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Abstract

Background: Possible single nucleotide polymorphism (SNP) interactions in breast cancer are usually not investigated in
genome-wide association studies. Previously, we proposed a particle swarm optimization (PSO) method to compute these
kinds of SNP interactions. However, this PSO does not guarantee to find the best result in every implement, especially when
high-dimensional data is investigated for SNP–SNP interactions.

Methodology/Principal Findings: In this study, we propose IPSO algorithm to improve the reliability of PSO for the
identification of the best protective SNP barcodes (SNP combinations and genotypes with maximum difference between
cases and controls) associated with breast cancer. SNP barcodes containing different numbers of SNPs were computed. The
top five SNP barcode results are retained for computing the next SNP barcode with a one-SNP-increase for each processing
step. Based on the simulated data for 23 SNPs of six steroid hormone metabolisms and signalling-related genes, the
performance of our proposed IPSO algorithm is evaluated. Among 23 SNPs, 13 SNPs displayed significant odds ratio (OR)
values (1.268 to 0.848; p,0.05) for breast cancer. Based on IPSO algorithm, the jointed effect in terms of SNP barcodes with
two to seven SNPs show significantly decreasing OR values (0.84 to 0.57; p,0.05 to 0.001). Using PSO algorithm, two to four
SNPs show significantly decreasing OR values (0.84 to 0.77; p,0.05 to 0.001). Based on the results of 20 simulations, medians
of the maximum differences for each SNP barcode generated by IPSO are higher than by PSO. The interquartile ranges of
the boxplot, as well as the upper and lower hinges for each n-SNP barcode (n = 3,10) are more narrow in IPSO than in PSO,
suggesting that IPSO is highly reliable for SNP barcode identification.

Conclusions/Significance: Overall, the proposed IPSO algorithm is robust to provide exact identification of the best
protective SNP barcodes for breast cancer.
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Introduction

Genome-wide association studies (GWAS) can identify several

highly robust and statistically significant single nucleotide

polymorphisms (SNPs) associated with breast cancer susceptibility

[1–6]. The associations for genotype frequencies of case and

control data have significant impacts on the disease susceptibility.

Although GWASs provide representative SNPs from the entire

genome, many SNPs with a low or marginal significance are

frequently excluded to effectively retrieve highly significant and

representative tagSNPs.

A steroid hormone metabolism and signalling-related genes are

implicated in the pathogenesis of breast cancer [7–12]. Several

single nucleotide polymorphism (SNP) association studies involved

these genes, such as the estrogen receptor 1 (ESR1), steroid

sulfatase (microsomal), isozyme S (STS), cytochrome P450, family

19, subfamily A, polypeptide 1 (CYP19A1), progesterone receptor

(PGR), catechol-O-methyltransferase (COMT), and sex hormone-

binding globulin (SHBG), have all been reported in these studies

[13–15].

Many studies hypothesize that the cancer or disease risk is

associated with the co-occurrence of SNPs displaying a jointed

effect [16–22]. In recent breast cancer association studies, further

evidence for SNP-SNP interactions has been identified, such as

the SNP-SNP interactions of genes related to DNA repair

[23,24], chemokine ligand-receptor interactions [25], and estro-

gen-response gene [6]. However, the possible SNP-SNP interac-

tions between these hormone metabolisms and signalling-related

genes have hardly been addressed. This is in part due to the

computationally challenging nature of association studies with

multiple SNP candidates.

Currently, analysis of SNP-SNP interactions remains challenge

because of the complex combination of data with huge SNPs.

Many possible combinations of alleles in SNP-SNP interactions

are generated when multiple SNPs are evaluated simultaneously.

Mathematically, the possible combinations of SNP interactions
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between cases and controls is estimated to be C(N,M)*3M = N!/[M!

(N-M)!]*3M, where N is the number of SNPs or factors, and M is

the selected prediction number of SNPs. Many artificial intelli-

gence methods have been proposed to compute the association of

genotype frequencies of case and control data. They were

demonstrated to be effective in reducing the number of search

items among a greater number of SNP combinations, such as

multifactor dimensionality reduction (MDR) [26,27], polymor-

phism interaction analysis (PIA) [28], support vector machine

(SVM) [29], particle swarm optimization (PSO) [30], and genetic

algorithm (GA) [31]. In general, MDR provides many useful

features but tends to yield false positive and negative errors when

the case/control ratio in a combination of genotypes is similar to

the ratio in the entire data set [32]. The PSO and GA methods

have the ability to generate relevant SNP combinations in high-

dimensional data; however, these methods do not guarantee that

every implemented result contains a relevant solution when the

dimensionality is very high. This is due to the PSO and GA

algorithms using random generator initial values and a set number

of iterations. Accordingly, the improved algorithms for solving this

complex interaction problem are essential.

Here, we develop an improved PSO algorithm called IPSO that

improves the reliability of traditional PSO. This improvement is

based on the population initialization step during the PSO process,

i.e., keeping good solutions and improving always the concept of

best solution during the process; this conservation of superior

results yields better solutions for high-order SNP-SNP interactions.

We systematically evaluated the joint effects of 23 SNP combina-

tions of six steroid hormone metabolisms and signalling genes

involved in breast carcinogenesis. The SNP barcodes generated by

the IPSO algorithm were statistically evaluated by the odds ratio

and risk ratio to predict breast cancer susceptibility. The results

demonstrate that the proposed IPSO method can identify more

relevant SNP barcodes for high-dimensional data sets and

improved the reliability of the results in the 20 test runs we

conducted.

Methods

Particle Swarm Optimization
PSO is an efficient evolutionary computation learning algorithm

developed by Kennedy and Eberhart [33]. It was originally

developed to graphically mimic the unpredictable movement of

birds in a flock. The concept of PSO was designed to simulate

social behavior based on information exchange, and was designed

for practical applications. Within the problem space, each

potential solution can be seen as a particle in a swarm. Every

particle with a certain velocity can adjust its direction path

according to its own flight experience and that of its companions.

This superior strategy effectively mines the optimal regions of

complex search spaces through the interaction of individuals in a

population of particles. The basic elements of PSO are mentioned

below:

1) Population: A swarm (population) consisting of N particles.

Each particle can be regarded as a problem solution in this

study.

2) Particle position, xi: Each candidate solution can be

represented by a D-dimensional vector; the ith particle can

be described as xi~(xi1,xi2, . . . ,xiD), where xiD is the

position of the ith particle with respect to the Dth dimension.

Each dimensional vector in particle position is defined by

the number of selected SNPs and the corresponding

genotypes for the associated SNPs.

3) Particle velocity, vi: The velocity of the ith particle is

represented by vi~(vi1,vi2, . . . ,viD), where viD is the velocity

of the ith particle with respect to the Dth dimension. The new

locations of particles are chosen by adding vi to the

coordinate of the particle positionxi; PSO operates this

Figure 1. Population initialization using conservation of the best 5 results.
doi:10.1371/journal.pone.0037018.g001
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process by adjusting vi. In addition, the velocity of a particle

is limited within Vmin,Vmax½ �D.

4) Inertia weight, w: The inertia weight is used to control the

impact of the previous velocity of a particle on its current

velocity. This control parameter affects the trade-off

between the exploration and exploitation abilities of the

particle.

5) Individual best value, pbesti: pbesti is the position of the ith

particle with the highest fitness value at a given iteration. It

can be currently regarded as a best solution of SNP barcodes

so far in terms of ith particle.

6) Global best value, gbest: The best position of all pbest particles

is called global best. It can be currently regarded as a best

solution of SNP barcodes so in all particles.

7) Termination criteria: The process is stopped after the

maximum allowed number of iterations is reached.

The PSO algorithm can be divided into four steps within a

process period. First, particles are respectively initialized in a

population of random solutions. Then each particle finds its own

pbesti by comparing its current fitness to the fitness of its previous

position. In a third step, the gbest of all the particles in the

population is determined. And finally, the PSO algorithm executes

a search for optimal solutions by updating the generations. In each

generation, the position and velocity of the ith particle are updated

with pbesti and gbest of the swarm population. The update equations

can be formulated as:

vnew
id ~w|vold

id zc1|r1| pbestid{xold
id

� �

zc2|r2| gbestd{xold
id

� � ð1Þ

xnew
id ~xold

id zvnew
id ð2Þ

where w is the inertia weight. This inertia weight is a positive linear

function of time that changes with the generations; r1 and r2 are

random numbers between (0, 1), and c1 and c2 are acceleration

constants that control how far a particle moves in a single

generation. Velocities vnew
id and vold

id , respectively, denote the

velocities of the new and old particles; xold
id is the current particle

position, and xnew
id is the updated particle position. The velocity

implies the degree to which a particle’s position should be changed

at a particular moment in time, so that it can equal that of the

global best position, i.e., the velocity of the particle flying toward

the best position. To obtain a search solution, the particles’

velocities in each dimension are limited within [Vmin, Vmax]D, and

the particles’ positions are limited within [Xmin, Xmax]D, thus

determining the size of the steps the particle is allowed to take

through the solution space.

Improved Particle Swarm Optimization
This study proposes a new idea to improve the stability of results

obtained with particle swarm optimization. We conserve the best

results in the each SNP barcode prediction, which allows us to

offer better results for high-order SNP-SNP interactions. The

retention of the best results in PSO is very simple and can be done

without increasing the computational complexity of the process.

The difference between IPSO and PSO is that the proposed new

idea is applied in the population initialization step during the PSO

process. The IPSO proceeds as follows: The initial population is

generated by our strategy and then the fitness values of all

individuals in the population are calculated by a fitness function.

The particles are repositioned according to their own pbest and

gbest solutions. The procedure is repeated in each successive

iteration until the termination conditions are reached.

Encoding schemes. In IPSO, every particle in a population

is associated with a solution group. We define a particle based on

Table 1. IPSO pseudo-code.

01: begin

02: find the top five 2-SNP barcodes

03: conservation of the best five results Xg;(Xg1, Xg2, …, Xg5)

04: for N = 3 to all numbers of SNP

05: Pi;(Xi1, Xi2, …, Xij), iM[1.n]; jM[1.d]

06: mXij ,Xj(Min, Max), iM[1.n]; jM[1.d]

07: mVij ,Vj(Min, Max), iM[1.n]; jM[1.d]

08: evaluate Pi by Eq. 5, iM[1.n]

09: find best Xg in N-SNP combinations

10: the worst five P are replaced with Xg

11: repeat PSO:

12: for each swarm Pi, i M[1.n]

13: fi r evaluate Pi by Eq. 3

14: if pbesti,fi then

15: pbesti r??fi; pbestXi rPi

16: if gbest,pbesti then

17: gbest rpbesti; gbestX rpbestXi

18: end if

19: end if

20: for each particle Pij, jM[1.d]

21: Vijrupdate Vij by Eq.1
22: Xijrupdate Xij by Eq.2

23: next j

24: next i

25: until PSO stopping criterion is met

26: conservation of the top five results Xg;(Xg1, Xg2, …, Xg5)

27: end N

28: end

doi:10.1371/journal.pone.0037018.t001

Table 2. Pseudo-code for randomly generated data.

01: begin

02: Set size = 5000

03: Set number of genotype = 3

04: Calculate amount of three genotypes

05: while (all SNPs are not normalized)

06: Calculate amount of each genotype

07: Calculate numbers of each normalized genotype

08: for n = 1 to number of genotype

09: Randomly create numbers of each normalized genotype

10: next n

11: end while

12: end

doi:10.1371/journal.pone.0037018.t002

Improved PSO-Based SNP Barcodes in Breast Cancer

PLoS ONE | www.plosone.org 3 May 2012 | Volume 7 | Issue 5 | e37018



the number of selected SNPs, and the genotype associated with the

corresponding SNPs; the SNPs cannot be repeatedly selected. The

particle encoding can thus be represented by:

where SNPi,j represents the selected SNP, Genotypei,j represents

the three possible genotypes once SNP i,j is selected, m represents

the size of the population, and n represents the number of SNPs

selected. Initial particles are randomly generated in this study. For

example, let P = (SNP3,4,8, Genotype2,1,3). In this representation of

the particle, SNP3,4,8 represents the chosen SNPs (3, 4, 8) and

Genotype2,1,3 represents the chosen genotypes (2, 1, 3). In this case,

the selected SNPs with their corresponding genotypes are

represented as (3, 2), (4, 1), and (8, 3), respectively.

Population initialization using conservation of the top five

results. The top five results in the 2-SNP barcode and in the n-

SNP barcode (n §3) are generated differently. For the 2-SNP

barcode, we only apply the exhaustive search algorithm to

compute and check all possible 2-SNP combinations to give the

best five results for all 2-SNP barcodes. To generate the n-SNP

barcode (n §3), the steps for population initialization are

illustrated in Figure 1. To initialize the population, the top five

results amongst the previous 2-SNP combinations are used to

initialize the population initialization for other numbers of SNP

combinations. For example, (SNP1,3, Genotype1,2) is one of the top

five 2-SNP barcodes (step 1-1). Subsequently, this 2-SNP barcode

is applied to search for the best combination of the 3-SNP barcode

with a maximum difference value between the case and control

data (step 2-2a); in this example the search result is (SNP1,3,i,

Genotype1,2,j), with i = {2, 4, 5, 6 … n | n representing the number of

SNPs} and j = {1, 2, 3}. Then, the exhaustive search algorithm is

applied to compute and check all possible 3-SNP combinations to

find the top five results for all 3-SNP barcodes (step 3-3a). If the

exhaustive search algorithm finds the answer to be i = 6 and j = 1

(the newly added third SNP and the genotype are 6 and 1,

respectively), the best 2-SNP barcode (SNP1,3, Genotype1,2) can

generate its best 3-SNP barcode (SNP1,3,6, Genotype1,2,1). Similarly,

four of the top five 3-SNP barcodes are generated.

Meanwhile, the 3-SNP barcodes are generated in a random way

(step 2-2b) and then sorted by the order of the fitness values (step

3-3b). The result from step 3-3a is used to replace the worst of the

top five SNP barcodes (step 3-4). Finally, the updated 3-SNP

barcode population is ready for the PSO computation, in which

the top five in amongst the 3-SNP barcodes (step 3-5) are

determined. Now, the top five SNP barcodes can be used to start

the generation of the next higher order SNP barcodes. The steps

are described in detail by the annotated IPSO pseudo-code in the

next two sections.

Fitness function. In this study, the fitness value means are

used to compute the difference between the case and control data

from the selected SNP combinations. The focus lies on specific

SNP combinations to obtain the highest fitness value, i.e., the

maximum SNP combination difference between cases and

controls. The concept uses the intersection of set theory to

compute the difference between cases and controls. The intersec-

tion of two sets is the set that contains all elements of one of these

sets that also belong to the other set, but no other elements. A high

fitness value indicates the best combination of an SNP and

genotypes. The relevant equation is shown below:

F(Pi)~ n(C\Pi){n(N\Pi)j j ð3Þ

where n represents the total number of elements in a set. C

represents the total number of SNP interactions in the case group,

and N represents the total number of SNP interactions in the

control group. Pi represents the ith particle. The fitness value

definition can be divided into three steps. First, the total number of

intersections of the case data set and the ith particle is calculated as

n(C>Pi). Second, the total number of intersections of the control

data set and the ith particle is calculated as n(N>Pi). Finally, Eq (3)

is used to calculate the fitness value that is the difference between

the intersection of the case and the particle and the intersection of

the control and the particle. For example, P = (SNP1,2, Genotype2,1)

it is used to compute the number matching the condition of the

SNP and genotypes for the case and control in the breast cancer

data. First, the number of controls for SNP1 with genotype 2 and

SNP2 with genotype 1 is calculated. The number of cases

independently matching SNP1 with genotype 2 and SNP2 with

genotype 1 was 76 in the breast cancer data set. Second, the

number of controls independently matching SNP1 with genotype 2

and SNP2 with genotype 1 is calculated as 141. According to Eq.

(3), the fitness value is determined by subtracting 76 from 141,

giving -65. If the fitness is negative, the absolute value is taken to

obtain a fitness value of 65.

Identification of pbest and gbest. Each particle finds its

personal best position (pbest) and the global best position (gbest)

when moving. If the fitness value of a particle Pi in the current

iteration is better than the fitness value of pbest in the previous

iteration, pbest is updated to that of Pi. If the fitness value of particle

Pi in the current iteration is better than gbest in the previous

iteration and is the best one in the current iteration, gbest is

updated to that of Pi. Each particle then adjusts its direction based

on pbest and gbest in the following iteration.

As mentioned in Table 1, the pseudo-code for IPSO algorithm

can collocate data with the adaptation procedure as mentioned

above and generate the best SNP barcode for breast cancer

prediction.

Parameter settings. The population size parameter was set

to 50 (Figure 1, step 2-2b). The termination condition of the PSO

is reached at a prespecified number of iterations (in our case, the

number of iterations is 100) (Figure 1, step 3-5). The other

parameters used in the PSO were c1 = c2 = 2. Vmax was equal to

(Xmax – Xmin) and Vmin was equal to – (Xmax – Xmin). These

parameters have been optimized by Kennedy and Eberhart [33].

Performance measurement and statistical analysis. We

used five commonly used criteria to determine the performance

[28].

Correct~
TPzTN

TPzFNzFPzTN
ð4Þ

SensitivityzSpecificity~
TP

TPzFN
z

TN

FPzTN
ð5Þ

PositivePredictiveValue(PPV)zNegativePredictiveValue(NPV)

~
TP

TPzFP
z

TN

FNzTN

ð6Þ

RiskRatio~
TP|(FPzTN)

FP|(TPzFN)
ð7Þ

OddsRatio~
TP|TN

FP|FN
ð8Þ
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TP, TN, FN, and FP represent the number of true positives, true

negatives, false negatives, and false positives, respectively. For

statistics analysis with SPSS 13.0, the risk ratio (RR) and odds ratio

(OR) are used to determine the best SNP barcode and

quantitatively measure the breast cancer risk. The boxplots were

analysed by SigmaPlot 9.0 (Systat Software, Inc.).

Table 3. Estimated effect (odds ratio and 95% CI) from individual SNPs of 23 steroid hormone metabolisms and signalling-related
genes on the occurrence of breast cancer in patients.

SNP (Gene)a
SNP
type

Case
no.

Control
no.

Odds
ratio 95% CI

p
valuee SNP (Gene)

SNP
type

Case
no.

Control
no.

Odds
ratio 95% CI

p
valuee

(Ch/position)cd (Position)

1. rs6269 (COMT) 1-AA 1694 1769 13. rs9478249
(ESR1)

1-TT 1890 1773

(22/19949952) 2-AG 2389 2390 1.044 0.955, 1.140 0.337 (6/152199431) 2-TG 2381 2430 0.919 0.843, 1.003 0.056

3-GG 917 841 1.139 1.013, 1.279 0.028 3-GG 729 797 0.858 0.760, 0.969 0.012

2. rs4680 (COMT) 1-GG 1308 1377 14. rs1514348
(ESR1)

1-CC 1717 1830

(22/19951271) 2-GA 2440 2417 1.063 0.966, 1.169 0.211 (6/152182315) 2-CA 2435 2415 1.075 0.985, 1.173 0.107

3-AA 1252 1206 1.093 0.978, 1.221 0.118 3-AA 851 755 1.201 1.066, 1.354 0.002

3. rs10046 (CYP19A1) 1-CC 1434 1430 15. rs532010
(ESR1)

1-TT 1848 1891

(15/51502986) 2-CT 2411 2497 0.963 0.877, 1.057 0.424 (6/152130918) 2-TC 2377 2422 1.004 0.921, 1.095 0.930

3-TT 1155 1073 1.073 0.959, 1.201 0.214 3-CC 775 687 1.154 1.021, 1.305 0.021

4. rs3020314 (ESR1) 1-CC 2147 2343 16. rs566351 (PGR) 1-TT 2062 2014

(6/152270672) 2-CT 2280 2164 1.150 1.057, 1.250 0.001 (11/100985014) 2-TC 2280 2326 0.957 0.879, 1.043 0.312

3-TT 573 493 1.268 1.107, 1.453 0.001 3-CC 658 660 0.974 0.858, 1.105 0.680

5. rs2234693 (ESR1) 1-TT 1446 1450 17. rs660149 (PGR) 1-CC 2708 2591

(6/152163335) 2-TC 2480 2524 1.015 0.925, 1.113 0.761 (11/100934314) 2-CG 1927 2042 0.903 0.831, 0.981 0.016

3-CC 1074 1026 1.065 0.961, 1.181 0.232 3-GG 365 367 0.952 0.813, 1.114 0.554

6. rs1543404 (ESR1) 1-TT 1468 1467 18. rs11571171 (PGR) 1-TT 2419 2338

(6/152428838) 2-TC 2439 2441 0.999 0.910, 1.095 0.981 (11/100974887) 2-TC 2082 2163 0.930 0.856, 1.012 0.091

3-CC 1093 1092 1.000 0.894, 1.119 1.000 3-CC 499 499 0.967 0.841, 1.110 0.626

7. rs3798577 (ESR1) 1-TT 1413 1406 19. rs500760 (PGR) 1-AA 2888 2994

(6/152421130) 2-TC 2494 2542 0.976 0.889, 1.072 0.621 (11/100909991) 2-AG 1866 1767 1.095 1.007, 1.190 0.033

3-CC 1093 1052 1.034 0.922, 1.159 0.567 3-GG 246 239 1.067 0.883, 1.290 0.508

8. rs2747652 (ESR1) 1-CC 1377 1372 20. rs858518 (SHBG) 1-TT 1693 1597

(6/152437016) 2-CT 2479 2447 1.009 0.918, 1.109 0.849 (17/7533025) 2-TC 2412 2490 0.914 0.836, 0.999 0.047

3-TT 1144 1181 0.965 0.863, 1.080 0.535 3-CC 895 913 0.925 0.823, 1.039 0.188

9. rs2077647 (ESR1) 1-AA 1383 1347 21. rs272428 (SHBG) 1-CC 1609 1523

(6/152129077) 2-AG 2449 2589 0.921 0.838, 1.012 0.087 (5/179323119) 2-CT 2438 2442 0.945 0.863, 1.035 0.225

3-GG 1168 1064 1.069 0.954, 1.198 0.242 3-TT 953 1035 0.872 0.778, 0.977 0.017

10. rs2175898 (ESR1) 1-AA 1350 1353 22. rs858524 (SHBG) 1-AA 1613 1725

(6/152196952) 2-AG 2507 2457 0.846 0.768, 0.932 0.001 (17/7511287) 2-AG 2459 2393 1.099 1.005, 1.201 0.037

3-GG 1143 1190 0.941 0.852, 1.040 0.238 3-GG 928 882 1.125 1.002, 1.264 0.044

11. rs9340799 (ESR1) 1-AA 2016 2107 23. rs2017591 (STS) 1-TT 1823 1760

(6/152163381) 2-AG 2360 2302 1.071 0.984, 1.166 0.109 (X/7158114) 2-TC 2258 2437 0.895 0.819, 0.977 0.012

3-GG 624 591 1.103 0.969, 1.257 0.133 3-CC 919 803 1.105 0.983, 1.242 0.094

12. rs1709182 (ESR1) 1-TT 1932 1988

(6/152175357) 2-TC 2326 2341 1.022 0.938, 1.114 0.618

3-CC 742 671 1.138 1.006, 1.288 0.038

aData collected from literature [14].
bData highlighted in bold text are statistically significant results.
cAll the [Ch/position], i.e., [Chromosome no./Chromosome position], information is based on ‘‘Assembly GRCh37’’.
dThe contig information is shown in SNP no. (contig accession no.) as follows: SNP 1–2 (NT_011519.10); SNPs 3 (NT_010194.17); SNPs 4–15 (NT_025741.15); SNPs 16–19
(NT_033899.8); SNPs 20–22 (NT_010718.16); SNPs 23 (NT_167197.1).
eValues with p value,0.05 are highlighted in bold fonts.
doi:10.1371/journal.pone.0037018.t003
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Results

Data Set Preparation
The data set for the steroid hormones and their signalling and

metabolic pathways (96 SNPs for 8 genes) were obtained from the

breast cancer association study in [14]. This data set only provides

the genotype frequencies without the original raw data for the

genotypes of each SNP. In our study, we simulated the genotype

data based on the original frequencies of the data set. Using the

simulated genotype data, susceptibility to breast cancer in terms of

complex SNP-SNP interactions can be considered. However, it

does not reflect the true distribution of those SNPs in cases and

controls, and therefore results are not real. However, the original

data involves different numbers of genotypes, and hence we had to

perform normalization to make each genotype size the same in

order to allow further analysis. Our simulated data was randomly

generated and obeys the original genotype frequency in the entire

data set; the simulated data is available at http://bioinfo.kmu.edu.

tw/brca-steroid-96SNP.xlsx.

The normalization procedure is provided in the ‘‘pseudo-code

for randomly generated data’’ as shown in Table 2. For example,

we set the range size to a maximum range of 5000, and then

calculate the amount of three genotypes in each SNP. The

example of SNP4 (rs3020314) includes 4551 genotypes in the

original data, which contain 2132 for CC, 1970 for CT, and 449

for TT, respectively (the step for pseudo-code 04). In each SNP,

the percentage of each genotype is calculated, for the above

instance, 2132/4551 (46.85%) for CC, 1970/4551 (43.29%) for

CT, and 449/4551 (9.86%) for TT. Based on these percentages,

the modified data for SNP4 is obtained by multiplication of the

percentage with the amount of the entire data set, i.e.,

46.85%65000 = 2343 for CC, 43.28%65000 = 2164 for CT and

9.86%65000 = 493 for TT (the step for pseudo-code 05 to 11).

The simulated data for SNP4 has thus been normalized to 5000

(2343+2164+493 = 5000). Accordingly, all original data are

normalized to the same number in this manner.

Table 4. The best estimated protective SNP combinations on the occurrence of breast cancer as determined by IPSO.

Number of combined SNPs
(specific SNPs) SNP genotypes

Control no.
/Case no.

Difference
(specific
SNPs) Correct Sen.+Spe. PPV+NPV Risk Ratio

Odds Ratio
(p value)

2-SNP others 3596/3770 0.84

SNPs(4-19) 1-1 1404/1230 174 0.48 0.97 0.96 0.88 (,0.001*)

3-SNP others 4301/4429 0.79

SNPs(4-19-23) 1-1-2 699/571 128 0.49 0.97 0.94 0.82 (,0.001*)

4-SNP Others 4644/4731 0.74

SNPs(4-9-19-23) 1-2-1-2 356/269 87 0.49 0.96 0.93 0.76 (,0.001*)

5-SNP Others 4809/4864 0.70

SNPs(3-4-9-19-23) 2-1-2-1-2 191/136 55 0.50 0.99 0.91 0.71 (0.002*)

6-SNP Others 4911/4946 0.60

SNPs(3-4-9-13-19-23) 2-1-2-2-1-2 89/54 35 0.50 0.99 0.88 0.61 (0.004*)

7-SNP Others 4951/4972 0.57

SNPs(3-4-9-13-19-20-23) 2-1-2-2-1-2-2 49/28 21 0.50 1.00 0.87 0.57 (0.022*)

8-SNP Others 4971/4983 0.59

SNPs(3-4-9-12-13-19-20-23) 2-1-2-2-2-1-2-2 29/17 12 0.50 1.00 0.87 0.59 (0.103)

9-SNP Others 4986/4994 0.43

SNPs(3-4-9-12-13-14-19-20-23) 2-1-2-2-2-2-1-2-2 14/6 8 0.50 1.00 0.80 0.43 (0.115)

10-SNP Others 4994/4999 0.17

SNPs(3-4-9-12-13-14-19-20-21-23) 2-1-2-2-2-2-1-2-3-2 6/1 5 0.50 1.00 0.64 0.17 (0.125)

*The SNP combinations on the occurrence of breast cancer are significantly different (p value,0.05). Sen.; Sensitivity; Spe., specificity; PPV, positive predictive value;
NPV, negative predictive value. The meanings of the SNP and genotype numbers are provided in Table 3. For example, barcode SNPs (4-19)-genotype (1-1) is
[rs3020314-CC]-[rs500760-AA]; SNPs (4, 19, 23) with genotype 1-1-2; [rs3020314-CC]-[rs500760-AA]-[rs2017591-TC].
doi:10.1371/journal.pone.0037018.t004

Figure 2. The maximum difference between cases and controls
for PSO and IPSO on the best barcodes containing two to ten
SNPs.
doi:10.1371/journal.pone.0037018.g002
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Evaluation of Breast Cancer Susceptibility in 23 Separate
SNPs from 6 Steroid Hormone Metabolisms and
Signalling-related Genes

Based on our simulated data, Table 3 shows the performance

(OR and 95% CI) for each SNP from 6 steroid hormone

metabolisms and signalling-related genes (COMT, CYP19A1,

ESR1, PGR, SHBG, and STS). Some SNPs (such as SNPs 4, 10,

12–15, 17, and 19–23 listed in Table 3) with certain genotypes

display a statistically significant OR (p,0.05) for breast cancer;

their OR values range from 1.268 to 0.846. The other SNPs show

no statistically significant OR for breast cancer.

Identification of the SNP-SNP Interactions with Maximum
Differences between Cases and Controls Using IPSO

Using the IPSO algorithm, the best SNP-SNP interaction is

evaluated by the difference between cases and controls for all the

SNP barcodes. After computation, the top five of the 2-SNP

barcodes can be listed in order of the difference between cases and

controls: SNPs (4-19)-genotype (1-1), SNPs (4-23)-genotype (1-2),

SNPs (4-9)-genotype (1-2), SNPs (19-23)-genotype (1-2), and SNPs

(9-23)-genotype (2-2). The differences in the number of cases and

controls for these SNP barcodes are 174, 168, 158, 150, and 146,

respectively (data not shown). In this study, as shown in Table 4,

we only select the 2-SNP barcodes with a maximum difference,

i.e., the best 1 of the 2-SNP barcode. Similarly, the n-SNP

barcodes (n = 3 to 10) with maximum differences, i.e., the best for

each n-SNP barcode, are also selected (left side of Table 4).

With the conservation of the top five results, we found that the

best for n-SNP barcode contains the corresponding best (n-1)-

barcode. For example, the 3-SNP barcode contains the 2-SNP

barcode, i.e., SNPs (4-19-23)-genotypes (1-1-2) vs. SNPs (4-19)-

genotypes (1-1), where the bold letters indicate the newly selected

SNP. The 4-SNP barcode contains the 3-SNP barcode, i.e., SNPs

(4-9-19-23)-genotypes (1-2-1-2) vs. SNPs (4-19-23)-genotypes (1-1-

2).

Prediction Scores of the Best IPSO-generated SNP
Barcodes in Breast Cancer

The best n-SNP barcodes (n = 3 to 10) calculated by the IPSO

algorithm are listed in Table 4 to calculate their five prediction

scores, i.e., the correctness, sensitivity+specificity, PPV+NPV, RR,

and OR, in order to evaluate the breast cancer susceptibility based

on the IPSO-generated SNP barcodes. The sensitivity and

specificity values of the respective best SNP barcodes are all

higher than 0.96, suggesting that IPSO can identify the best SNP

barcodes associated with breast cancer. The correctness and

PPV+NPV values of the respective best SNP barcodes range from

0.48 to 0.50 and 0.64 to 0.96, respectively, and the RR and OR of

the best SNP barcodes range from 0.88 to 0.17 and 0.84 to 0.17,

respectively. The SNP barcodes involving two to seven SNPs show

significantly decreasing OR values (p,0.05 to 0.001). Since the

SNP barcodes listed in Table 4 show that the control numbers are

greater than the case numbers, the SNP barcodes are regarded as

protective SNP barcodes against breast cancer.

Comparison between the Best IPSO-generated and PSO-
generated SNP Barcodes in Breast Cancer

We compare IPSO with PSO for the reliability and the ability to

identify SNP barcodes to support the advantage of the top-five

strategy. The performances of the PSO and IPSO algorithms from

20 simulation runs (see supplement Table S1 and Table S2 for

details) are compared by means of the best maximum difference

between cases and controls as shown in Figure 2. To examine the

performance in terms of the statistical differences between both

algorithms, we performed the Wilcoxon Signed-Rank test and

found that there were significant differences between cases and

controls in n-SNP barcodes (n = 2 to 10) (Table S3).

The maximum differences for each SNP barcode generated by

IPSO are higher than those of PSO, suggesting that the selection

of the best protective SNP barcodes is more reliable in IPSO than

in PSO. As shown in Figure 3, the median value results suggest

that IPSO is more suitable for selecting the best SNP barcodes for

breast cancer protection. Moreover, the interquartile ranges (25th

to 75th) of the boxplot, as well as the 5th, 10th, 90th and 95th

percentiles for each n-SNP barcode (n = 3 to 10), are more narrow

in the IPSO algorithm (Figure 3A) than in the PSO algorithm

(Figure 3B). These data suggest that the results of the PSO

algorithm are more unstable. In contrast, the IPSO algorithm

provides exact identification of the best SNP barcodes for breast

cancer protection. Actually, the data in Figure 3A (IPSO) are all

the same for each n-SNP (n = 3 to 10), i.e., 128, 87, 55, 35, 21, 12,

8, and 5 (Table 4). The best PSO-generated n-SNP barcodes with

maximum differences between cases and controls are listed in

Figure 3. Boxplots displaying the extremes, the upper and
lower quartiles, and the median of the maximum difference
between cases and controls for (A) the IPSO algorithm and (B)
the PSO algorithm on three to ten combined SNPs over 20
runs. The boundary of the box closest to zero indicates the 25th
percentile, a line within the box marks the median, and the boundary of
the box farthest from zero indicates the 75th percentile. Error bars
above and below the boxes indicate the 90th and 10th percentiles,
respectively. The triangle symbols indicate the 95th and 5th percentiles.
doi:10.1371/journal.pone.0037018.g003
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Table 5. In the PSO algorithm the top five results are not

conserved. Accordingly, the PSO-generated SNP barcodes con-

serve the selected SNPs to a lesser degree (Table 3). For example,

only one SNP in the 2-SNP barcode shows up in the 3-SNP

barcode, i.e., SNP 4 (rs3020314; Table 3), and only one SNP in

the 3-SNP barcode shows up in the 4-SNP barcode, i.e., SNP 23

(rs2017591). Therefore, an order of influence on breast cancer is

very difficult to establish from the SNPs in Table 3.

Discussion

Many association studies of cancer focused on the analysis of

risk genetic factors that influence common complex traits in terms

of commonly occurring SNPs. However, the possible protective

effects are also important for the prediction of cancer morbidity by

SNPs. Here, we analyzed the contribution of 23 SNPs from six

breast cancer related genes to generate the protective SNP

barcodes in a case-control study of 5000 cases and 5000 controls

with genotype data simulation.

The maximum difference information calculated by the IPSO

algorithm can predict the relative strength of the impact of an SNP

on breast cancer protection. For example, the difference between

controls and cases for SNP barcode [SNPs (4-19)-genotype (1-1)] is

higher than that of [SNPs (4-19-23)-genotype (1-1-2)], suggesting

that SNP 4 and SNP 19 are more associated with breast cancer

protection than SNP 23. Accordingly, an order of impact on breast

cancer for the SNPs listed in Table 3 can be arranged: SNPs 4/

19. SNP 23. SNP 9. SNP 3. SNP 13. SNP 20. SNP 12.

SNP 14. SNP 21. In this simulated breast cancer association

study, the IPSO-generated SNP barcodes involving two to seven

SNPs and two to four SNPs show significantly decreasing OR

values ranging from 0.84 to 0.57 (Table 4). In contrast, some

individual SNPs with certain genotypes display statistically

significant OR values ranging from 1.268 to 0.846 (Table 3).

Some SNPs may display different impacts on the protection of

breast cancer in terms of the individual SNPs or the combinational

SNPs. For example, some individual SNPs such as SNPs 3 and 9

are not significantly associated with breast cancer (Table 3), but

the occurrence of 4- to 10-SNP combinations including SNPs 3

and 9 shows the significant association with breast cancer (Table 4).

These data suggest that the association relationship for breast

cancer may be ignored when the SNP interaction is of no concern.

A key issue of detecting SNP-SNP interactions in genome-wide

case-control study is the computational efficiency. The computa-

tional complexity of IPSO algorithm is estimated by the objective

function computation. If there are M number of iterations and N

number of solutions (particles) in the population, then the objective

function computation has O(MN) computational complexity. The

effective feature of the top 5 strategy computation is only storing

the top 5 solutions in each iteration. If there are K solutions in the

archive, storing the solutions in the archive has O(M+K)

computational complexity. If the archive and the iteration have

the same numbers, the overall complexity of IPSO is O(MN+K).

Although the optimal parameters of PSO were demonstrated by

Kennedy and Eberhart [33], we found that the parameter

adjustments may promote better results even for large numbers

of SNPs. Firstly, the population and iterations could adjust its size

according the data size, in which the population size suggested

setting from 50 to 100 and number of iterations suggested setting

from 100 to 1000, i.e., it explores to better SNP barcodes with

large difference between cases and controls, but the computational

complexity of IPSO is also increased. Secondly, the c1 and c2 are

acceleration constants that control how far a particle moves in a

single generation, and they respectively control the exploitation

Table 5. The best estimated protective SNP combinations on the occurrence of breast cancer as determined by PSO.

Number of combined SNPs
(specific SNPs) SNP genotypes

Control no.
/Case no.

Difference
(specific
SNP) Correct Sen.+Spe. PPV+NPV Risk Ratio

Odds Ratio
(p value)

2-SNP others 3596/3770 0.84

SNPs(4-19) 1-1 1404/1230 174 0.48 0.97 0.96 0.88 (,0.001*)

3-SNP others 4427/4505 0.85

SNPs(4-22-23) 1-2-2 573/495 78 0.49 0.98 0.96 0.86 (0.013*)

4-SNP Others 4670/4728 0.81

SNPs(9-18-19-23) 2-2-1-2 330/272 58 0.49 0.99 0.95 0.82 (0.016*)

5-SNP Others 4885/4911 0.77

SNPs(3-4-12-20-23) 2-1-1-2-2 115/89 26 0.50 1.00 0.93 0.77 (0.077)

6-SNP Others 4950/4962 0.76

SNPs(12-15-17-19-21-22) 2-2-2-1-2-1 50/38 12 0.50 1.00 0.93 0.76 (0.239)

7-SNP Others 4982/4988 0.67

SNPs(2-7-14-18-19-21-23) 2-2-1-2-1-1-2 18/12 6 0.50 1.00 0.90 0.67 (0.361)

8-SNP Others 4990/4995 0.50

SNPs(9-10-11-13-17-20-21-23) 3-3-2-2-1-2-2-2 10/5 5 0.50 1.00 0.83 0.50 (0.301)

9-SNP Others 4993/4995 0.71

SNPs(1-3-4-11-14-16-18-21-22) 2-2-2-1-2-2-1-1-1 7/5 2 0.50 1.00 0.92 0.71 (0.774)

10-SNP Others 4998/4999 0.50

SNPs(1-3-5-9-10-13-18-20-21-22) 2-2-2-2-2-3-1-1-3-1 2/1 1 0.50 1.00 0.83 0.50 (1.000)

*The SNP combinations on the occurrence of breast cancer are significantly different (p value,0.05). The meanings of the SNP and genotype numbers are provided in
Table 3.
doi:10.1371/journal.pone.0037018.t005
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and exploration ability in each search. In order to balance the

exploitation and exploration, the c1 and c2 are suggested the same

as 2.

Although we explored the benefit of IPSO algorithm for SNP

interaction based on the simulated breast cancer study, the IPSO

algorithm is not exclusively into breast cancer data and can be

applied to other real data sets. After running these algorithms

using another disease with the real dataset [18], e.g., osteoporosis,

we found that the IPSO algorithm again showed better

performance for selecting SNP barcodes in SNP-SNP interaction

studies than the PSO algorithm (data not shown).

IPSO can overcome the limitations imposed on computational

time for complex SNP interactions for GWAS because IPSO has

the following advantages: 1) IPSO allows robust analysis of high-

order SNP combinations for GWAS studies and generates the best

SNP barcodes; 2) IPSO is an improved evolutionary algorithm

without exhaustive search; 3) IPSO only needs two parameters for

computation without complex settings; and 4) Its computational

complexity is unaffected by the size of data sets.

In conclusion, we propose an improved PSO algorithm to

perform a powerful breast cancer association analysis in terms of

SNP-SNP interactions with 23 SNPs. Our strategy successfully

improves on the performance of traditional PSO in terms of the

reliability with a combination of more statistically significant SNPs

associated with breast cancer protection. With the help of the

IPSO algorithm, the best fitness of cases and controls can be

identified. The algorithm can potentially be applied to identify

complex SNP-SNP (gene-gene) interactions for different diseases,

even in cases where a large number of SNPs is involved in

genome-wide association studies.
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