1 has been known about for longer (7), but
the diversity of function and, in particular, its role at the interface between innate and adaptive
immunity can now be re-visited as a typical model for innate immune function as well as a
therapeutic target in a growing number of medical disorders.
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FIGURE 1 | The complement system. The complement system is activated through three main pathways: classical, lectin and alternative. The classical and lectin

pathways are activated by pattern recognition molecules binding to pathogen cell surfaces as well as infected and/or damaged cells. In the case of the classical

pathway this manifests as C1q binding, most commonly via immunoglobulin. However, C1q can also bind other immune surveillance molecules or directly to

disrupted structures via pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs). Meanwhile, the lectin pathway is

initiated by binding of collectins, such as MBL and CL-11, as well as ficolins, to PAMPs or DAMPs expressing carbohydrate ligands. Also shown in the diagram is a

C4-bypass mechanism in which MASP-2 in association with lectin molecules directly cleaves C3. The alternative pathway is activated by C3b binding to cell surfaces

and acts as an amplification process for the central complement component, C3, upon which both the lectin and classical pathways converge upon. Recently,

MASP-1/3 was also shown to trigger the alternative pathway as well. Through a number of complement convertases the effectors of the complement system are

generated. These are the anaphylatoxins, C3a and C5a, the membrane attack complex (MAC, C5b-9) as well as C3b and its metabolite C3d which mediate antigen

opsonisation and cell-cell adhesion (NB This is a generalized overview of the complement system as it specifically relates to the focus of this manuscript and is not

meant to be a comprehensive depiction of all parts of the complement system).

EARLY BEGINNINGS—LOCAL
COMPLEMENT SYNTHESIS

For us, the story begins with early reports detailing the
significance of local complement synthesis. Colten et al.
authored a number of publications that highlighted the
capacity of macrophages for producing a wide range
of complement components (8, 9). Well cited papers
on skin cells, neural cells, gut cells, cardiac cells, and
others came into vision, showing that the principle
of local synthesis was almost universal in resident

parenchymal cells and migratory leukocytes (10–17). Our
interest, as a nephrology group starting up in the late
1980s, was caught by kidney expression of a number of
complement genes in the context of inflammatory renal
disease (18, 19).

It became apparent that among the variety of intrarenal
cells studied, the renal tubule cells were a prolific source
of complement components. The renal tubule supports vital
functions in maintaining health and blocking invasive pathogens
such as uropathogenic Escherichia coli. The capacity of renal
tubule cells for complement synthesis was first characterized
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through the work of Daha and others (20–22) in Leiden
and further confirmed through histological examination of
both healthy and diseased tissue by several research groups
(23–25). The link between inflammatory conditions primarily
affecting the renal tubules and a high degree of intrarenal
complement expression was striking. Notably, these diseases
included ischaemic injury of the newly transplanted kidney and
transplant rejection (26–28).

At the time, the techniques of tissue- or cell-specific gene
deletion were not well enough established to allow interrogation
of local complement gene function, in the way that would be
pursued now. However, we found that we could harness skills
in mouse kidney transplantation to swap kidneys between wild-
type and gene-deleted mice, in both directions, to illuminate
the relative importance of local complement synthesis (29–31).
Our initial focus was on C3, the central and most abundant
component of the complement cascade in blood. We had already
shown, in human kidney transplantation, that C3 has a significant
contribution to the systemic complement pool through intrarenal
synthesis (32).

COMPLEMENT AND THE TRANSPLANTED
KIDNEY

The summation of the research including knockout mouse
transplant studies and clinical observational studies has
demonstrated a number of important principles. Namely,
it showed that local synthesis of C3 had a disproportionate
influence on ischaemia-reperfusion injury relative to the
systemic pool (30), and an impact was also observed in the
process of cell mediated rejection of MHC mismatched kidney
transplants (31). It was evident from the analyses that the renal
tubule cell was the primary target for complement deposition in
these conditions, and the tubule cell was also the primary site of
C3 expression (30).

The evidence additionally highlighted the role of donor
antigen-presenting cells (APCs) as a source of complement (33).
These cells, also known as donor passenger cells, reside in the
interstitial space of the donor kidney, specifically around the
renal tubules. Within the first 24 h after transplantation, these
cells migrate into the recipient lymphoid system where they
immunize the recipient against donor MHC antigen (34). Local
production of complement was shown to modify the capacity
of the APC to prime the antigen-specific T cells that mediate
rejection (31, 35–37).

Considerable work has gone into identifying the complement
effectors generated downstream of C3 that mobilize the
inflammatory and adaptive immune functions against the
transplant [reviewed in (38)]. These investigations have resulted
in a deeper understanding both of the roles of the anaphylatoxins,
C3a and C5a, (39) and the membrane attack complex (C5b-9) on
immune cells and parenchymal tissue (40).

In addition to expressing core complement components and
activating enzyme-precursors, tissue-resident andmigratory cells
also display receptors that detect a range of biologically active

complement products formed downstream of C3 cleavage (41–
43). This emphasizes the ability for cross talk between tissue-
resident and migratory cells within the transplant setting. It is
helpful to think of the different cells that produce and detect
complement as nodes in a local network, whose functions bring
together and amplify the innate immune response and regulate
adaptive immunity.

LOCAL TISSUE DEFENSE

Presumably, the local synthesis of complement components
serves to enhance the defense against invasive organisms. For
example, the synthesis of C3 by renal tract epithelium potentially
increases the efficiency with which locally invasive organisms
are opsonised and subsequently eliminated at the point of
entry. There is strong evidence for such a role, as the renal
tubular epithelium constitutively expresses complement, and the
production is rapidly upregulated in the presence of infection (44,
45). Further testament to this mechanism is that many common
urinary pathogens have developed resistance to complement,
including clinically relevant strains of gram negative pathogens
(46–48). Not only have these strains been found to resist
complement mediated lysis but they can also utilize complement
to invade complement receptor expressing tubular epithelial cells
(44, 49, 50). The C3b receptor, CD46, is one such receptor used
by uropathogenic E. coli to evade extracellular defenses (45, 51)
and is an illustration of themeans by which complement resistant
strains can gain an advantage against the host. Thus, the local
pool of complement can be both a protector against infection and
a source of tissue injury.

EMERGENCE OF COLLECTIN-11

Whereas the last 20-years of research has taught us much
about the effector functions of locally derived complement, our
knowledge of the trigger mechanisms that localize tissue injury
to a particular tissue compartment has lagged behind. This may
be because the changes that induce complement activation are
different for each organ and as such the studies in different organs
have produced mixed and sometimes contradictory results [for
more information refer to (52)]. Alternatively, it could be
that the focus on circulating complement has not led us to
the local mechanisms that drive complement-mediated disease.
It is a common observation that measurement of circulating
complement does not closely correlate with biopsy evidence of
complement activation within an affected organ, and this may
have delayed our understanding of local disease mechanisms.
If only we understood more about the structures that triggered
complement activation and how they are recognized in an organ
such as the kidney, we would knowmore about how to detect and
regulate harmful signals for health benefit.

We recently reviewed the evidence for the different pattern
recognition molecules that could trigger complement activation
in renal ischaemia-reperfusion injury and transplantation (52,
53). There, we considered whether the classical or lectin pathways
could mediate the onset of ischaemia-reperfusion injury and
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found no conclusive evidence of a role for the classical pathway
in the genesis of the renal injury within a murine model (54,
55). The lectin pathway also, at first, seemed not to have a
key role in the induction of ischaemic renal injury, since the
injury—at least in mice–was independent of C4, which is a
component shared by both the classical and lectin pathways
(56). However, we now believe that more recent findings on CL-
11 and the coupled enzyme MBL associated serine protease-2
(MASP-2) reconcile these observations, both in the context of
renal ischaemic epithelial cell damage and very possibly in retinal
epithelial ischaemic damage (57–59).

CL-11 is a recently described member of the lectin family
of pattern recognition molecules, with known antimicrobial
functions and ability to trigger complement activation via the
lectin pathway (60). Reported in 2006, CL-11 was at first named
kidney collectin, or CL-K1, for its abundant expression in normal
renal tissue (61, 62). The renaming of CL-11 is appropriate, since
it is now known that the molecule is widely expressed (60). The
most obvious expression site in the kidney is the renal tubule,
for this structure encompasses the largest volume in the kidney,
though CL-11 is also present in the glomerular mesangium
and epithelium. Despite its strong presence in the kidney, the
mean concentration of CL-11 in serum is just 284 ng/mL, by
ELISA measurement. Furthermore, CL-11 is known to form
heteromeric complexes with Collectin Liver 1 (CL-10) in the
serum. Interestingly, this heterocomplex, CL-LK, has been shown
to activate complement in vitro (63). However, we hypothesize
that it is the local production of complement that accounts for
tissue injury. Indeed, CL-11 has been shown to be produced by
renal epithelial cells, whereas CL-10 has not been definitively
shown to be expressed in the kidney (64) thereby making it less
likely that the CL-LK heterocomplex is participating in renal
injury.

CL-11 monomers have a similar structure to other C-type
lectins such as MBL and consist of a globular head followed by
a neck and a collagenous tail. The head contains a carbohydrate
recognition domain (CRD), and the tail contains binding sites for
MASPs which are required for complement activation. The CL-
11 monomers form a triplet structure that self-combines to form
oligomers with higher avidity of binding to ligand (65). Since
hypoxia- or hypothermia-treated epithelial cells appear to bind
CL-11 avidly (57–59), it is proposed that a change in presentation
of the stress-induced cellular ligand for CL-11 underpins strong
attachment of the oligomeric CL-11 complex. Whether this
stress-induced pattern could involve a change in orientation or
distribution of ligand, or increased expression or alteration of
biochemical structure, is currently under investigation. However,
clues to potential binding motifs or patterns can be gleaned from
understanding the binding properties of other lectins. Mannose-
Binding Lectin (MBL) is a well characterized C-type lectin similar
to CL-11 in that it shares a similar structure with a CRD and
collagenous tail, and binds oligosaccharide ligands in a calcium-
dependent manner. In particular, MBL has a higher affinity
for ligands that contain mannose or N-Acetyl-D-glucosamine
residues (66). More recently, information has been gathered
which further characterizes theMBL-oligosaccharide interaction,
specifically in relation toMBL binding of lipopolysaccharide (67).

Thus, our understanding of potential CL-11 ligands could be
narrowed by considering and applying our knowledge of the
glycan motifs that MBL recognizes.

Many molecules are normally glycosylated to some extent.
In particular, fucosylated molecules are widely synthesized in
normal tissues (68), and what is interesting to us is that L-
fucose, the preferred monosaccharide recognized by CL-11, is
also abundant in the proximal renal tubule (57). These are the
very cells that express complement components in abundance.
Therefore, the core components of the complement system
including C3, C5 (23) and a lectin pathway trigger (CL-11) are
expressed within the same hypoxia-sensitive segment of the renal
tubule, where a potential binding ligand for CL-11 is also present.
In vivo and ex vivo studies of epithelial cell injury suggest that
hypoxia- or hypothermia-induced binding of CL-11 is followed
by complement activation on the injured cell surface at sites
that are specifically marked by CL-11. In a murine model of
hypoxia-induced renal tubule cell stress, complement deposition
was prevented by CL-11 deletion or by L-fucose blockade of the
carbohydrate recognition domain of CL-11 (57). The protective
effect of L-fucose blockade could also be demonstrated in wild
type mice undergoing renal ischaemic insult (unpublished data).
A similar injury mechanism also appears to occur in retinal
pigmented epithelial cells, where hypoxia-induced membrane
attack complex formation and CL-11 deposition correlate with
sites of L-fucose expression (59). Thus, these findings may have
potentially broad implications for diseases where complement
mediated injury is thought to play a significant role.

CLOSING THE GAP

David and colleagues originally described the ability of renal
tubule cells to spontaneously activate complement in the
presence of normal human serum, and they attributed this
to activation of the alternative complement pathway (69, 70).
However, subsequent understanding of the lectin pathway and,
in particular, the role of CL-11 now suggests another explanation
(57). It points to a role for pattern recognition by CL-11 in
contact with a damage-associated ligand on hypoxia-activated
cells, and in turn the subsequent activation of the complement
cascade by lectin-pathway associated serine proteases, i.e.
MASPs. Although the alternative pathway may still play a role
in hypoxia-mediated renal injury, the emerging data suggests
that CL-11 is indispensable for triggering complement activation.
Secondary activation of the alternative pathway could then occur
either after the formation of C3b (which is an acceptor for factor
B of the alternative pathway), or byMASP-1/3-mediated cleavage
of complement factor D, which in turn cleaves factor B (60, 71).
In the current model, CL-11 is expressed at physiological levels
in the kidney and only substantially increases in binding to the
tubule following cell stress. Complement activation then occurs
at the sites where CL-11-MASP complexes form.

MASP-2 and its relationship with CL-11 are thought to play an
essential role in this model. MASP-2 is one of the three MASPs
that are physically linked with complement-activating lectins,
including CL-11. MASP-2 differs from MASP-1 and MASP-3, in
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FIGURE 2 | Hypothesis of local complement activation triggered by CL-11 on stressed epithelial cells. We hypothesize that under steady state conditions, CL-11 is

produced and released from the basolateral surface and likely the luminal surface of epithelial cells (e.g., renal tubular epithelial cells and retinal pigmented epithelial

cells). Upon stress, damaged epithelial cells display an abnormal pattern of L-fucose resulting in CL-11 binding to cell surface. CL-11/MBL-associated serine protease

(MASP 1, 2 & 3) complexes become activated promoting downstream complement activation. In particular, MASP-2 is a key player at the site of tissue injury cleaving

C3 in a C4-independent manner. During this process, the anaphylatoxins C3a and C5a are generated and C5 cleavage initiates the terminal pathway that culminates

in the formation of the membrane attack complex (MAC). C3b formed by the lectin pathway can covalently bind to target cells and initiate the alternative pathway. C3b

bound to factor B (C3bB) is cleaved by factor D to form the alternative pathway C3 convertase.

that only MASP-2 can directly cleave C3 in human and murine
sera (64, 72). It is only recently that studies in gene-deleted
mice have not only confirmed the importance of MASP-2 in
mediating renal, cardiac and intestinal ischaemic injuries, but
have shown that the injury in each case was C4-independent
(30, 58, 73). The evidence supports a pathway of injury in
which stress-induced ligand presentation leads to CL-11 binding
and subsequent MASP-2-mediated triggering of complement
activation using a route that involves the direct cleavage of C3
by MASP-2 (60, 71, 74). As indicated above, MASP-1/3-mediated
activation of the alternative complement pathway could be a
supplementary mechanism of injury triggered by CL-11.

In total, the evidence suggests that the renal epithelial cell
behaves as a unit of host defense and inflammation, in which
CL-11 appears to integrate the detection of cell stress signals
with activation of the complement system. We envisage that CL-
11 is primarily a tissue-based pattern recognition molecule that
binds damage associated molecular patterns (DAMPs) Figure 2.
In the presence of tissue stress from non-infectious causes, the
effector actions of CL-11 appear to be misdirected by glycan
ligands that are inappropriately exposed on the renal tubule
cell surface. Similar cellular responses to stress such as hypoxia
probably exist at other surfaces, such as the retinal epithelium,

where hypoxia-induced complement activation in the presence
of CL-11 is also described (59). What remains unclear is the
biochemical structure of the damage-related glycan ligands (and
carrier molecules) recognized by CL-11. Future studies will need
to elucidate the nature of the stress signal on cells and how
it is induced by hypoxia to fully validate the hypothesis, and
show whether the same or similar mechanism operates at other
epithelial surfaces. As the identity of these DAMPs begin to
emerge, it will be important to determine whether and how
those exposed on renal tissue differ from the CL-11 ligands on
other tissues and microbial structures, or indeed on developing
tissues targeted by CL-11. There is little doubt that investigating
CL-11 will provide new tools to prove the wider functions of
immune surveillance at different sites, with the potential to
develop new clinical agents for detecting or blocking specific
patterns.
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