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Abstract Ubiquitination is a frequently occurring and very diverse posttranslational
modification influencing a wide scope of cellular processes. Ubiquitin (Ub) has the
unique ability to form eight different lysine-linked polymeric chains, mixed chains
and engages with ubiquitin-like (Ubl) molecules. The distinct signals evoked by
specific enzymes play a crucial role in, for instance, proteasome-mediated protein
degradation, cell cycle regulation, and DNA damage responses. Due to the large
variety of cellular functions that this posttranslational modification influences, the
enzymes that construct such Ub modifications, and subsequently controle and
degrade these signals, is enormous. In this chapter, we will discuss the current
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state-of-the-art of activity-based probes, reporter substrates, and other relevant tools
based on Ub as recognition element, to study the enzymes involved in the complex
system of ubiquitination.

1 Introduction

Protein activity is regulated by the attachment and removal of posttranslational
modifications (PTMs). Nucleophilic side chain functionalities in the protein can be
decorated with such PTMs aided by a large class of enzymes that can monitor the
substrate and the need to activate or deactivate its activity. Some of those PTMs are
intensively studied such as, for instance, phosphorylation, but other PTMs are less
well understood due to their high complexity, such as glycosylation and ubiquiti-
nation. In the latter case, a 76 amino acid protein ubiquitin (Ub) is transferred
mostly to the e-amine of a lysine residue in a target protein. Ubiquitination is
involved in almost all aspects of eukaryotic biology including the regulation of
immune responses, cell cycle progression, and protein degradation. Ub is a stable
protein with a denaturation temperature of over 80 °C that is highly conserved from
yeast to man with only three respective changes. Another interesting feature of Ub
is its ability to form polymeric Ub chains in which the g-amine functionality of any
of the seven internal lysine residues or the N-terminal amine of Ub can be linked to
the C-terminal carboxylic acid of a subsequent Ub. Eight different topologies can
thus be formed all exerting different signaling outcomes. Lys-48-linked poly-Ub,
for instance, is involved in proteasome-mediated protein degradation, whereas the
Lys-63-linked poly-Ub is implicated to play a role in DNA damage repair. Most
linkage types have been connected to one or more specific functions but new
discoveries keep expanding the repertoire of involvement of Ub in cell signaling.
On top of this already complex system with eight different homotypic poly-Ub
chains, the possibility to form mixed heterotypic chains and branched chains
complicates the Ub system even further. Posttranslational modifications such as
phosphorylation, acetylation and newly discovered ADP-ribosylation of Ub and
hybrid chains with ubiquitin-like modifiers such as SUMO and NEDDS are also
found to play distinct roles. The numerical amount of combinations one could think
of our vast, but are all biologically relevant?

The general mechanism of Ub attachment to a target protein or a predecessor Ub
(forming a poly-Ub chain) depends on a series of so-called El-, E2-, and
E3-enzymes that work together to activate and ligate Ub to its target using ATP as
energy source. This process, known as the canonical Ub cascade, can undergo
repetitive cycles and lead to poly-ubiquitinated substrates. One of two E1 activating
enzymes, known to date, adenylates the C-terminal carboxylic acid of Ub and
subsequently forms a reactive thioester intermediate. One of ~40 E2 conjugating
enzymes takes over the Ub cargo by means of a trans-thiolation reaction (Stewart
et al. 2016). One of over 600 E3-enzymes encoded in the human genome either
mediates the transfer of Ub from the E2 to the substrate or takes over the Ub cargo
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itself prior to transferring it to the target, depending on whether the E3 belongs to
the RING, HECT or RBR class of conjugating enzymes (Buetow and Huang 2016).
The specific combination of E2/E3 not only ensures the correct target proteins are
ubiquitinated but also dictates the type of poly-Ub linkage that is installed; actively
controlling the signaling outcome of the ubiquitination event.

Counteracting the buildup of (poly-)ubiquitinated proteins is a group of deu-
biquitinating proteases (DUBs) that break down the ubiquitin modification, liber-
ating the substrate protein, recycling Ub, and ending the Ub invoked signaling.
Nearly a hundred of such deubiquitinating proteases have been identified in human
cells that can be classified into seven distinct families. The subfamilies of
ubiquitin-specific proteases (USPs), ubiquitin C-terminal hydrolases (UCHs),
ovarian tumor domain proteases (OTUs), Machado—Joseph disease proteases
(MJD), motif interacting with Ub-containing novel DUB family (MINDYSs), and
zinc finger with UFM1-specific peptidase domain protein (ZUFSPs) are cysteine
proteases, whereas JAB1/MPN/MOV34 proteases (JAMMs) are zinc-dependent
metallo-proteases.

To understand the complex signaling network brought about by the writers,
readers, and erasers of the ubiquitin code, tools to study them in detail and on
molecular level are of great interest. Below we describe the current state of the
molecular toolbox available and three examples of their use in unraveling some of
the secrets in viral and bacterial interference with ubiquitin biology.

2 The Current Toolbox

A diversity of tools has been developed to study the activities of enzymes involved
in constructing and deconstructing ubiquitin chains and ubiquitinated proteins. The
probes based on the Ub core as recognition element will be discussed below
classified on their ability to target different enzymatic functions. Both chemical and
semi-synthetic techniques are used to construct such probes, each having distinct
advantages and drawbacks that, however, will not be discussed in great detail in this
chapter.

2.1 DUB Targeting Covalent Probes

The first activity-based probe based on Ub forming a covalent complex between
probe and target protease was based on replacing Gly75-Gly76 with
4-aminobutyraldehyde (Pickart and Rose 1986). The ubiquitin aldehyde (Ubal)
reagent was found to form a complex and inhibit the activity of the UCH protease
studied. Modifications on this reactive C-terminal element with, for instance, a
nitrile moiety (Lam et al. 1997) and glycine vinyl sulfone (VS) or glycine vinyl
methyl ester amine (VME) (Borodovsky et al. 2001, 2002) led to the development
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of a bigger panel of activity-based probes able to capture the active site cysteines of
deubiquitinating enzymes. These electron poor vinyl motifs act as Michael acceptor
element and allow the sulfur nucleophile of the active site cysteine to be trapped by
forming a covalent intermediate in an irreversible reaction. Later on, the total
chemical synthesis of Ub (mutants) using solid phase peptide chemistry (El Oualid
et al. 2010; Kumar et al. 2009; Pasunooti et al. 2009) opened the way to prepare Ub
probes carrying fluorescent labels or affinity handles on large scale (de Jong et al.
2012). Exploiting a similar mode of action as Ub-VME is Ub-propargyl (Prg),
where the terminal alkyne of the propargyl moiety unexpectedly is able to react
with the active site cysteine leading to a covalent adduct in the form of a vinyl
thioether linkage (see Fig. 1a) (Ekkebus et al. 2013). Major advantage of this last
variant, Ub-Prg, is its unreactiveness toward other cysteine proteases, making it
really a DUB-specific probe. In general, specificity of such probes for DUBs is
based on the Ub element of the probe to be recognized by the protease on a binding
interface or so-called S1-pocket preceding the active site placing the reactive
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Fig. 1 Activity-based probes to target DUB activity. a Reaction details of cysteine protease
reaction with Ub-Prg, b different probes targeting S1, S1-S1’, or S1-S2 interactions,
¢ misplacement of probes on DUBS allowing the study of different binding pockets
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element directly over the active site cysteine. In this situation, the two reacting
partners are optimally aligned and lead to the formation of a covalent adduct (see
Fig. 1a).

Some DUBs have been shown to have a preference to specifically cleave certain
poly-Ub chains. In order to investigate such possible preferences, in a classical
experiment all native diUb molecules are incubated with a purified recombinant
DUB and cleavage of the diUb is monitored over time. Biggest drawback of this
method is that it is not compatible with complex biological settings (such as cell
lysate), and it is limited to isolated DUBs. To overcome such issues, a second
generation of probes to investigate linkage-specific proteolysis of DUBs has
emerged more recently. These probes generally consist of two ubiquitin moieties
carrying a Michael acceptor element in the isopeptide linkage region in-between the
two Ub moieties. Initial reports show the two Ub regions to be linked together using
non-native connections such as a triazole (McGouran Joanna et al. 2013) and thiol
ether linkage (Li et al. 2014). Two type of probes presenting either a dehydroala-
nine (Dha) (Haj-Yahya et al. 2014) or VME-like electrophilic trap (Mulder et al.
2014) mimic the native lysine—glycine linkage the closest using amide linkages.
A panel of all seven isopeptide-linked diUb probes can be constructed and used to
covalently capture the active site cysteine of the DUB showing its reactivity and
preference toward certain linkage types. Using such probes the N-terminal or distal
Ub molecule will be positioned before the active site in the so-called S1-pocket, and
the C-terminal or proximal Ub molecule will be positioned after the active site
cysteine in the so-called S1'-pocket. Due to the geometrical differences between al
Lys-linked diUb probes, the DUB will only be able to position the probes mim-
icking its natural substrates in such a way that the active site cysteine is able to react
with the reactive element (see Fig. 1b).

Some DUBs are able to recognize Ub chain topologies using other binding
surfaces further away from the active site, such as, for instance, an S2-site pre-
ceding the S1-site. A third generation of probes targeting such S2 binding sites has
been developed where a diUb molecule is equipped with a reactive element at the
proximal C-terminus (Flierman et al. 2016). These probes are only able to react
with DUBs that contain a S2-site that plays a determining role in positioning the
diUb molecule in the S2- and S1-sites thereby placing the alkyne directly over the
active site cysteine (see Fig. 1b). Noteworthy is that the isopeptide linkage between
proximal and distal Ub has been replaced by a protease stable triazole linkage,
prohibiting the protease of interest to degrade the probe during assays.

If a DUB recognizes such a third generation diUb probe using its S1- and S1'-
sites, the alkyne will not be in the vicinity of the active site cysteine and no covalent
adduct will be formed. Conversely, if a second generation probe will be reacted
with a DUB recognizing the diUb moiety using it’s S2- and S1-sites, no reaction
will occur since the reactive element will not be aligned with the reactive cysteine
(see Fig. 1c). Having access to both second and third generation probes offers an
exciting combination to investigate the binding interfaces that play a role in
determining binding preferences of DUBs and cast a light on their molecular
mechanism of action.
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More recently a new probe able to reversibly capture cysteine DUBs followed by
the release of the still active proteases has been published, making use of subtle
chemistry to form, and disrupt disulfide bridges between the active site cysteine and
Ub-based thiol-containing probe (de Jong et al. 2017). Although only the proof of
principal studies has been performed, this novel technology holds great promise for
the future capture, release, and follow-up investigations of native active cysteine
DUBs.

Not all DUBs are cysteine proteases, however, and the metallo-DUB family
currently is understudied due to the lack of probes. Selective probes targeting such
proteases are needed and will no doubtably be developed in the future.

The covalent capture of active DUBs with Ub-based activity-based probes
allows for purification of the formed complexes and subsequent crystallization
efforts to study the interactions between protease and Ub in detail. A large number
of crystal structures has been solved using such Ub-based ABPs as is reviewed by
van Tilburg et al. (2016). Synthetic procedures to prepare above-mentioned probes
and reagents on large scale are in place and are finding their way into the related
fields of Ub-like proteins such as, for instance, SUMO biology (Mulder et al. 2018).

2.2 EI-E2-E3 Targeting Covalent Probes

Due to the diversity and complexity in the conjugating and ligation machinery,
development of probes targeting the constructing of ubiquitinated substrates has
only emerged more recently than probes targeting the deconstructing proteases, for
the simple reason that targeting a sequential enzymatic cascade is more difficult
than targeting a single proteolytic step.

The first step in the cascade is activation of the C-terminal carboxylate of Ub by
and El-activating enzyme. The E1 firstly adenylates the carboxylic acid group of
glycine 76 at the expensive of ATP in one region of the E1 and subsequently the
catalytic cysteine of the El in another region of the enzyme takes over the Ub cargo
by forming a thioester and expelling AMP. Initial probes based on Ub;;-CGG-vinyl
sulfonamides show reactivity toward the cysteine of yeast E1 Ubal, although the
C-terminal Arg-Leu-Arg-Gly-Gly region of Ub is replaced by the smaller
Cys-Gly-Gly vinyl adenyl sulfonamide, rendering a shorter Ub mutant with a RL
deletion (see Fig. 2a) (Lu et al. 2010). These Ub probes are based on small
molecule adenyl sulfonamide analogues that can also be used to monitor intracel-
lular E1 activity and specific inhibitory potential toward different E1’s (An and
Statsyuk 2013; Misra et al. 2017). Other probes based on Ub;;-dehydroalanine
adenyl amides also show reactivity toward a. o. Ubal although these probes are
longer than the native Ubs4 substrate (An and Statsyuk 2016).

Combined this data implies that unlike the active sites of DUBs the E1’s are
more tolerant toward their substrates or the flexibility of the C-terminal tail of Ub
corrects for possible misalignment during the Ub transfer from the ATP binding
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domain to the catalytic cysteine domain of the E1. These adenylate mimic ABPs are
important to study E1’s but in view of the bigger picture are quite restricted. Due to
the stabilized adenylate (either amide or sulfonamide) linkage, these probes lack the
ability to be transferred down the enzymatic cascade, being stuck in the first stage.

The second step in the cascade is transfer of the Ub cargo from El to E2, a
processes that can be trapped and studied using a E2 based—ABP (Stanley et al.
2015). Recombinant expression of an E2 and modification with an tosyl-substituted
double-activated ene-reagent (TDAE) forms an electron poor activated vinyl sulfide
that upon juxta-positioning of the E1’s cysteine is able to form a stable bis thioether
E1-E2 complex (see Fig. 2b). In an analogues approach, the third step in the



118 G. J. van der Heden van Noort and H. Ovaa

cascade, Ub transfer from E2 to E3 can be interrogated. A ubiquitin-charged E2
carrying a TDAE element allows for trapping the trans-thiolation event toward an
E3, forming a stable complex between Ub, E2, and E3 (see Fig. 2b) (Pao et al.
2016). Of note is that in this last TDAE derived probe, the C-terminal RGG motif of
Ub is replaced by the reactive TDAE element, which might limit the generality of
such probes as it is implicated that R74 and the diGly motif can play an important
role of recognition of the appropriate Ubl.

All approaches mentioned above are useful in specifically studying one step in
the cascade of Ub-ligation. To amend the need to be able to pass down the probe
through the complete cascade and target E1’s, E2’s, and E3’s; simultaneously, a
‘cascading’-probe based on a C-terminal dehydroalanine (Dha) moiety was
developed (Mulder et al. 2016). This reactive element has been employed earlier in
diUb probes targeting cysteine DUBs (Haj-Yahya et al. 2014), but was found in
other studies to show low reactivity. This low reactivity can be harnessed in
trapping the E1-E2-E3 enzymatic cascade consecutively (see Fig. 2c). The
Ub,sDha can be activated by an E1 to form a thioester intermediate and transferred
to an E2 and subsequent RBR- or HECT-E3 via a trans-thiolation reaction. In each
step, only a small portion of the active cysteines will be trapped by the Dha-moiety,
while the rest of the cysteine will continue to function normal in the trans-thiolation
step. By doing so, the probe will capture all components in the cascade, which has
been shown to indeed be detectable using proteomic approaches in a proof of
principle study.

The above-mentioned arsenal of probes has emerged very recently, and most
likely the near future holds exciting insights in the ubiquitination cascade through
implementation of these probes. Complicating factor in the investigation of
E3-ligases is that of the three major classes of E3’s only the HECT and RBR classes
have an active cysteine residue that takes over the Ub cargo from an E2 and transfer
it to the final substrate protein. RING E3s do not possess such an active site cysteine
and merely serve as platforms to bring Ub charged E2’s and substrates together,
thereby making them unsuited for direct probing using ABPs.

2.3 Assay Reagents

Other type of probes or assay reagents based on a Ub scaffold have also been
developed allowing the real-time monitoring of DUB or ligase activity. In contrast
to the probes described above, these reagents do not have a Michael acceptor
element and thus do not form a covalent complex with the targeted enzyme, but
mostly rely on a fluorescent signal that is altered. Advantage of the probes
described below is that one enzyme can perform multiple catalytic cycles, and
hence, signal amplification occurs allowing a more accurate readout of the enzymes
native activity and/or specificity.
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An important class of Ub-based assay reagents is the fluorogenic Ub reagents,
where a quenched fluorophore is conjugated at the C-terminus of Ub. DUB activity
will cleave the amide bond at position 76, and the fluorophore will be released from
the Ub and simultaneously start to fluoresce (see Fig. 3a). Hence, the increase in
fluorescence is a direct measure of DUB activity. Fluorogenic reporters used in such
type of reagents are aminomethylcoumarin (AMC) (Dang et al. 1998) or substituted
rhodamine-110 (RHO) (Hassiepen et al. 2007) scaffolds that show favorable
fluorescent properties. In a similar setup, DUB mediated aminoluciferin release can
be assayed in a bioluminescence approach using a luciferase assay (Orcutt et al.
2012). All of these reporters are conjugated to a mono-Ub recognition element, and
hence, the preference of a DUB to specific poly-Ub topologies cannot be assessed.
To allow monitoring chain-specific proteolysis mediated by S1-S2 interactions on
the DUB, diUb-AMC substrates were generated (Flierman et al. 2016). In analogy
to the diUb-Prg covalent probes, these diUb-AMC substrates are linked via a
non-hydrolysable triazole linker preventing proteolysis of the diUb entity during the
assay.

One important note is that the fluorogenic substrates do not contain an isopeptide
linkage at the side where the DUB would perform its proteolytic action, whereas the
natural substrates for most DUBs would. To mimic this isopeptide link more clo-
sely, fluorescent polarization (FP) reagents were developed where Ub is conjugated
via a native isopeptide linkage to a fluorophore carrying substrate derived peptide
(Tirat et al. 2005; Geurink et al. 2012). Rationale behind these reagents is that once
the fluorophore-containing peptide is linked to Ub, the large construct tumbles
slowly in solution and light remains polarized, whereas after proteolysis the small
fluorophore-containing peptide tumbles faster and hence the polarization of light
decreases (see Fig. 3b). Such tools are not only reported for Ub but also for other
Ubl’s such as the three SUMO’s, Nedd8, and ISG15.

Another type of reagent makes use of the fact that a fluorophore and quenching
moiety can be placed in close proximity of each other on a diUb or Ub-substrate
peptide and upon DUB action both entities are separated and hence fluorescence is
restored (see Fig. 3c). Probes based on such a time-resolved fluorescence resonance
energy transfer (FRET) principle consisting of Ub-peptide (Ohayon et al. 2012) and
diUb moieties (Geurink et al. 2016; Ye et al. 2012) have been described. All seven
lysine-linked diUb FRET pairs are available which form a platform to measure
DUB preference and kinetic parameters in real time. Using similar technology, the
E2 mediated constructing of poly-Ub chains equipped with a FRET acceptor onto a
FRET donor-containing Ub results in a FRET signal (Madiraju et al. 2012). In this
particular study, inhibitors for the E2 can be identified when a decrease in FRET
signal is observed in the assay.

Although it was long assumed that in order to ubiquitinate the target substrate
the complete cascade, so E1, E2, and E3 functions are needed, recent reports show
that Ub-thioesters can be used in in vitro studies to monitor HECT- or RBR-E3
ligase activity. In these assays, the El- and E2-functions are bypassed and
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Ub-thioesters [Ub-MES (Park et al. 2015) or fluorescent analogue Ub-FLUOR
(Krist et al. 2016)] are directly trans-thiolated by the active cysteines in several E3's.
The fluorescent thioester allows real-time quantitative monitoring of E3-ligase
activity using a fluorescence polarization set up (Park et al. 2017) (see Fig. 3d).
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2.4 (Poly)Ub Chains

All probes mentioned above are based on mono-ubiquitinated peptides, mono-Ub
or diUb carrying a reactive or fluorescent entity. Moving forward in our under-
standing of the Ub system, it would be of great value to have access to well defined
larger Ub chains and probes made thereof. Synthetic, semi-synthetic and bio-
chemical methods are in place to produce poly-Ub chains, carrying native
isopeptide linkages or artificial (non-hydrolysable) linkages.

Biochemical methodology to obtain all except K27-poly-Ub chains, are reported
and rely on the use of linkage-specific E2/E3 enzyme combinations as has been
reviewed elsewhere (Faggiano et al. 2016) (see Fig. 4a). Although the majority of
poly-Ub chains can be produced, several drawbacks come with such methods.
Crucial in biochemical production of Ub chains is that in order to have a defined
polymer length, the mixture of simultaneously produced poly-Ub’s needs to be
separated, most frequently done using cation exchange chromatography. Inherent in
producing polymers is that the isolated yield of one specific poly-Ub species is low
and scalability of biochemical methodology hence can be an issue. Some of the E2/
E3 combinations are not absolute topology specific and additional treatment using
DUBs might be necessary to guarantee a homogenous preparation, further com-
plicating procedures. All in all six out of seven lysine-linked poly-Ub chains can be
prepared biochemically although preparation of high quantities of pure material still
is a laborious task.

On the other hand, the total chemical synthesis of poly-Ub chains has been
undertaken. Several methods using auxiliaries, different thiol modified amino acids
and ligation/desulfurization strategies are in place as reviewed elsewhere (Spasser
and Brik 2012), allowing for the sequential construction of Ub chains with the
impressive highlight of K48-linked tetra-Ub (Kumar et al. 2011). Although for such
time-consuming approaches a high level of expertise is required, it does allow the
introduction of fluorophores, affinity handles or conjugation to substrate peptides or
proteins. Of note is that using an isoUb native chemical ligation approach also K27
tetra-Ub chains and mixed chains have been prepared and employed in structural
studies (Tang et al. 2017). In contrast to sequential strategies, chemical polymer-
ization approaches using a bifunctional thiolysine/thioester-Ub mutants (van der
Heden van Noort et al. 2017; Moyal et al. 2012) (see Fig. 4b) leading to native
isopeptide-linked Ub chains, bifunctional thiol/lene Ub mutants leading to
thioether-linked Ub chains (Trang et al. 2012) (see Fig. 4c) or azide/alkyne-Ub
mutants leading to triazole-linked Ub chains (Schneider et al. 2014) (see Fig. 4d)
give rise to larger poly-Ub analogues including the biochemical unavailable
K27-linked Ub chains. Such stable poly-Ub chains can be employed to study the
interacting proteins or ‘readers’ of the Ub code by performing pull-down experi-
ments and subsequent proteomic analysis using mass spectrometry approaches
(Zhao et al. 2017; Zhang et al. 2017).
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3 Applications

The above-described arsenal of ubiquitin-based probes, substrates, chains, and
analogues are each designed to target-specific enzymatic functions or give insight
into unanswered question regarding the ubiquitin—proteasome system. Apart from
the proof of principle studies conducted during the development of these probes, it
is important to note that these tools have made the translational step from the
drawing board to actual biochemical and structural studies on viral and bacterial
enzymes playing a role in the manipulation of (human) host pathways.

3.1 Applications in Virology

Viruses have defense mechanism in place to either utilize the host’s ubiquitin
system in their own advantage or to combat the host’s immune response by sup-
pressing pro-inflammatory Ub signaling. Human coronaviruses (hCoV), responsi-
ble for pandemic outbreaks of severe acute respiratory syndrome (SARS) in 2003
and Middle East respiratory syndrome (MERS) in 2012, are two of such viruses that
are interfering with the host’s Ub signaling. One way these coronaviruses act is by
dampening the immune response through action of viral proteases that possess
deubiquitinase and deISGylase functions. Interferon stimulated Gene 15 (ISG15) is
a ubiquitin-like (Ubl) modification that has two Ub domains in tandem and is
upregulated and attached to substrates during an antiviral response. The papain-like
proteases (PLpro’s) in both MERS and SARS hCoV are identified to cleave ISG15
and Ub from cellular proteins. In a study comparing MERS and SARS PLpro, it
was found that fluorogenic substrates Ub-AMC and ISG15-AMC were both
cleaved to a similar extent by MERS PLpro, where SARS PLpro preferred
ISG15-AMC (Békés et al. 2015). Covalent capture of these proteases by ABP
Ub-propargyl again showed a higher reactivity for the MERS then for the SARS
protease. Cleavage assays using native K48-linked tetra-Ub also show a distinct
pattern. SARS PLpro cleaves the Ub, into Ub, and is hardly able to process Ub,
any further, whereas MERS PLPro cleaves Ub, into a mix of Ubsz, Ub,, and Ub.
SARS PLpro seems to have a di-distributive mechanism only making a cut after a
Ub, moiety, whereas MERS is mono-distributive cleaving after one Ub residue.
DiUb ABP’s having the reactive element either at the proximal side of the Ub, or
in-between the Ub moieties help to explain how these two different mechanism
function, as MERS PLpro is able to react with the in-between probe and not the
proximal probe, and SARS PLpro shows opposite reactivity toward these two
probes (Bekes et al. 2016). Hence, activity of SARS PLPro seems to be largely
influenced by an S2 site, whereas MERS PLpro does not seem to contain such a
site. A crystal structure of the complex between the S2-S1 targeting diUb ABP and
SARS PLpro allows identification of the crucial contacts in the S2-site of the DUB
and the diUb ABP. All in all these hCoV proteases, although homologous,



124 G. J. van der Heden van Noort and H. Ovaa

are shown to have a different mode of action using the three generations of
activity-based probes (discussed in Sect. 2.1) and accompanying kinetic parameters
could be deduced using fluorogenic mono- and diUb-AMC substrates (discussed in
Sect. 2.3).

3.2 Applications in Bacteriology

Similar to viral interference with host immune response, bacteria also have
sophisticated mechanisms in place to counteract host immune responses and create
optimal conditions for the bacterium to survive and promote replication. Bacterial
effector proteins typically are directly secreted into the host cells to interfere with
host kinase activities or Ub(l) signaling pathways. Interestingly, those bacteria do
not have Ub or Ubl systems themselves and such effector proteins are only in place
to promote survival within the host organism. Much of these effector proteases fall
in the class of CE clan effector enzymes, which in humans consists of SUMO- and
NEDDS-specific proteases. Bacterial CE clan proteases do not only show activity
toward Ubl’s but some members also show acetyltransferase activity. In a com-
parative study on such CE clan effectors from intracellular pathogens Salmonella
typhimurium, Chlamydia trachomatis, Escherichia coli, Yersinia pestis, Rickettsia
bellii, Shigella flexneri, and Legionella pneumophila, activity, specificity, and
structure were investigated (Pruneda Jonathan et al. 2016). Although all share a
common fold most but not all of them were able to react with ABP Ub-Prg. Using
Ub-, SUMOI1-, NEDDS- and ISG15-FP substrates (discussed in Sect. 2.3), the three
effectors unreactive toward Ub-Prg were also shown to be unreactive toward any of
the FP-reagents whereas the others showed reactivity toward both Ub and NEDDS§
reagents. In contrast to their unreactivity toward Ubl’s, the three CE effectors did
show acyl transferase activity. Using diUb substrates, the panel of bacterial DUBs
was all shown to have a strong preference for K63-linked chains, followed by K48
and K11 at later time points or higher enzyme concentrations. This specificity
mostly was shown to be regulated by the S1'-site of these DUBs. Taken together,
this study uses both mutational analyses, crystal structure information, and data
obtained by Ub(l)-based probes and assay reagents to classify and study the
molecular details of a bacterial class of effector proteins in detail.

3.3 Legionella Effector Enzymes: The Odd-Ones Out

We thought we understood the basis of the Ub system, but do we actually? Several
enzymes have been recently identified to control the Ub system by attaching ade-
nosine diphosphate ribose (ADPr) onto specific positions in Ub, exerting a new
layer of control. The intracellular pathogenic bacterium L. pneumophila, the cause
of Legionnaires disease, releases effector proteins into its host to hijack the host Ub
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pool (Bhogaraju et al. 2016). These multi-domain SidE family proteins catalyze the
ubiquitination of substrates proteins independent of the E1-E2-E3 cascade and
without the use of energy source ATP. Instead they use NAD" (see Fig. 5—
structure II) to attach ADPr on the nucleophilic side chain of arginine 42 of Ub
using their mono ADPr transferase (mART)-domain (see Fig. 5—structure I (Qiu
et al. 2016). Subsequently, the phosphodiesterase (PDE) domain within SidE cat-
alyzes the reaction between a serine-containing substrate (see Fig. 5—structure IV)
and the ADP-ribosylated Ub (see Fig. 5—structure III), affording a ribosyl phos-
phate linkage between Ub and the target protein (see Fig. 5—structure V)
(Kotewicz et al. 2017). Besides a mART and PDE domain SidE family members
also contain a N-terminal canonical DUB domain that is not necessary for bacterial
replication, but is crucial in regulating the extend of ubiquitination at the bacterial
vacuolar surface. Cleavage assays using diUb substrates show a preference of K63
over K48 and K11, and crystallization efforts of the formed complex with ABP
Ub-VME reveal a different binding modus, not involving the 144 patch on Ub, of
the cysteine DUB and Ub (Sheedlo et al. 2015). Besides the multi-domain
multi-function SidE’s, Legionella also expresses a deubiquitinase SidJ that is able
to cleave the formed phosphodiester linkage to Ub, liberating the substrate protein
and phosphoribose modified ubiquitin (see Fig. 5—structure VI) (Qiu et al. 2017).
This phosphoribose-Ub also interferes with the host Ub machinery as it prevents the
canonical E1 to activate and further process the Ub molecule (Puvar et al. 2017). By
controlling the construction and deconstruction of modified Ub, without competing
with the canonical system, the bacterium tries to hijack the host Ub system.
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Fig. 5 Actions of SidE effector enzymes ADP-ribosylating Ub(Arg42) and subsequent coupling
to substrates forming a phosphoribose linkage between substrate and Ub
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Lots of questions on the mechanism of action, substrate recognition, and scope
of this E1-E2-E3 independent ubiquitination and attached deubiquitination process
call for the development of novel probes specifically targeting such pathways. So
far the development of ADP-ribosylated Ub carrying a protease stable triazole
linkage between the ribose and Arg42 of ubiquitin has been shown to reflect the
native auto-ubiquitination activity of SidE family member SdeA (Liu et al. 2018).
No doubtably probes targeting this interesting new way of Ub conjugation to
substrates will appear in the near future.

4 Conclusions

The complexity of the ubiquitin system and its involvement in a wide variety of
important biological processes makes it a widely and intensively studied field. The
roles Ub play in neurodegenerative disease and cancers, for instance, make it a
potential target for therapeutic intervention. Unraveling the complexity of this,
highly sophisticated system is aided greatly by the development of (activity-based)
probes reporting on the dynamics and structural mechanisms used by activating
enzymes, ligases, and proteases counteracting the buildup of (poly)-ubiquitinated
substrates. Ranging from probes that covalently trap the active cysteines involved in
catalysis to probes that have altered fluorescent properties upon enzyme activity and
stabilized substrates or poly-Ub chains allowing preference studies and profiling of
the Ub interactome have been developed over the past decade or so and already
have shed their light on some fundamental question in Ub biology. The more
knowledge is gathered on the functioning of those (de)ubiquitinating proteins the
more tailored solutions to interrogate their biology, and hence, specific probes
involved in such approaches become. Without a doubt will the next generation of
Ub-based tools help to increase our knowledge on the system and perhaps ulti-
mately lead to diagnostic tools or therapeutics making it to the clinic.
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