
Citation: Alhazmi, A.; Aldairi, A.F.;

Alghamdi, A.; Alomery, A.; Mujalli,

A.; Obaid, A.A.; Farrash, W.F.;

Allahyani, M.; Halawani, I.; Aljuaid,

A.; et al. Antibacterial Effects of

Commiphora gileadensis Methanolic

Extract on Wound Healing. Molecules

2022, 27, 3320. https://doi.org/

10.3390/molecules27103320

Academic Editors: Rudolf Bauer and

Jelena S. Katanic Stankovic

Received: 18 April 2022

Accepted: 19 May 2022

Published: 21 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Antibacterial Effects of Commiphora gileadensis Methanolic
Extract on Wound Healing
Ayman Alhazmi 1,†, Abdullah F. Aldairi 2,*,† , Ahmad Alghamdi 1 , Anas Alomery 1, Abdulrahman Mujalli 2,
Ahmad A. Obaid 2, Wesam F. Farrash 2 , Mamdouh Allahyani 1, Ibrahim Halawani 1, Abdulelah Aljuaid 1,
Sarah A. Alharbi 3 , Mazen Almehmadi 1 , Moodi S. Alharbi 4, Anmar A. Khan 2, Maisam A. Jastaniah 5

and Abdulrhman Alghamdi 6

1 Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University,
P.O. Box 11099, Taif 21944, Saudi Arabia; aboteef999@hotmail.com (A.A.); a.ghamadi@tu.edu.sa (A.A.);
omarianas1@hotmail.com (A.A.); m.allahyani@tu.edu.sa (M.A.); i.halawani@tu.edu.sa (I.H.);
ab.aljuaid@tu.edu.sa (A.A.); dr.mazen.ma@gmail.com (M.A.)

2 Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University,
Al Abdeyah, P.O. Box 7607, Makkah 21961, Saudi Arabia; ammujalli@uqu.edu.sa (A.M.);
aaobaid@uqu.edu.sa (A.A.O.); wffarrash@uqu.edu.sa (W.F.F.); aaakhan@uqu.edu.sa (A.A.K.)

3 Laboratory Department, Prince Mohammed Bin Abdulaziz Hospital, Ministry of National Guard-Health Affairs,
Al Madinah 41511, Saudi Arabia; alharbisara2121@gmail.com

4 Diabetic Centre, King Abdulaziz Speciality Hospital, Ministry of Health, Qurwa, Taif 26521, Saudi Arabia;
moodi-1411@hotmail.com

5 Laboratory Department, King Faisal Hospital, Ministry of Health, Makkah 24236, Saudi Arabia;
mjastauiah@moh.gov.sa

6 Faculty of Medicine, Taif University, Taif 21944, Saudi Arabia; mzamt@hotmail.com
* Correspondence: afdairi@uqu.edu.sa
† These authors contributed equally to the work.

Abstract: Commiphora gileadensis (CG) is a small tree distributed throughout the Middle East. It
was traditionally used in perfumes in countries in this area. In Saudi Arabia, it was used to treat
wounds burns and as an antidote to scorpion stings. This study aimed to evaluate the antimicrobial
activity and cutaneous wound healing efficiency of the CG extracts using microbiological tests, rate
of wound contraction and histopathological changes. CG plant were extracted using the methanol
extraction technique; then, the methanolic extract was characterized using liquid chromatography
coupled with mass spectrometry (LC–MS). Afterwards, a six-millimetre (mm) excision wound was
induced in 60 male Balb/c mice. Mice were classified into two classes; each class consisted of three
groups of 10 mice. In the non-infected wound class, the group I was assigned as control and received
normal saline. Group II received gentamicin treatment, and group III treated with CG-methanolic
extract. In the Staphylococcus aureus-infected class, group IV received normal saline, and groups V
and VI were treated with gentamicin and CG-methanolic extract, respectively. The colonization of
infected wounds was determined using colony-forming units (CFUs), and the percentage of wound
contraction was measured in all groups. Finally, the histopathologic semi-quantitative determination
of wound healing was evaluated by inflammatory cell infiltration, the presence of collagen fibres and
granulation tissue, and the grade of re-epithelization. Composition analysis of the methanolic extract
confirmed the presence of a high amount of ceramide (69%) and, to a lesser extent, hexosylceramide
(18%) and phosphatidylethanolamine (7%) of the total amount. Additionally, there was a statistically
significant difference between the percentage of wound contraction in the CG-treated and control
groups in both Staphylococcus aureus-infected and non-infected wounds (p < 0.01). The colonization
of the infected wounds was lower in the group treated with CG than in the control group (p < 0.01).
In both non-infected and infected wounds, the CG-treated group showed significant statistical
differences in inflammatory cell infiltration, collagen fibres, re-epithelization and granulation tissue
formation compared with the control group (p < 0.01). The CG extract possesses antibacterial and
anti-inflammatory properties that induce wound healing.
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1. Introduction

In the human body, the skin is the first line of defence mechanism that protects the
body from the external environments [1], where significant skin damage may lead to
several complications and death, for instance, wounds in diabetic patients [2,3]. Wounds
can be classed based on a variety of factors. In the treatment of injuries and wounds,
time is crucial. According to the length of time it takes for a wound to heal, it can be
classified as acute or chronic [4]. In contrast, acute wounds can be defined as wounds
that self-heal and heal normally, with both functional and anatomical restoration as a
result of following a timely and ordered healing process [3,5]. On the other hand, chronic
wounds do not heal correctly or in a timely manner and do not move through the regular
stages of healing [6]. Consequently, after a skin injury, the body initiates a physiological
response known as the normal wound healing process [7]. The reaction involves different
functions, including haemostasis, inflammation, cell proliferation and maturation, and
remodeling [8,9], mediated through several cytokines, chemical mediators, and secretions
from various cell types [10,11].

The first stage starts when keratinocytes at the skin breach site produce interleukin-1
(IL-1) and tumour necrosis factor-α (TNF-α). These cytokines stimulate adjacent cells
to reduce the wound area [12]. Moreover, the disruption of blood vessels at the injury
site induces platelet aggregation and activates blood coagulation and complement cas-
cades [13–15]. Inflammatory cells are then get involved in the site of injury via platelets
released growth factors such as epidermal growth factor (EGF), platelet-derived growth
factor (PDGF) and transforming growth factor-β (TGF-β) [16]. Neutrophils are recognized
to be the first inflammatory cells that reach the site of injury to remove damaged cells, bac-
teria, amongst other foreign materials [17], which are usually followed by the proliferation
of the epidermis’ basal layer at the edge of the incision [18]. Different cell types, such as
keratinocytes and monocytes, migrate to the injury site and proliferate in the second stage.
Monocytes proliferate into macrophages under the influence of TGF-β, which initiates
tissue granulation to fill the injury site [19]. The angiogenesis is maximized by the fifth day
of wound healing and by the end of stage two, the fibroblasts differentiate into contractile
myofibroblasts [20,21]. In the third stage, fibroblasts and myofibroblasts produce collagen
and extracellular matrix components that bridge the wound edges. Wound remodeling,
the last step, begins two weeks after the epidermis abrasion and lasts for a year [17].

Chronic wounds could not be healed quickly for various reasons; for instance, in-
fection is one of the leading reasons for delayed wound healing; hence, infection control
should be considered a top priority in wound care. Wounds should be treated with an
aseptic approach, adequate debridement, and suitable antimicrobial medications [22]. A
concentrated topical antimicrobial agent is considered effective in wound management,
decreasing systemic side effects and antimicrobial resistance [23]. Broad-spectrum antibi-
otics are less toxic; however, antibacterial resistance is significant. Indeed, using natural
products with antimicrobial effects would enhance the impact of microbial elimination in
the healing process [24]. Commiphora gileadensis (CG) belongs to the Burseraceae family,
grows in Saudi Arabia and is traditionally used to treat different diseases [25,26]. CG plant
bark was recommended as an anti-hypertensive, anti-inflammatory, and pain killer for
fever and pain symptoms [27–29]. It remains an important medicinal plant and is utilized
to treat pain and fever and skin infections [30]. A previous study showed that the CG
methanolic extract had an antibacterial effect on methicillin-resistant Staphylococcus aureus
(MRSA) and Pseudomonas aeruginosa [31–33]. This study aimed to assess the effect of CG
methanolic extract on the healing of wounds infected with Staphylococcus aureus.
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2. Materials and Methods
2.1. CG Collection

Parts from the CG tree were collected from a high mountain area called the Alaab
Valley (24◦05′09.5′ ′ N, 38◦58′31.8′ ′ E), the western area of the Makkah region, Saudi Arabia.
Leaves and fallen branches were collected during July 2020.

2.2. Preparation of CG Methanolic Extract

Leaves and branches were cleaned with water and then dried using a vacuum oven
(Sheldon®, Grand Rapids, MI, USA) at 40 ◦C under 50 mmHg for 8 h. Then, leaves were
ground into a fine powder using razor blade to remove any large particles [34]. A 10 g
portion of the powder was then macerated in 100 mL of methanol in a sterile container and
left for 24 h. Afterwards, the container was vigorously shaken, and the extract was filtered
using 0.22 µm filter paper (Millipore®, Burlington, MA, USA); then, the extract was dried
at 40 ◦C using a rotary evaporator (Buchi, Essen, Germany). Finally, the extract was stored
at −20 ◦C for further analysis.

2.3. Sample Characterization Using Ultraperformance Liquid Chromatography Coupled with Mass
Spectrometer (UPLC–MS)

Samples were thawed on ice and added with 1.5 mL of Chloroform:Methanol (2:1,
v/v), 0.5 mL ultrapure water into the sample, vortexed for 1 min, centrifuge 10 min at
3000 rpm at 4 ◦C. Transfer the lower phase to a new tube, dry under the nitrogen. Then
the dried extract was resuspended with 200 µL of isopropyl alcohol: MeOH (1:1, v/v); add
5 µL of 1-heptadecanoyl-2-hydroxy-sn-glycero-3-phosphocholine LPC (12:0) as internal
standards for lipidomic analysis. Finally, centrifuge 10 min at 12,000 rpm, 4 ◦C; transfer
the supernatant for LC–MS analysis. Separation is performed by the Ultimate 3000 LC
combined with Q Exactive MS (Thermo, Waltham, MA, USA) and screened with ESI-MS.
The LC system is comprised of ACQUITY UPLC BEH C18 (100 mm × 2.1 mm × 1.7 µm)
with Ultimate 3000 LC. The mobile phase is composed of solvent A (60% acetonitrile +
40% H2O + 10 mM Ammonium formate) and solvent B (10% acetonitrile + 90% isopropyl
alcohol + 10 mM Ammonium formate) with a gradient elution (0–10.5 min, 30–100% B;
10.5–12.5 min, 100% B; 12.5–12.51 min, 100–30% B; 12.51–16.0 min, 30% B). The flow rate of
the mobile phase is 0.3 mL·min−1. The column temperature is maintained at 40 ◦C, and the
sample manager temperature is set at 4 ◦C.

Mass spectrometry parameters in electrospray ionization (ESI) negative mode are
listed as follows: ESI-: Heater Temp 300 ◦C, Sheath Gas Flow rate, 45 arb; Aux Gas Flow
Rate, 15 arb; Sweep Gas Flow Rate, 1 arb; spray voltage, 3.2 KV; Capillary Temp, 350 ◦C;
S-Lens RF Level, 60%.

2.4. Study Design

A total of 60 10-week-old male Balb/c mice with 20–25 g body weight were obtained
from Umm Al-Qura University, Saudi Arabia. Mice were kept in an ordinary rodent cage
with wood chip bedding in a large, ventilated room with a 12-h light/dark cycle and a
temperature of 25 ± 2 ◦C and received a standard rodent diet and water. After two weeks
of acclimatization, mice were randomly allocated into six groups of 10 mice each. Group I
was the control group, group II was assigned as a gentamicin-treated group. Group III was
the CG-methanolic extract-treated group. Group IV was the Staphylococcus aureus control
inoculated group, and group V was the Staphylococcus aureus, gentamicin-treated group.
Group VI was assigned as the Staphylococcus aureus CG-methanolic extract treated group
(Figure 1). The study was performed in the applied medical sciences department at Taif
University and faculty of applied medical sciences, Umm Al-Qura University, Saudi Arabia.
The Biomedical Research Ethics Committee approved from Umm Al-Qura University,
Makkah, Saudi Arabia, with approval no. HAPO-02-K-012-2021-10-784.
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2.5. Excision Wound Model

On the day of wound excision, mice were anesthetized by intramuscular injection of
ketamine and diazepam 50 and 5 mg/kg, respectively. Hair was clipped from the distal
part of the mice’s backs, where one full-thickness rounded excisional skin wound of six
mm in diameter was aseptically induced in all mice under disinfected conditions [35]. The
wound was kept uncovered during the experiment.

2.6. Bacterial Inoculation

After wound excision, an inoculum of Staphylococcus aureus suspension containing
106 CFU/mL was immediately applied on the wound surface on each mouse in the fourth,
fifth and sixth group using a sterile loop [36].
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2.7. Treatment Applications

After six hours of Staphylococcus aureus inoculation, the first and fourth group wounds
were topically covered with normal saline. According to the body weight, 3 mg/g of
gentamicin, which dissolved in sterile distilled water, was daily topically applied to the
wound of the second and fifth group mice and 4 mg/g of CG methanolic extract, which
dissolved in sterile distilled water, was also topically applied to the wound of the third and
sixth groups. The mice’s wounds of the first and fourth groups were untreated.

2.8. Wound Contraction Percentage

The wound areas of all mice were measured in millimetres (mm) with a calliper on
the third, sixth and tenth-day post-excision. The percentage of wound contraction was
calculated using the following formula [37]: Percentage of wound contraction = (1 − area
on day X)/(area on day 0) × 100.

2.9. Histopathological Study

On the third, sixth and tenth days, one mouse from each group was randomly selected
and euthanized. The wounds tissues were cut off, fixed in buffered formalin for at least
24 h, and then transferred to 70% ethanol [38,39]. Tissues were processed, embedded
in paraffin blocks, sectioned at ~five µm, stained with haematoxylin and eosin [40] and
examined microscopically to evaluate the histopathological changes. The grade of wound
healing was semi-quantitatively assessed according to 5 parameters: (i) granulation tissue,
(ii) fibroblast, (iii) polymorph leukocytes, (iv) collagen deposition and (v) re-epithelization
evidence. It was evaluated as absent = 0, mild = 1, moderate = 2 and marked = 3 [41]. The
wound healing process outcome was described as:

1. Complete healing: there was a complete re-epithelization, a moderate granulation
tissue formation, a presence of collagen fiber, and mild infiltration of polymorph
leukocytes;

2. Incomplete healing: characterized by incomplete re-epithelization, a mild formation
of granulation tissue, a presence of collagen fibers, and mild infiltration of polymorph
leukocytes;

3. No healing: the absence of re-epithelization, granulation tissue formation, and colla-
gen fibers, with marked polymorph leukocyte infiltration [33,42].

2.10. Microbiological Test

Swab samples were obtained from the Staphylococcus aureus-infected wounds (groups
four, five, and six) on the third, sixth, and tenth days. The swabs were cultured and
incubated for 24 h. The number of bacteria per sample was then counted, colony-forming
units (CFUs), as described previously [43].

2.11. Statistical Analysis

Statistical analysis was performed using Statistical Package for Social Sciences (SPSS)
version 16 (SPSS Inc., Chicago, IL, USA). All data were presented as mean ± standard
of the mean (SEM). Bootstrapping was performed for small groups to the 1000 sample
size. One-way analysis of variance (ANOVA) was used to compare the wound closure
and microbiological test percentage. Histopathological parameters were compared using
chi-square (χ2) tests. The level of significance was set at p < 0.05.

3. Results
3.1. LC–MS of CG-Methanolic Extracts

LC–MS characterized the methanolic extracts of CG. The separation and detection
of variable lipid species were measured and compared with internal standards using
retention time (see Appendix A Figure A1) and ion formula (Table S1). The LC–MS
chromatographic profile on the negative mode revealed the presence of several lipid
components (Table 1). Highly abundant lipids components were detected are ceramide
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(Cer) 69%, hexosylceramide (Hex1Cer) 18% and phosphatidylethanolamine (PE) 7.6%,
and low abundance of other components such as dimethylphosphatidylethanolamine
(dMePE) 2% and phosphatidic acid (PA) 0.97% amongst others (see Appendix A Figure A2).
Specifically, high monounsaturated fatty acid levels in Cer, Hex1Cer and PE, where only
Hex1Cer show a small amount of polyunsaturated fatty acids (see Appendix A Figure A3).

Table 1. Lipid classes of CG-methanolic extracts yielded by LC–MS.

Class %

Ceramide (Cer) 69.15

Hexosylceramide (Hex1Cer) 18.19

Phosphatidylethanolamine (PE) 7.64

Dimethylphosphatidylethanolamine (dMePE) 2.19

Phosphatidic acid (PA) 0.97

Phosphatidylinositol (PI) 0.63

Cyclic phosphatidic acid (cPA) 0.30

Lysodimethylphosphatidylethanolamine (LdMePE) 0.30

Ceramide phosphate (CerP) 0.15

Lysophosphatidic acid (LPA) 0.10

Phosphatidylglycerol (PG) 0.08

Phosphatidylmethanol (PMe) 0.04

Lysophosphatidylinositol (LPI) 0.04

Dilysocardiolipin (DLCL) 0.03

Lysophosphatidylcholine (LPC) 0.03

(O-acyl)-1-hydroxy fatty acid (OAHFA) 0.03

Phosphatidylethanol (PEt) 0.02

Sphingosine phosphate (SPHP) 0.01

Monolysocardiolipin (MLCL) 0.01

Digalactosylmonoacylglycerol(DGMG) 0.01

Fatty acid (FA) 0.01

Phosphatidylcholine (PC) 0.01

Lysophosphatidylethanol (LPEt) 0.01

Phosphatidylserine (PS) 0.01

Lysophosphatidylglycerol (LPG) 0.01

Phosphatidylinositol-P (PIP) 0.01

Lysosphingomyelin (LSM) 0.01

Monogalactosyldiacylglycerol (MGDG) 0.01

Phosphatidylinositol-P2 (PIP-2) 0.00

Total 100.00

3.2. Wound Healing

The percentage of wound contraction through the experiment period is summarized.
The topical application of the CG-methanolic pure extracts at 4 mg/g promotes cutaneous
wound healing by stimulating wound contraction. The percentage of wound contraction
was significantly higher in the CG-methanolic extracts treated mice compared to the control
group on the sixth and tenth days after treatment (p < 0.01) (Figures 2 and 3). In Staphylococ-
cus aureus-infected wounds, the percentage of wound contraction was significantly higher
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in CG-methanolic extract-treated mice than in the control group on the sixth and tenth days
(p < 0.05) (Figures 4 and 5).
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3.3. Histopathological Changes

Based on histopathological changes in wounds of control, gentamicin- and CG-methanolic
extracts treated mice, on the third day, the inflammatory cell infiltration was significantly
moderate in CG-treated mice compared to the control group (p < 0.01), which was milder
in CG-methanolic extracts treated mice on the sixth and tenth days than in the control
group (p < 0.01). Moreover, the presence of collagen fibers was significantly higher in the
CG-methanolic extracts treated group than the control group on the sixth and tenth days
(p < 0.01). Granulation tissue formation was also significantly higher in the CG-methanolic
extracts treated group than in the control group on the sixth and tenth days (p < 0.01). On
the sixth and tenth days, re-epithelization was higher in the CG-methanolic extracts treated
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mice than in the control group (p < 0.01). The histopathological changes post-infection with
Staphylococcus aureus showed that the inflammatory cell infiltration on the third day was
moderated in CG-methanolic extracts treated mice compared to the control (p < 0.01). It was
milder on the sixth and tenth days (p < 0.01). Furthermore, granulation tissue formation
on the sixth and tenth days was higher in CG-methanolic extracts treated mice compared
to control (p < 0.01). Re-epithelisation was higher in CG-methanolic-extract-treated mice
compared with the control group on the sixth and tenth days (p < 0.01) and (p < 0.05)
(Figure 6).
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3.4. Colony-Forming Unit (CFU) Count

Figure 7 represents the Staphylococcus aureus count in CFU of the control, CG- and
gentamicin-treated groups on the third, sixth and tenth days post excision and inoculation.
On the third day, the CFUs of the bacteria were significantly lower in CG-methanolic
extracts treated mice than the control group (p < 0.05). After the sixth and tenth days, the
bacteria CFUs were significantly lowered in the CG-methanolic extracts treated group than
in the control group (p < 0.01 and p < 0.001, respectively).
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4. Discussion

Wound healing involves four phases haemostasis, inflammation, cell proliferation,
maturation, and remodeling [8]. Historically, many plant products were used to treat
different diseases and relieve many symptoms, such as Alternanthera Sessilis, morinda
citrifolia, sesamum indicum, and others [44]. Saudi Arabians used CG for wound healing
as a medicinal plant as an analgesic drug [45]. The present study used CG-methanolic
extract to evaluate its cutaneous wound healing efficiency. Topical application of the CG-
methanolic extract on excision wounds in mice showed statistically significant wound area
contraction compared with the control group on the sixth and tenth days of the experiment.

Previously, a study done by Al-Hazmi and his colleagues (2020) showed that the
methanolic extract of Commiphora gileadensis has an antibacterial effect on Methicillin-
resistant Staphylococcus aureus and Pseudomonas aeruginosa [31]. We observed a higher
rate of wound contraction in the infected and non-infected wounds when treated with
CG-methanolic extract than in non-treated wounds. In our study, the colonization of the
infected wounds that were treated with CG-methanolic extract was significantly lowered
than the infected wounds in the control group during the experiment. The observed higher
wound contraction rate in CG-treated mice could be due to the antibacterial effects of this
extract. Regarding the structural characterization of the extracts, it shows high amount
of ceramide residues, which was previously shown to have antibacterial effects on Neis-
seria [46], ceramide extracted from Cissus incisa leaves that showed potent antibacterial
effects against Acinetobacter baumannii [47], and from Euclinia longiflora plants which show
antibacterial effects on Streptococcus pneumoniae, Staphylococcus aureus, Klepsiella pneumoniae,
Haemophilus influenza and Escherichia coli [48].

According to the histopathological findings, the non-infected wounds treated with
CG-methanolic extract showed moderate to mild inflammatory cell infiltration compared
to the control group on the tenth day of the experiment post wound excision. Thus, it
may indicate that the extract has anti-inflammatory activity. The reduction in the wound
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inflammatory infiltration period reduced wound healing time and the susceptibility to
scar formation [49]. On the sixth day, the incomplete re-epithelization of the wound was
complete in the CG-treated group on the tenth day. It shows to be faster than what occurred
in the control group, in which re-epithelization appeared incomplete on the tenth day.
The difference may have been due to the extract’s antibacterial effect and rapid wound
contraction rate, which reduced the distance for migrating keratinocytes in this treated
group [50].

Moreover, the formation of collagen fibers began on the third day in the CG-treated
group. This period was shorter than the control group, where such formation started on
the sixth day. Collagen fiber formation may increase wounds’ tensile strength, a factor that
was not measured in the study [51]. The granulation tissue formation was more apparent
on the sixth day in the CG-treated mice than in the control group. The histopathological
examination of Staphylococcus aureus-infected wounds showed that the inflammatory cell
infiltration in CG-treated mice became milder on the tenth day. This period was more
extended than that for non-infected wounds; however, still shorter than for the control
group. Re-epithelization and granulation tissue formation appeared on the sixth day
in the CG-treated group, shorter than the period needed in the control group. These
features suggest that CG-supported wound healing required less time than the untreated
group. A previous study showed that CG-methanolic extract has flavonoids, terpenoids,
phenol, tannins, alkaloid, steroids, amino acids, glycosides and saponins. Terpenoids
have been reported to have an antimicrobial activity that induces re-epithelization and
wound contraction [52]. In addition, flavonoids and saponins have been proposed to have
wound healing activity [53]. Moreover, flavonoids and glycosides possess an antioxidant
activity that prevents lipid peroxidation by induction of angiogenesis. They also have
anti-inflammatory and antibacterial activities that reduce cell necrosis and fibrosis. Finally,
tannins were reported to be an inducer of re-epithelization. This property may induce
wound healing [54].

5. Conclusions

In conclusion, the CG-methanolic extract produces an antibacterial and anti-inflammatory
activity that aids in microbial elimination and encourages the wound healing process
without any interruption that would worsen the condition. This study recommends the
evaluation of diabetic foot ulcer healing by CG-methanolic extract. Future studies consider
the separation, purification, and determination of the biologically active molecules from
Commiphora gileadensis that inhibit bacterial infection. Thus, it must be conducted to identify
the active compounds and reveal the specific structure to allow further studies on the active
compound to be used as an antimicrobial agent, especially in infected wounds.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27103320/s1, Table S1: Untargeted lipidomic analysis
of the negative ion of CG-methanolic extracts.
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