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Abstract: The electronic structure and spin polarization properties of monolayer GaP3 induced
by transition metal (TM) doping were investigated through a first-principles calculation based on
density functional theory. The calculation results show that all the doped systems perform spin
polarization properties, and the Fe–doped system shows the greatest spin polarization property with
the biggest magnetic moment. Based on the analysis from the projected density of states, it was
found that the new spin electronic states originated from the p–d orbital couplings between TM
atoms and GaP3 lead to spin polarization. The spin polarization results were verified by calculating
the spin density distributions and the charge transfer. It is effective to introduce the spin polarization
in monolayer GaP3 by doping TM atoms, and our work provides theoretical calculation supports for
the applications of triphosphide in spintronics.

Keywords: spin polarization; transition metal doping; first-principles calculations

1. Introduction

Since the discovery of graphene in 2004, two-dimensional (2D) materials have be-
come an emerging class of materials. Compared with bulk materials, 2D materials are
highly attractive for nanoelectronics, nanophotonics and spintronics at the nanoscale [1–6].
However, graphene has the shortcomings of zero band gap, which makes it unable to
control the transport of carriers effectively and limits its development in some electronic
fields. Beyond graphene, a series of 2D materials were experimentally stripped from the
bulk crystals [7]. These 2D materials have their own advantages and disadvantages, for
instance, hexagonal h-BN possesses a structure similar to graphene, but its wide band
gap makes it an insulator, resulting in low overall carrier mobility [8–10]. As one of the
typical 2D materials, transition metal di-chalcogenides (TMDCs) have the natural advan-
tage of direct band gaps, controlled carrier mobility and suitable semiconductor band
gaps, but this material’s oxidation resistance is very weak and can easily change under
oxygen-containing conditions [11–15]. Besides, there are many other 2D materials, such as
phosphorene [16–18], phosphide [19,20], Mxenes (carbides and nitrides) [21–23], and so on.

Recently, a new type of 2D material family was found, i.e., monolayer triphosphide,
which has the same hexagonal structure as black phosphorus and gives a prediction, which
can be easily stripped off experimentally from corresponded layered bulk materials [24].
Moreover, up to now, there have been several kinds of triphosphide that were investigated,
and most of them are based on theoretical simulations. The application prospects of triphos-
phide in the fields of water splitting, photocatalytic reactions, etc., were predicted [24–29].
For example, Jing et al. reported that monolayer GeP3 has an indirect band gap, high carrier
mobility and strong interlayer quantum confinement [30]. Similar results are also predicted
in BiP3 by Liu et al. [31]. GaP3, which is a triphosphide composed of the group-IIIA ele-
ments and P atoms, was predicted by Yao et al. They found that GaP3 is stable and has good
light absorption characteristics in the ultraviolet and visible light regions and can provide
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promising catalysts for water splitting [32]. On the other hand, Sun et al. also reported
that GaP3 and other triphosphides have low lattice thermal conductivity, high Seebeck
coefficient, high carrier mobility and high-performance thermoelectric properties, which
confirms that GaP3 can act as promising materials for applications in thermoelectricity and
other energy fields [33].

Most 2D materials are nonmagnetic, and obtaining magnetism in 2D materials is
the key to applying them to spintronics. Thus far, there are many ways to introduce
magnetism into 2D materials, such as the introduction of dislocation [34], defects [35],
3d transition-metal (TM) atoms doping [36–39], surface adsorption [40–43], etc. [44,45].
More interestingly, monolayer triphosphide reports rarely in the field of spintronics. In
this work, we chose monolayer GaP3 as one of the triphosphides to investigate their spin
polarization properties. As mentioned above, monolayer GaP3 has many of advantages in
the fields of water-splitting and thermoelectricity. However, there still a lack of studies of
monolayer GaP3 in the research field of spintronics. Therefore, it is interesting to achieve
spin polarization in GaP3 and enrich its applications in spintronics. In this article, we
completely investigate the spin polarization properties of 2D monolayer GaP3 induced by
3d TM doping by means of first-principles calculation.

2. Materials and Methods

In this work, the plane wave method based on the density functional theory (DFT)
was adopted for all the first-principle calculations as incorporated in the Vienna ab initio
simulation package (VASP) code [46]. The projector augmented wave (PAW) method was
performed for the description of electron–ion interactions of the system, and the plane
wave cut-off energy was set to 500 eV [47,48]. The electron exchange-correlation function
for describing the electron interactions is the generalized gradient approximation (GGA)
with Pardew–Burke–Enserch (PBE) of parametrization [49]. It should be noticed that
the PBE function underestimates the band gap of the system, but the tendency of band
structure that adopts PBE function is unchanged. The Brillouin zone was sampled with
a 5 × 5 × 1 Gamma-pack scheme grid during the structure optimization of the system.
The vacuum layer of the z-direction was set to 20 Å for avoiding the influence of periodic
boundary conditions. To completely relax all atoms in the supercell, the total energy and
the convergence benchmark for the force were set to 10−6 eV and −0.001 eV, respectively.
Firstly, the feasibility analysis of the doped system was given by calculating the bond length
and the spin polarization energy. Secondly, we showed that the nonmagnetic intrinsic GaP3
obtains various magnetism after doped different 3d TM atoms. Then, we calculated and
analyzed the electronic band structure in addition to the density of state (DOS) of various
doped systems. Lastly, the spin density distributions for all doped systems were given.

To obtain a comprehensive understanding of monolayer GaP3, we first studied its
structural properties. On the basis of our DFT calculations, as shown in Figure 1, the
completely optimized doped structure is given, each dopant atom that connects to three P
atoms forms three bonds, each P atom that connects one Ga atom and two P atoms forms
two P–P bonds, and one Ga–P bond, respectively. There were 32 atoms in our supercell,
and only one Ga atom was substituted by a 3d TM atom, so the dopant concentration was
about 3.1%. The optimized lattice parameters of monolayer GaP3 are a = b = 7.21 Å, which
is consistent with previous research [32].
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Figure 1. Top (a) and side (b) views of monolayer GaP3 structure. The blue, orange and red balls
represent Ga, P and TM dopant (Ti, V, Cr, Mn, Fe, Co, Ni), respectively. The first Brillouin zone with
high symmetry k points (Γ, M and K) is shown in (c).

3. Results

The bond lengths of various doped systems are shown in Table 1. It can be observed
that the lengths of the P–P band and Ga–P band of the various doped system almost remain
unchanged while the lengths of the dopant–P band change, but these such changes are
subtle. It does not have much impact on the intrinsic structure, so these results show that
the doped TM atoms can be stably embedded on the doped sites.

Table 1. The bond length, spin polarization energy, charge transfer, and magnetic moment of various doped systems.

System Ti-Doped V-Doped Cr-Doped Mn-Doped Fe-Doped Co-Doped Ni-Doped Pure

Bond
length (Å)

P-P 2.23 2.24 2.25 2.22 2.21 2.25 2.25 2.23
Ga-P 2.36 2.35 2.35 2.37 2.36 2.34 2.35 2.36
TM-P 2.42 2.37 2.38 2.32 2.23 2.23 2.24 -

Epol (eV) 3.73 4.16 4.95 4.83 3.88 2.26 1.18 -

∆q (e) 1.22 1.06 0.86 0.76 0.60 0.31 0.19 -

Magnetic moment (µB) 1.00 2.00 3.00 4.00 5.00 1.44 0.44 0.00

To gain deeper insight into the physics of these doped systems, we analyzed the
spin polarization energy (Epol = Enon − Efer), as shown in Table 1, which is defined as
the energy difference between the nonmagnetic state (Enon) and the ferromagnetic state
(Efer). The positive value of Epol means that the energy of the ferromagnetic state is lower
than the energy of the nonmagnetic state. Hence, the doped system desires to become a
ferromagnetic state. Our study shows that the GaP3 systems tend to be ferromagnetic states
after doping TM atoms. In addition, we also calculated the magnetic moment of different
doped systems, as shown in Table 1. The magnetic moment of pure GaP3 is 0 µB, this result
indicates that the intrinsic structure is nonmagnetic, and when pure GaP3 obtains doped
TM atoms, it obtains different magnetic moments with different TM atoms. Moreover, we
found that the magnetic moment of the Fe–doped system is 5.00 µB, which is the biggest
magnetic moment of various doped systems and means that the Fe–doped system can
gain the strongest ferromagnetic coupling. On the other hand, the magnetic moment of
the Ni–doped system is only 0.44 µB, which means that the Ni–doped system obtains the
weakest ferromagnetic coupling corresponding to the lowest Epol. Therefore, it is feasible
to obtain spin polarization in monolayer GaP3 by inducing TM atoms.

Figure 2 shows the band structures of various doped systems. It is clear that monolayer
GaP3 is a semiconductor with an indirect band gap of 0.79 eV at the PBE level of theory.
The conduction band minimum (CBM) locates at the Γ point, while the valence band
maximum (VBM) locates at the K-point, which is consistent with previous research [32].
All bands are spin degenerate after considering electronics spin; this result demonstrates
that monolayer GaP3 is totally no magnetism, agreeing well with the analysis above. When
doping TM atoms, as shown in Figure 2b–h, the spin degeneracy is lifted, it can be seen
that the band gap values are 0.87 eV, 0.77 eV, 0.55 eV and 0.84 eV, for the Ti–, V–, Cr–and
Fe–doped systems, respectively. Moreover, for the Mn–, Co– and Ni–doped systems, the
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impurity levels induced by Mn, Co and Ni atoms pass through the Fermi level, which
means that these three systems have semi-metallic properties. The whole systems show
spin polarization properties apart from the pure structure. Through the calculations and the
analysis from the magnetic moments, we can initially see that the Fe–doped system obtains
the strongest spin polarization property, and the Ni–doped system shows the weakest spin
polarization property.
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GaP3 and (h) Ni–doped GaP3, respectively.

In order to investigate more about the spin polarization properties of various doped
systems, we plotted the projected density of state (PDOS) near the Fermi level, as shown
in Figure 3. It is clearly shown in Figure 3a that the pure GaP3 is spin energy degenerate
for the spin up and spin down states, which means no spin polarization. Moreover, both
the 4p orbital of the Ga atom and the 3p orbital of the P atom contributes the most to
the electronic states of pure GaP3; in particular, the 4p orbital of the Ga atom plays the
biggest part of it. Figure 3b–h shows the PDOS of various doped systems; we found that
the spin-up and the spin-down electronic states split near the Fermi level, make the whole
system asymmetric, and then the whole systems show the spin polarization properties. It
is worth noting that the p–d orbital couplings between the TM atom and the GaP3 lead
to the generation of the new spin states. Furthermore, the Fe– and the Ni–doped system
possess the biggest and the weakest spin split, respectively, which means that the Fe–doped
system has the greatest spin polarization and the Ni–doped system has the weakest spin
polarization. These results correspond to the strongest and the weakest ferromagnetism,
which agree well with the calculations of the magnetic moments in Table 1. Additionally,
we also found an interesting result among the different doped systems. In the Fe– and
Mn–doped systems, spin-up electronic states are mainly contributed by the 3p orbital of
the P atom, while spin-down electronic states are mainly contributed by the 3d orbital of
TM atoms near the Fermi level. However, in the Ti, V, Cr, Co and Ni–doped systems, both
spin-up and spin-down electronic states are mainly contributed by the 3d orbital of TM
atoms. The states near the Fermi energy are spin-nondegenerate, so the charges transferred
from the TM to the GaP3 will fill these spin-polarized states, which make the TM doped
GaP3 spin-polarized.
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To further support the above, the charge transfers (∆q) of various doped systems were
calculated by the Bader charge analysis [50], as shown in Table 1. In Table 1, the positive
value means that the charge transfers from TM atoms to GaP3, vice versa. One can find that
the values of ∆q in the Ti–, V–, Cr–, Mn–, Fe–, Co– and Ni–doped systems are 1.22, 1.06,
0.86, 0.76, 0.60, 0.31 and 0.19 e, respectively. Different TM atoms in GaP3 show the different
abilities to lose electrons. The Coulomb interaction between the different transfer charges
of TM atoms and GaP3 causes the electronic structure to change differently, eventually
leading to different spin polarization for various doped systems.

The spin density distributions of the various doped systems are also given in Figure 4.
The spin density is defined as ∆ρs = ρ↑ − ρ↓, where ρ↑ represents the spin-up charge
density, ρ↓ is the spin-down charge density. The red and blue regions in Figure 4 correspond
to ∆ρs > 0 and ∆ρs < 0, respectively. It can be clearly seen that there is no spin density
distribution in pure GaP3, as shown in Figure 4a, which means that the pure GaP3 has
no spin polarization. However, we can find that the doped systems have spin density
distributions but different from each other. Furthermore, the Fe–doped systems have the
biggest area of spin density distribution, and then for the Mn–, Cr–, V–, Co–, Ti– and
Ni–doped systems, the area of spin density contributions successively decrease. The whole
results we obtained match well with the previous calculation of PDOS and magnetic
moments. Therefore, introducing spin polarization properties by doping TM atoms is a
good method for monolayer GaP3.
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4. Conclusions

In our work, the electronic structure and the spin polarization properties of monolayer
GaP3 induced by TM atoms (Ti, V, Cr, Mn, Fe, Co, and Ni) doping were investigated
through the first-principles calculation based on density functional theory. The calculation
of the bond lengths and the spin polarization energies in various doped systems were
adopted to confirm the feasibility of doping TM atoms in monolayer GaP3. The various
doped systems show different spin polarization properties, while the Fe–doped system
can obtain the strongest magnetism than others. Based on the calculations of energy band
electronic structures in TM–doped GaP3, it was found that elimination of spin degeneracy
leads to asymmetry of the energy band, and then the band gaps in various doped systems
changed. New spin electronic states originated from the p–d orbital couplings between TM
atoms and GaP3 pass through the Fermi level, which leads to the semi-metallic property.
Additionally, the spin density distributions and charge transfer for all doped systems also
confirm that the TM atom doping can induce magnetism in GaP3. Our study provides a
method for obtaining spin polarization in monolayer GaP3, which supports the excellent
prospects for applying triphosphide in spintronic.
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