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Abstract

Community association populations are composed of phenotypically and genetically diverse accessions. Once these populations are gen-
otyped, the resulting marker data can be reused by different groups investigating the genetic basis of different traits. Because the same
genotypes are observed and scored for a wide range of traits in different environments, these populations represent a unique resource to
investigate pleiotropy. Here, we assembled a set of 234 separate trait datasets for the Sorghum Association Panel, a group of 406 sorghum
genotypes widely employed by the sorghum genetics community. Comparison of genome-wide association studies (GWAS) conducted
with two independently generated marker sets for this population demonstrate that existing genetic marker sets do not saturate the ge-
nome and likely capture only 35–43% of potentially detectable loci controlling variation for traits scored in this population. While limited
evidence for pleiotropy was apparent in cross-GWAS comparisons, a multivariate adaptive shrinkage approach recovered both known
pleiotropic effects of existing loci and new pleiotropic effects, particularly significant impacts of known dwarfing genes on root architec-
ture. In addition, we identified new loci with pleiotropic effects consistent with known trade-offs in sorghum development. These results
demonstrate the potential for mining existing trait datasets from widely used community association populations to enable new discover-
ies from existing trait datasets as new, denser genetic marker datasets are generated for existing community association populations.
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Introduction
The value of common mapping populations in diverse species

has been recognized by quantitative genetics for decades. These

common populations can be genotyped by a single research

group, and genetically identical individuals distributed to the

larger research community which could score traits of interest

and test for associations between published genetic markers and

trait values across the population. Early populations included

sets of recombinant inbred lines (RILs) (Bailey 2004). RIL popula-

tions were developed, genotyped, and released to the maize (Burr

et al. 1988; Lee et al. 2002) and arabidopsis (Lister and Dean 1993)

genetics communities. Mapping quantitative trait loci (QTL) in

RIL populations provided relatively high power to detect variants

with even small numbers of markers as large scale linkage dis-

equilibrium (LD) permits the identification of associations be-

tween genetic markers and trait values for markers at quite some

distance from the causal variant. Yet the high LD of RIL popula-

tions also meant that researchers were unlikely to identify

associations with the causal gene or variant without generating
new follow-up populations for fine mapping. Improvements to
genotyping technologies ultimately permitted the use of natural
populations with more rapid decay of LD (Flint-Garcia et al. 2005;
Nordborg et al. 2005; Atwell et al. 2010). Like earlier RIL popula-
tions, association populations can be distributed among research
groups, permitting association mapping and later genome-wide
association studies (GWAS) to be conducted for multiple traits
without the need to generate new marker data.

The number of markers needed to saturate the genome of a
target population for GWAS is determined by the size of the spe-
cies’ genome, the speed at which LD decays within the target
population, and the minimum level of LD between a causal vari-
ant and a genotyped marker where statistically significant associ-
ations will still be detected, which in turn depends on the
proportion of total population variance explained by the causal
variant (Bouchet et al. 2012). An early estimate based on 1122 ge-
netic markers suggests that >100,000 genetic markers would be
necessary to conduct GWAS in populations spanning global
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sorghum diversity when target causal variants explained >10%
of total trait variance and >350,000 genetic markers when target
causal variants explained 5–10% of total trait variance (Bouchet
et al. 2012). Estimates of this type are quite sensitive to the rate of
LD decay. Estimates of the average distance at which LD decays
below an r2 value of 0.1 in sorghum range from 10 kilobases to
350 kilobases depending on the population and genetic marker
set employed (Hamblin et al. 2005; Bouchet et al. 2012; Mace et al.
2013; Wang et al. 2013; Morris et al. 2013b; Wang et al. 2020). LD
also varies among different portions of the genome, creating an
addition challenge to accurate simulation.

Higher marker densities increase the odds of identifying
causal variants that explain more modest proportions of the total
variance for a target trait. When new sets of genetic marker be-
come available for existing association populations it is possible
to reanalyze previously collected trait datasets. In addition, stud-
ies based on simulated data suggest multivariate analyses may
increase true positive rates relative to trait-by-trait univariate
GWAS (Rice et al. 2020). Multivariate analysis may provide value
in case where individual causal loci have pleiotropic effects on
multiple traits which are measured separately. The degree of
pleiotropy for loci influencing variation in quantitative traits in
plants remains uncertain. A study of maize leaf traits found little
incidence of pleiotropy (Tian et al. 2011) while detecting modest
evidence of pleiotropy between the elongation of leaves tassel
and ears (Brown et al. 2011). The sorghum QTL Atlas, a meta-
analysis of reported QTL map locations from 146 publications of
diverse RIL populations identified QTL hotspots on chromosome 2,
corresponding to the brown nucellar layer2 (B2) gene in sorghum, and
chromosome 7, corresponding to dwarf3 (dw3) (Mace et al. 2019).
However, the relatively large confidence interval of QTL peaks iden-
tified via mapping in RIL populations can make it difficult to deter-
mine whether QTL hotspots represent a single highly pleiotropic
gene or multiple linked genes (Wallace et al. 2014). In maize, the
pleiotropic effects of a large effect QTL for plant architecture on ear
traits was long thought to be explained by a single gene, teosinte
branched1 (tb1) but was later fractionated into multiple partially
linked loci for ear-related traits (Studer and Doebley 2011).

The Sorghum Association Panel (SAP) was first assembled in
2008 (Casa et al. 2008). After some additions, the population ulti-
mately consisted of 406 (USDA 2010) lines selected to represent
the global genetic diversity of sorghum. Because it was intended
that this population be grown and phenotyped in the temperate
United States, the majority of the lines included in the panel
were generated by the Sorghum Conversion program (Casa et al.
2008; Boyles et al. 2019). Sorghum from many parts of the world
fail to flower during the summer growing season in the temper-
ate United States. Sorghum Conversion lines are the result of
crossing diverse sorghum germplasm from around the world to a
temperate adapted donor parent (BTx406) and then recurrently
backcrossing the progeny to the exotic-tropical parent for four
generations while selecting for temperate adaptation, including
flowering during the summer in temperate latitudes and short stat-
ure (Stephens et al. 1967). Retrospective genomic analysis of many
Sorghum Conversion lines identified three genomic intervals where
the haplotype of the donor parent is over represented in the popula-
tion. These three intervals corresponded to the locations of dwarf-
ing genes dw1–dw3 (Thurber et al. 2013). No comparable
independent intervals were identified for loci conferring photope-
riod insensitivity; however, maturity1 (ma1) has a large selection
sweep on Chr6 that is linked to dwarf2 (dw2) (Thurber et al. 2013).

Initially, the SAP was genotyped for only a set of 49 simple-se-
quence repeat markers (Casa et al. 2008). Subsequently, the SAP

was employed for a number of genetic association tests using in-
creasing numbers of markers (Brown et al. 2008; Casa et al. 2008;
Sukumaran et al. 2012; Wu et al. 2012; Hufnagel et al. 2014). In
2013, a set of several hundred thousand genetic markers was
generated for the population using conventional genotyping by
sequencing (Elshire et al. 2011; Morris et al. 2013a). From 2013 on-
ward, the SAP was widely employed for GWAS by a range of re-
search groups targeting different traits (Table 1). Here, we employ
a set of both published and previously unpublished trait datasets
from the SAP and multiple genetic marker datasets (Morris et al.
2013a; Miao et al. 2020a) to empirically evaluate both the degree of
saturation achieved by current genetic marker sets and the degree
to which detectable loci controlling phenotypic variation in the
SAP tend to be pleiotropic or non-pleiotropic using a multi-trait ap-
proach based on meta-analysis and adaptive shrinkage (Urbut
et al. 2019).

Materials and methods
Genetic marker datasets
A set of 265,487 single nucleotide polymorphisms (SNPs) generated
using conventional genotyping by sequencing and aligned to ver-
sion 1 of the BTx623 sorghum reference genome were downloaded
from http://people.beocat.ksu.edu/gpmorris/sorghum_GBS_data/
readme.txt/ (Morris et al. 2013a) (the “2013 dataset”). A set of
569,305 SNPs generated using a modified genotyping by sequenc-
ing approach and aligned to version 3 of the sorghum genome
was obtained from FigShare (https://doi.org/10.6084/m9.figshare.
11462469.v5) (Miao et al. 2020a) (the “2020 dataset”). In each data-
set missing data points were imputed using Beagle (v4.1) with the
sliding windows set individually for each chromosome to capture
10% of all markers on that chromosome and overlap windows set
to capture 2% of call markers on that chromosome (Browning and
Browning 2016). After imputation, marker sets were filtered by re-
moving markers with minor allele frequencies of less than 5%
among the set of genotypes employed for a given analysis. This fil-
tering criteria resulted in a set of 107,751 markers scored across
304 lines for the 2013 dataset and a set of 257,882 markers scored
across the same 304 lines for the 2020 dataset. Filtering using the
same parameters across all 343 lines included in the 2020 dataset
produced a set of 256,695 markers.

Trait datasets
A total of 234 trait datasets scored across all or subsets of the SAP
were employed in this study. One hundred ninety of these trait
datasets were drawn from published sources as described in
Supplementary Table S1. An additional 12 phenotypes were gen-
erated using sums or ratios of published trait datasets. The traits
and formulas used to generate these 12 phenotypes are provided
in Supplementary Table S2. The remaining 32 trait datasets
employed in this study were previously unpublished datasets col-
lected at either the University of Nebraska-Lincoln in Nebraska
(19 datasets) or Clemson University in South Carolina (13 data-
sets). All these phenotype data are provided on FigShare (https://
doi.org/10.6084/m9.figshare.13143389).

Nebraska trait collection:
A single replicate of the SAP was grown near Mead, NE in 2016
and 2017. Plant height to inflorescence, plant height to flag leaf,
leaf angle (3rd leaf), stem diameter (between the 3rd and 4th
leaf), and node number were measured from a representative
plant at reproductive maturity in 2016. A ratio of plant height to
inflorescence/plant height to flag leaf was also calculated

2 | GENETICS, 2021, Vol. 218, No. 3

http://people.beocat.ksu.edu/
https://doi.org/10.6084/m9.figshare.11462469.v5
https://doi.org/10.6084/m9.figshare.11462469.v5
https://doi.org/10.6084/m9.figshare.13143389
https://doi.org/10.6084/m9.figshare.13143389


(Supplementary Table S2). Inflorescence architecture traits were
measured using two representative plants at maturity in 2016, 2017
and included inflorescence length, rachis length, rachis diameter,
number of primary branches, length of primary branches at the bot-
tom third of the inflorescence, length of primary branches at the top
third of the inflorescence, number of secondary branches on a pri-
mary branch, number of third-order branches on a secondary
branch, first internode length on a primary branch, prominent awns
(binary trait), and prominent glumes (binary trait). During 2017 one
additional trait, infertility (scored on a scale from 1 to 4), was also
collected (Supplementary Figure S1). Two ratios were also calculated
from each year in this dataset: inflorescence length/rachis length,
rachis length/rachis diameter (Supplementary Table S2). Best linear
unbiased predictors (BLUPs) for each phenotype were calculated by
fitting a linear mixed model using R package lme4 (Bates et al. 2014)
with genotype, year and genotype by year variables fit as random for
traits with multiple years of data and only genotypes fit as random
variable for the traits with data from only 1 year.

South Carolina trait collection:
The SAP was grown near Florence, South Carolina in 2013, 2014,
and 2017. In each year two replicates per line were grown in a
2� replicated completely randomized design utilizing two row

yield plots. Trait datasets collected at Clemson University in-

cluded two flowering time-related traits, measured in all 3 years:

days to anthesis and grain fill duration (days to maturity—days

to anthesis). Two plant height traits were measured: plant height

from ground/plant base to panicle apex and flag leaf height. Six

reproductive traits were measured: number of grains per primary

panicle and grain yield per primary panicle, measured in all 3

years, glume tenacity (0–5 visual rating), primary panicle branch

length, panicle length, and exsertion in 2017. Five biochemical

traits: magnesium (% dry basis), manganese (ppm), nitrogen

(mg), phosphorus (% dry basis), and zinc (ppm) measured from

ground grain samples in 2013 and 2014 using near-infrared spec-

troscopy (Boyles et al. 2017). Thirteen seed traits were determined

from these experiments: percent moisture, 1000-grain weight,

percent of dry mass which was acid detergent fiber and percent

of dry mass which was neutral detergent fiber, percent of starch

which is amylose, percent of dry grain weight which was oil, pro-

tein, or starch, in vitro starch digestibility, gross energy per gram

(calories/gram), iron (ppm), prolamin as a percentage of dry

weight, and seed density (grams per milliliter). All except 1000-

grain weight and seed density were measured using near infrared

and were evaluated in all 3 years. All phenotypes were measured

Table 1 Papers scoring traits in the sorghum association population

Reference Study type Phenotypes
scored

# of SAP accessions
evaluated

Genetic
associations?

Trait data online?

Casa et al. (2008) Vegetative 8 377 ASa No
Brown et al. (2008) Height & Inflorescence 6 378 AS Yes
Vandenbrink et al. (2010) Biomass Composition 2 377 No Yes
Mutava et al. (2011) Drought Stress 10 300 No No
Sukumaran et al. (2012) Grain Quality 10 300 AS No
Wu et al. (2012) Tannins 1 161 AS Yes
Morris et al. (2013a) Various 6 355 GWAS Used public data
Morris et al. (2013b) Flavonoids 2 259–387 GWAS Yes
Hufnagel et al. (2014) Phosphorous Deficiency 10 287 AS No
Kong et al. (2014) Tillering and inflorescence 9 377 GWAS No
Perez et al. (2014) Plant Architecture 6 315 GWAS Released here
Rhodes et al. (2014) Polyphenols 3 308 GWAS No
Adeyanju et al. (2015) Disease Resistance 6 300 GWAS Yes, but IDs ambiguous
Lasky et al. (2015) Drought Stress 28 267 GWAS Yes
Prom et al. (2015) Disease Resistance 3 177 No Yes
Queiroz et al. (2015) Grain Quality 12 100 No Yes
Li et al. (2015) Height 3 307 GWAS Used public data
Zhang et al. (2015a) Height & Inflorescence 12 354 GWAS No
Zhang et al. (2015b) Seed Size 6 354 GWAS Yes
Boyles et al. (2016) Various 13 378 GWAS Released here
Shakoor et al. (2016) Elemental Abundance 22 407 GWAS Yes
Zhao et al. (2016) Plant Architecture 9 315 GWAS Released here
Boyles et al. (2017) Grain Quality 10 378 GWAS Released here
Chen et al. (2017) Heat Stress 2 374 GWAS No
Chopra et al. (2017) Heat and Cold Stress 12 300 GWAS Yes
Fernandez et al. (2017) Vegetative (HTP) 4 307 GWAS No
Ortiz et al. (2017) Photosynthesis/Cold Stress 24 304 GWAS No
Paiva et al. (2017) Elemental Abundance 18 100 No Yes
Rhodes et al. (2017a) Polyphenols 3 266 GWAS Yes
Rhodes et al. (2017b) Grain Quality 4 265 GWAS Yes
Cuevas et al. (2018) Disease Resistance 2 335 GWAS Yes
Breitzman et al. (2019) Vegetative (HTP) 6 325 GWAS Released here
Cuevas et al. (2019) Disease Resistance 2 331 GWAS Yes
McMaster et al. (2019) Mycotoxin 2 98 No Yes, but IDs ambiguous
Moghimi et al. (2019) Cold Stress 13 351 GWAS Yes
Olatoye et al. (2019) Various 4 334 GWAS Used public data
Prom et al. (2019) Disease Resistance 1 359 GWAS Yes
Zheng et al. (2020) Root Architecture (HTP) 12 294 GWAS Yes
Zhou et al. (2019) Inflorescence (HTP) 8 302 GWAS Yes
Miao et al. (2020b) Height 1 357 GWAS Yes

a“AS” means association studies which were not conducted using genome wide sets of markers, and “GWAS” means association studies which did utilize genome
wide sets of markers.
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in all 3 years except seed density which was measured only in
2017. For each trait, a linear mixed model was fit using the R
package lme4 (Bates et al. 2014) with genotype, year, genotype by
year, and replication nested in a year were fit as random for traits
from 2013, 2014, and 2017 combined and the genotype and repli-
cation fit as random for the traits collected only during 2017, and
the resulting phenotypic BLUPs were employed for further analy-
sis. Of the 28 traits included in this study, 15 were published in
part or in totality (Boyles et al. 2016, 2017; Sapkota et al. 2020) and
13 are previously unpublished data.

Trait data normalization and heritability calculation:
With the exception of six binary traits (AnthraClassification_P,
PericarpColor_D, Tannins_D, Tannins_F, AwnProminence_U, and
GlumProminence_U) each trait dataset was normalized before
analysis using the R package, bestNormalize version 1.4.3
(Peterson 2017). The function bestNormalize in the
bestNormalize package performs various/suite of normalization
transformations, such as Lambert W x F, BoxCox, YeoJohnson,
Ordered Quantile, etc. and then select one optimal transforma-
tion for each dataset based on minimizing the Pearson P statistic,
a test for normality. GWAS analyses for individual traits fre-
quently incorporate a manual examination of trait value distri-
butions to remove extreme outlier values. However, here a total
of 468 distinct GWAS analyses (234 traits * 2 sets of individuals)
were conducted, making it difficult or impossible to guarantee
consistent criteria would be applied to manual removal of out-
liers across 468 distributions. Hence, a rules-based automated
outlier removal strategy was adopted. Subsequent to normaliza-
tion, values which were more than 1.5 times the interquartile
range below the 25th percentile of normalized trait values or
more than 1.5 times the interquartile range above the 75th per-
centile of normalized trait values were converted to missing data.
In order to determine the proportion of genetic variation explain-
able by genetic factors, marker-based estimate of narrow-sense
heritability was generated using the R-package sommer (v4.1.1),
the reported values for each line for each trait, and the 2020 ge-
netic marker dataset (Covarrubias-Pazaran 2016).

Genome-wide association analyses
GWAS was performed independently on each of 234 trait data-
sets. The number and identity of lines evaluated for various traits
varied both across and within studies (Supplementary Table S1).
For each trait dataset, analyzed with each of the two genetic
marker datasets, genetic markers were separately filtered to re-
move those markers with a minor allele frequency of <5% among
individuals with recorded values for the target trait.

The resulting marker sets were employed for GWAS analysis
using two single-locus models; generalized linear model (PC),
mixed linear model (PCþK) (Price et al. 2006), and one multi-locus
model; FarmCPU (Liu et al. 2016). For all three models, the imple-
mentations used were those included in the R package rMVP
(v1.0.1) (Yin et al. 2020). For the GLM model, the first three princi-
pal components (PCs) were fit as covariates in order to control for
the population structure. In case of the mixed linear model
(MLM), in addition to the first three PCs, a kinship matrix was
also integrated in the model for association analysis. The kinship
matrix representing the relationship among individuals used in
the MLM model was calculated using the first method described
by VanRaden (2008) as implemented within the rMVP package,
which should be equivalent to the method of Endelman and
Jannink (2012) for high-density marker data. The multi-locus
mixed linear model; FarmCPU, was run with the first three PCs as

covariates and the kinship matrix calculated internally by the
FarmCPU algorithm fitted as random effects. FarmCPU was run
using maxLoop ¼ 10, the method for selecting most appropriate
bins was run with the MVP option, method.bin ¼ “FaST-LMM”
(Lippert et al. 2011). The method of variance components analy-
sis, vc.methods was set to “GEMMA” in the association analysis
(Zhou 2017).

Bonferroni corrections were applied based on the effective
number of independent markers in each genetic marker dataset.
Effective SNP numbers were calculated for each dataset using the
genetic type I error calculator (GEC (v0.2)) software package with
default parameter settings (Li et al. 2012). GEC implements an
eigenvalue-based method which employs the matrix of correla-
tions in p-values in association testing between SNP markers to
estimate the effective number of independent SNPs (Me) which
will be lower than or equal to the actual number of SNPs geno-
typed. Statistical significance thresholds were set to 10�5.958

(0.05/48,488) and 10�6.154 (0.05/825,223) for 2013 and 2020 genetic
marker datasets, respectively when SNPs were first filtered
based on their minor allele frequencies in the set of 304 sor-
ghum varieties shared between the two datasets. The statistical
significance threshold for the 2020 genetic marker dataset when
markers were filtered based on their frequency in the complete
set of 343 lines genotyped in that dataset was 10�6.1379 (0.05/
82,143). Trait values were available for different subsets of lines
for different trait datasets. While markers were further filtered
to remove low frequency markers in subset populations as de-
scribed above, the same three P-value cutoffs for statistical sig-
nificance were employed for all GWAS results to provide
consistency across analyses. Manhattan plots were created us-
ing the CMplot R package (v3.6.2) (Yin 2020). When multiple ge-
netic markers showed statistically significant associations after
correction for multiple testing, markers on the same chromo-
some and separated by no more than 1 MB were merged into a
single peak. A custom python script (CallPeaksBatch.py) was
employed to merge nearby SNPs into peaks and identify
“summit” SNPs for each peak (Miao 2020).

Multivariate gene-trait analyses
For multivariate analysis, 176 traits were chosen by excluding 30
traits collected from <100 lines, six binary traits and 22 ionomics
trait data (Shakoor et al. 2016). Estimated effect size and standard
error for each of the markers in each of these 176 traits was
extracted from the initial output of rMVP using the results of
analysis conducted using the MLM model. First, a subset of 671
strong signals with lfsr <0.1 were chosen by running a condition-
by-condition analysis using ash with package ashr/v2.2-47 using
the most recent code revision available on github as of 9/8/2020
(Stephens et al. 2020). A second control set of estimated effect
size and standard error values for a set of 90,000 markers were
randomly extracted to aid the mash model in learning the pat-
terns of covariance between SNPs and each phenotype in order to
produce improved effect estimates of the SNPs chosen from
condition-by-condition analysis. Thus, the control set chosen is
an unbiased representation of all the tests considered, including
null and non-null tests. The strong signals made up approxi-
mately 0.8% of the control set. Furthermore, to overcome the
confounding effects caused by the correlated variation among
various traits/phenotypes, we estimated the simple correlation
matrix V in the 90 K random control set using the MashR function
“estimate_nul_correlation_simple” and included the resulting
correlation matrix V (V ¼ Vhat) into our analysis. We used simple
null correlation to find arbitrary patterns of correlation among
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various conditions. Instead of calculating correlation among all
the null tests, we estimated simple null correlation among the
random subset as it gives a quick approximation of the null cor-
relation matrix. These datasets were analyzed using mashr/
v0.2.40 using the most recent code revision available on github as
of August 9, 2020 (Urbut et al. 2019). Following the recommenda-
tions of the MashR documentation, canonical and data-driven co-
variance matrices were computed. The canonical covariance
matrix was calculated using the MashR function “cov_canonical”.
The data-driven covariance matrix was calculated by using the
function “cov_pca”. A mash model was fit using both the covari-
ance matrices. The posterior summaries were computed for each
SNP in the strong sub set, choosen from condition-by-condition
analysis for each phenotype. Furthermore, the Bayes factor
extracted from mash output with CDBNgenomics R package
(MacQueen et al. 2020) was used to determine if a given SNP has
significant phenotypic effect. Threshold of local false sign rate
(lfsr) <0.001 was used to determine the number of traits associ-
ated to a given SNP (Stephens 2017). Codes to replicate mashR
analysis using the above-mentioned datasets can be found at
https://github.com/ravimural/sapmashr. Peaks were called by
merging individual significant SNPs which were separated by less
than 500 kilobases into peaks and selecting the single SNP within
each peak with the largest Bayes factor as representative of that
peak. The code used to perform this merging has been deposited
on github (Miao 2020). Visualizations of mashr results were gen-
erated using the R package CMplot (v3.6.2) (Yin 2020) (Panel A).

Data availability statement
All genotype data used in this study was drawn from published
sources. Combined phenotypic data on both previously pub-
lished, unpublished phenotypes used in this study, and the
GWAS results are provided on FigShare https://doi.org/10.6084/
m9.figshare.13143389. Supplemental Material available at fig-
share: https://doi.org/10.25386/genetics.14721033.

Results
Properties of SAP trait datasets
A literature review identified 40 papers in which phenotypic data
were collected and published from the SAP—or subsets of this
population. Of these 40 papers, it was possible to obtain trait val-
ues for individual lines in 25 cases. These included 20 papers for
which data were provided as Supplementary information and 5
papers for which the data were obtained directly from the
authors (Table 1). These 25 papers reported data for a total of 190
traits, although it should be noted that some of these traits are
similar or identical measurements conducted in different envi-
ronments or years. Twelve additional phenotypes were derived
based on sums or ratios of trait means (Supplementary Table S1).
Previously unpublished data for 19 traits collected in Nebraska
and 13 previously unpublished trait datasets collected in South
Carolina were also added to the dataset (Supplementary Table
S1). Thus, the final dataset consisting of 234 distinct sets of trait
data scored for all or subsets of a common sorghum population.
Values of all 234 sets of trait data, including those previously
unpublished are provided as supplementary data with this paper.
A number of studies reported data from plants grown in growth
chambers or other controlled environment conditions. However,
the majority of published trait datasets came from field trials in
six states—Georgia, Iowa, Kansas, Nebraska, South Carolina, and
Texas—within the United States with additional trait data col-
lected in Brazil (Figure 1A).

Traits could be broadly classified into seven categories includ-
ing agronomic phenotypes, biochemical phenotypes, disease-
related phenotypes, root phenotypes, above ground vegetative
phenotypes (of which 15 plant height or plant height proxies), re-
productive phenotypes, and seed phenotypes (Figure 1B;
Supplementary Table S1). Most studies provided only trait means
or best linear unbiased predictor (BLUP) (Robinson 1991) values
(Supplementary Table S1). As a result, it was not possible to esti-
mate broad sense heritabilities for most traits. However, it was
possible to estimate narrow sense heritabilities. Estimates of nar-
row sense heritability had a median of 0.265 (Figure 1C). Traits
with high narrow sense heritability tended to be those related to
panicle morphology, grain composition and disease, while traits
with estimates of narrow sense heritability close to zero tended
to be collected from seedlings, a subset of biochemical traits, and
measures of some plasticity across environments
(Supplementary Table S1). Trait datasets belonging to the same
categories, as well as trait datasets collected as part of the same
studies tended to be correlated more with each other than with
other pairs of traits (Supplementary Figure S2).

Current sorghum marker sets do not achieve
saturation for linkage to causal loci
Previous estimates of the number of markers required to achieve
saturation of a sorghum GWAS population have been largely
based on simulation studies. The existence of two distinct genetic
marker datasets provides an opportunity to empirically estimate
the number of markers required to saturate the sorghum ge-
nome. In 2013, a set of 265,487 markers identified relative to ver-
sion 1 of the sorghum genome were generated using
conventional genotyping by sequencing for 971 lines including
355 members of the SAP (Elshire et al. 2011; Morris et al. 2013a) (re-
ferred to as the “2013 marker set” below). In 2020, a set of 569,305
markers identified relative to version 3 of the sorghum genome
were generated using a modified genotyping by sequencing strat-
egy for 343 members of the SAP (Ott et al. 2017; Miao et al. 2020a)
(referred to as the “2020 marker set” below). A total of 304 mem-
bers of the SAP were included in both the 2013 and the 2020 ge-
netic marker datasets. Filtering for only the subset of SNPs where
the minor allele was present in at least 5% of the 304 shared SAP
lines resulted in 107,751 and 257,882 markers in 2013 and 2020
marker sets respectively. The number of markers employed in
GWAS were higher than the previous estimates of the number of
markers (100,000) required to achieve saturation of a sorghum
GWAS population based on a minimum r2 of 0.1 between geno-
typed markers and causal variants (Bouchet et al. 2012).

Different protocols were employed to generate these two data-
sets and these two protocols sequence different subsets of the
sorghum genome. As a result, the sets of specific genetic markers
genotyped in each dataset should be largely non-overlapping.
Indeed, as the marker sets were generated relative to different
versions of the reference genome (v1 and v3), while it is possible
to align results at the gene or region level it is not possible to con-
fidently quantify the precise number of markers shared between
the two datasets. If current marker datasets are sufficient to sat-
urate the sorghum genome, using different marker datasets
would be expected to identify signals from the same regions of
the genome. However, if current marker sets are insufficient to
saturate the sorghum genome, using different marker datasets to
analyze the same trait datasets would be expected to identify
only partially overlapping sets of genomic intervals for the same
trait datasets.
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Each genetic marker dataset was employed to conduct GWAS
for each of the 234 trait datasets. For each genetic marker data-
set, imputation and filtering based on minor allele frequency spe-
cifically within the set of 304 shared lines were conducted using a
common set of criteria (see Materials and methods). Similarly, a
common trait data processing protocol was employed for each of
the 234 trait datasets. This protocol incorporated normalization
and outlier removal. GWAS for two of the 234 trait datasets pro-
duced questionable results, including distributions of observed P-
values inconsistent with expectations, when analyzed with one
of the marker sets (Supplementary Figure S3, A–D). The GWAS
results for these two trait datasets were removed from down-
stream analyses for both marker sets.

Among the remaining 232 trait datasets, 36 trait datasets pro-
duced at least one significant marker-trait associations (MTAs)
when analyzed using the 2013 marker dataset (N¼ 48 significant
peaks). These 48 total significant peaks in individual GWAS with
2013 dataset localized to 26 unique regions of the genome as a re-
sult of repeated identification of the same genomic intervals in
analyses of different trait datasets (Figure 2A). When the same
232 trait datasets were analyzed using the 2020 genetic marker
dataset, 40 trait datasets produced at least one significant peak
(N¼ 52 significant peaks). These 52 total significant peaks local-
ized to 32 unique locations on the sorghum genome (Figure 2B).
In analyses with each of the two genetic marker datasets, multi-
ple distinct signals were observed in the same region of chromo-
some six including the canonical signal for dw2, as well as a
separate peak for nickel abundance (both genetic marker data-
sets), seed weight (2013 genetic marker dataset) and stem size
(2020 genetic marker dataset). The clustering of separate peaks
may reflect increased statistical power resulting from elevated
minor allele frequencies in this interval from over representation
of the BTx406 haplotype among sorghum conversion lines in this
region (Thurber et al. 2013).

A total of 54 traits exhibited at least one significant trait-
associated marker, with 36 traits exhibiting at least one peak in
the 2013 dataset and 40 traits exhibiting at least one peak in the
2020 dataset. Among these 54 traits a total of 22 traits exhibited
at least one significant peak that was shared between the two
marker datasets, while there were 14 unique traits in the 2013

marker set and 18 unique traits in the 2020 marker data set, each
of which exhibited at least one unique peak (Supplementary
Figure S4, A and B). Of the 22 traits which exhibited at least one
significant peak when analyzed with each of the genetic marker
datasets, nine were height traits. Among the 32 traits which
exhibited at least one significant peak when analyzed with one
genetic marker dataset and no significant peaks when analyzed
with the other, only two were height-related traits. The non-
representative nature of height-related traits may be explained
both by the presence of three segregating large effect mutations
for height in this population and the large LD blocks which exist
around these genes as a result of selection during the temperate
adaptation process (Thurber et al. 2013). Excluding height-related
trait datasets, 13 trait datasets produced at least one significant
MTA, when analyzed with either genetic marker dataset and 30
trait datasets produce at least one significant MTA, when ana-
lyzed with one and only one of the genetic marker datasets
(Supplementary Figure S4C).

However, even when at least one significant MTA was identi-
fied when the same trait dataset was analyzed with each of the
two genetic marker datasets, these MTAs may not correspond to
the same causal loci. Of 74 unique MTAs between a given trait
dataset and a given genomic interval identified using the two ge-
netic marker datasets, 26 of the same MTAs were identified using
both genetic marker datasets, 22 were identified only using the
2013 dataset and 26 were identified using only the 2020 dataset
(Figure 2; Supplementary Figure S4, D and E). Peaks associated
with plant height were disproportionately likely to be identified
in analyses using both genetic marker datasets. Nineteen total
peaks associated with plant height traits were identified of which
13 were identified when the same trait was analyzed with either
genetic marker dataset. Excluding plant height-related traits, 55
distinct MTAs were identified between variation in a trait dataset
and a given region of the genome. A total of 13 MTAs between
non-height traits and a given region of the genome were identi-
fied consistently when using each of the two genetic marker
datasets. Eighteen MTAs between non-height traits and a given
region of the genome were identified only when using the 2013
genetic marker dataset and 24 only when using the 2020 genetic
marker dataset (Supplementary Figure S4F). The total non-height

Figure 1. Characteristics of Sorghum Association Panel trait datasets. (A) Geographic distribution of trials where trait datasets were collected. Size of
circles indicates number of traits collected at a specific geographic location. Colors of circles indicate types of trait datasets collected at that location.
Labels for which colors correspond to which types of traits are given in Panel (B). A set of 30 traits scored in Nova Porteirinha, Minas Gerais, Brazil
(Queiroz et al. 2015; Paiva et al. 2017) are not visible in this panel. (B) Representation of seven broad phenotypic categories among the 234 traits collected
here. Category assignments for individual traits are provided in Supplementary Table S1. (C) Distributions of narrow sense heritability values,
calculated using the 2020 genetic marker dataset (Miao et al. 2020a), across the same seven broad phenotypic categories are shown in panel (B).

6 | GENETICS, 2021, Vol. 218, No. 3



MTAs which would likely be detectable based on allele frequency

and effect size in this population of 304 sorghum lines with suffi-

cient numbers of markers was estimated to be approximately 85

(Lincoln Index Method). GWAS with either one of the two genetic

marker datasets identified only 35–43% of the estimated total

number of MTAs and the combined analysis identified only 63%

of the estimated total number of potentially discoverable MTAs

(given sufficient marker density). Hence, increases in the number

of genetic markers scored in this population would likely enable

the discovery of 50–200% more MTAs when analyzing existing

published trait data via single trait GWAS. The Lincoln Index

Method, based on the size of two independent samples and the

number of overlapping individuals between the two populations

is a statistical measure used in several fields to estimate the

Figure 2. Combined Manhattan plots comparing MTAs identified using different marker datasets for the same individuals. (A) Combined Manhattan
plot for 36 traits with at least one significant GWAS hit when analyzed using the 2013 genetic marker dataset and considering data from only those
304 sorghum lines genotyped in both the 2013 and 2020 datasets. Green lines topped with circles indicate the physical position and -log10 P-value for
the single most significant SNP within a GWAS peak identified for a particular trait. Text labels for individual traits employ trait names provided in
Supplementary Table S1. Dashed red line indicates the cutoff for statistical significance calculated from the effective SNP number in the 2013 genetic
marker dataset. (B) Combined Manhattan plot for 40 traits with at least one significant GWAS hit when analyzed using the 2020 genetic marker dataset
and considering data from only those 304 sorghum lines genotyped in both the 2013 and 2020 datasets. Locations and P-values of the most significant
SNP within each peak and statistical significance cutoff labeled as above. Blue labels indicate peaks shared between datasets. Red labels indicate traits
where at least one significant GWAS peak is identified in both datasets but none of the peaks are shared between datasets. Black labels indicate traits
where one or more significant GWAS peaks were identified with one of the marker datasets but no significant GWAS peaks were identified when the
other marker dataset was employed. (C) Relationship between the identification of one or more significant GWAS peaks for a given trait dataset in each
of the two genetic marker datasets. (D) Number of GWAS peaks which were either identified using both or only one of the two genetic marker datasets
tested.
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number of cases that have not yet been observed based on two
independent sets of observed cases (Lincoln 1930). In this case,
this approach likely underestimates the true number of detect-
able but unobserved associations as it assumes complete inde-
pendence between the two independently observed sets. In
reality, extremely large effect loci are more likely to be observed
in both datasets even when in only modest LD with a genotyped
marker, while smaller effect loci which would be detectable
when in high LD with a genotyped marker is more likely to be
missed when the LD to the most linked genotyped marker is
lower. As a result, this estimate should be treated as a lower
bound.

Limited evidence for pleiotropy from
conventional genome-wide association
GWAS was conducted for the complete set of 234 traits and all
genetic marker data for the set of 343 accessions present in the
2020 marker dataset with the goal of testing for evidence of plei-
otropy for quantitative traits. Analysis was conducted using three
distinct statistical approaches to GWAS: GLM, MLM, and
FarmCPU. The significant peaks identified by each of these meth-
ods are provided on FigShare (see data availability statement) for
researchers interested in obtaining lists of loci controlling varia-
tion in specific traits. However, here we specifically present the
results of MLM-based GWAS. With this larger population of indi-
viduals—343 vs the 304 shared between the 2013 and 2020 data-
sets—a total of 56 significant peaks were identified across 43
traits. After identifying and merging associations between dis-
tinct traits within the same genomic intervals, the set of 56 signif-
icant peaks collapsed to 31 regions of the genome (Figure 3).

Of these 31 unique genomic regions, 25 were identified in the
analysis of only a single trait dataset. Among the remaining six
cases where two or more trait datasets identified signals in the
same genomic regions, three were identified in the analysis of
only two trait datasets. The final three intervals (on chromo-
somes 2, 6, and 9) were associated with 7, 6, and 13 traits, respec-
tively. The peak on chromosome 2 was identified in GWAS for
seed composition traits including oil, protein, and the sums and
ratios of seed oil, protein, and starch and likely corresponds to
the putative alpha-amylase 3 gene, previously identified in
Rhodes et al. (2017b). The peaks on chromosomes 6 and 9 corre-
spond to ma1/dw2 (Klein et al. 2008; Murphy et al. 2011; Hilley et al.
2017) and dw1 (Hilley et al. 2016; Yamaguchi et al. 2016), respec-
tively. Traits associated with these two genomic intervals include
measures of both plant height and plant volume/area (Table 2).

One interval on chromosome 7 where a single genomic inter-
val contained MTAs for two and only two trait datasets was the
result of measurement of the same trait—distance from the flag
leaf to the plant apex—in two different studies conducted in dif-
ferent years in different locations by different research groups.
An interval on chromosome 5 was associated with two traits
from the same publication, which scored anthracnose resistance
in two different ways (Cuevas et al. 2018). A third interval on chro-
mosome 4 was associated with both branch length in the inflo-
rescence and acid detergent fiber within the grain. This interval
on chromosome 4 may represent genuine pleiotropy or two dis-
tinct functional variations in different genes separated by �500
kilobases. The relative dearth of evidence for pleiotropy in sor-
ghum is consistent with previous quantitative genetic investiga-
tions of pleiotropy in maize for both inflorescence architecture
and leaf morphology (Brown et al. 2011; Tian et al. 2011).

However, given the large number of false negatives expected
in any individual GWAS (Korte and Farlow 2013), quantifying

how many intersections exist between independently conducted
sets of GWAS in modestly powered populations is likely to under-
estimate the true extent of pleiotropy (Visscher and Yang 2016).
Formal multivariate GWAS approaches face difficulty scaling to
large datasets (>3–5 traits) (Zhou and Stephens 2014; Rice et al.
2020). Hence, here we employed a multivariate adaptive shrink-
age approach to the initial output from MLM based GWAS to esti-
mate the effect of individual markers on separate trait datasets
(Urbut et al. 2019). This approach provides both a test of which
markers are significantly associated with phenotypic variation
across the population while also estimating which specific traits
a given marker had non-zero effects on, and the directions of
those effects.

Improved interpretability of trait-associated loci
under joint analysis
Joint analysis was conducted using MashR for 176 traits, exclud-
ing 30 traits scored on no more than 100 individuals, 6 binary
traits and 22 ionomics trait data (Shakoor et al. 2016). Standard
error and effect size from MLM based GWAS were employed for
this analysis. While FarmCPU has been shown to exhibit greater
power to detect more total causal loci, the inclusion of identified
loci as covariates means that only a single marker is identified
per locus. If different markers in LD with the same causal locus
were identified in FarmCPU based analysis of different traits, the
pleiotropic effects of this locus would be undetectable by MashR.
A set of 593 markers were identified which both exhibited an as-
sociation with at least one phenotype with a local false sign rate
(lfsr) <0.001, and for which the ratio of the likelihood of one or
more significant phenotypic effects at an SNP to the likelihood
that the SNP had only null effects was estimated to be <104,
which is referred to as the Bayes factor (Urbut et al. 2019). An ana-
log of the false discovery rate, lfsr requires true discoveries to be
not only nonzero but also correctly signed (Stephens 2017). These
593 markers cluster together in 44 unique peaks across the sor-
ghum genome (Figure 4). Within each multi-marker peak, the sin-
gle marker with the largest Bayes factor was employed to
represent the peak. The number of traits upon which markers
had significantly nonzero effects ranged from 1 to 141 for a peak
on chromosome 6 corresponding to two known large effect loci,
dw2 and ma1 (Figure 4, A and B). Figure 4A employs an lfsr <0.001
threshold for reporting marker trait associations. A parallel
analysis employing an lfsr threshold of <0.05 provided roughly
equivalent results Supplementary Figure S6. The relationship be-
tween the Bayes factor assigned to a peak and the number of trait
datasets with which it was associated was not straightforward
(Figure 4B; Supplementary Figure S7). The single peak with the
largest Bayes factor was associated with only twelve trait data-
sets, a number of which were independent measures of the same
traits in different environments. Other peaks with comparatively
modest Bayes factors were associated with modest effects on
90 traits in our datasets (Figure 4A).

Multi-trait analysis was able to recover a number of known
pleiotropic features for large effect loci segregating in the popula-
tion. In addition to plant height, the peak at dw2 was associated
with multiple metrics of root size/area, panicle length, plant sur-
face area, and seed weight (Supplementary Figure S8A). The
effects of dw2 on panicle length, seed weight, and leaf area have
been previously reported (Graham and Lessman 1966; Pereira
and Lee 1995) while the reductions in multiple metrics of root
size/area associated with the dwarfing allele of dw2 had not. The
apparent impact of dw2 on root phenotypes, suggests that the
gene may play equivalent roles in determining size of below and

8 | GENETICS, 2021, Vol. 218, No. 3



Figure 3. Combined Manhattan plot for GWAS using all 343 individuals genotyped in the 2020 SNP set. (A) Combined Manhattan plot for 43 traits with
at least one significant GWAS hit when analyzed using the 2020 genetic marker dataset and all 343 sorghum lines genotyped in the 2020 genetic marker
dataset. Green lines topped with circles indicate the physical position and -log10 P-value for the single most significant SNP within a GWAS peak
identified for a given trait. Text labels employ trait names provided in Supplementary Table S1. Dashed red line indicates the cutoff for statistical
significance calculated from the effective SNP number in the 2020 genetic marker dataset. Lower panel indicate positions of a set of cloned sorghum
mutants, taken from (Boyles et al. 2019). Estimates of LD among summit SNPs of each peak are shown in Supplementary Figure S5A. (B) Summary of
results from GWAS analysis using all 343 SAP lines included in the 2020 marker dataset. (C) Number of traits where one or more significant GWAS
peaks were identified in the 2013 dataset considering only accessions shared with the 2020 dataset, the 2020 dataset considering only accessions shared
with the 2013 dataset, and/or all accessions in the 2020 dataset.

Table 2 Summary of the GWAS results when data from all 343 accessions in the 2020 marker set are employed

Chr # GWAS hits Unique genomic regionsa Single trait peaks Two trait peaks �3 trait peaks

Chr 1 5 5 5 0 0
Chr 2 8 2 1 0 1b,c

Chr 3 10 10 10 0 0
Chr 4 2 1 0 1 0
Chr 5 4 3 2 1c 0
Chr 6 9 4 3 0 1c,d

Chr 7 4 3 2 1c 0
Chr 8 1 1 1 0 0
Chr 9 13 2 1 0 1c,e

Chr 10 0 0 0 0 0
Total 56 31 25 3 3

aGWAS hits within 500 kb of each other on the genome were merged into a single interval. Given the low incidence of observed pleiotropy, a conservatively large
interval (greater than the 50–350 kb reported range for LD decay in sorghum) was selected to reduce the incidence of false negatives (i.e. true cases of pleiotropy
effects misclassified as independent signals from distinct loci).

bThe locus on Chr2 associated with �3 traits is associated with seven total traits all associated with seed composition: SeedProteinSum_H,
SeedStarch&SumProtFatRatio_H, SeedStarchProtFatSum_H, SeedProtein_H, SeedStarchProteinRatio_H, SeedStarchFatRatio_H, and SeedOil_H.

cWhile these peaks were identified for multiple datasets, the datasets all represent independent measures of similar phenotypes.
dThe locus on Chr6 associated with �3 traits is associated with six total traits all associated with plant height: PlantVolume_V, PlantHeight_U, PlantHeight_V,

HeightFlagLeaf_T, PlantHeight_W, and PanicleHeight_C.
eThe locus on Chr9 associated with �3 traits is associated with 13 total traits all associated with plant height: PlantArea_V, PanicleHeight_C, PanicleExsertion_U,

HeightFlagLeaf_T, PlantHeight_T, PreflagHeight_C, HeightFlagLeaf_W, PlantHeight_W, FlagToApex_W, PlantVolume_V, PlantHeight_U, PlantHeight_V, and
PlantSurfaceArea_V.
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Figure 4. Pleiotropic analysis of SAP phenotypes. (A) Markers assigned significant Bayes factor values in MashR analysis. Green lines topped with circles
indicate the physical position and log10 Bayes factor for the most significant SNP within a peak identified for a pleiotropic loci. Text labels indicate the
position and name of the most significant marker within each peak. The number of trait datasets significantly associated with a marker at lfsr <0.001 is
indicated in brackets. It should be noted that trait datasets include both measurements of different traits and the same trait scored across different
environments in different studies. Dashed red line indicates the cutoff for statistical significance at log10 Bayes factor of 4. Estimates of linkage
disequilibrium among the summit SNPs of each distinct peak are shown in Supplementary Figure S5B. (B) Distribution of the number of trait datasets
which were significantly associated with each unique peak. (C) Distribution of effect sizes and directions of a subset of the 60 trait datasets for which
the genetic marker S04_6082617 has a significant effect (lfsr < 0.001). To aid readability, only the subset of trait datasets where the effect size is >0.05 or
<0.05 are shown. Bar thickness is proportional to the relative estimated statistical significance of each association with the thickest bars marking the
most significantly associated trait for a given marker and the thinnest the least significantly associated trait for a given marker which still passed all
filtering criteria. (D) Distribution of effect sizes and directions for a subset of the 87 trait datasets for which the genetic marker S06_60660773 has
significant effects. Cutoffs for visualization are the same as applied for panel C. (E) Distribution of effect sizes and directions for a subset of the 90 trait
datasets for which the genetic marker (S08_55231823) has significant effects. Cutoffs for visualization are the same as applied for panels C and D.
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above ground plant organs. Another plant height-related gene,
dw3 was previously known to have effects on grain yield (Cassady
1965), leaf angle (Truong et al. 2015), biomass (George-Jaeggli et al.
2011), internode length (Brown et al. 2008), stem diameter
(Olatoye et al. 2020), panicle exsertion (Zhao et al. 2016), and pani-
cle architecture (Brown et al. 2006). Here, statistically significant
links were also observed between dw3 and variation in plant bio-
mass, leaf angle, stem size/stem diameter, grain yield plasticity,
internode length, panicle exsertion, and panicle architecture
(panicle length, width, and area) (Supplementary Figure S8B). In
addition to plant height, dw1 is also known to alter biomass and
biomass associated traits (Breitzman et al. 2019), internode length
and lodging resistance in sorghum (Hilley et al. 2016; Yamaguchi
et al. 2016). The set of traits assembled here did not include meas-
urements of either internode length or lodging resistance across
the SAP so it was not possible to assess whether these known
pleiotropic effects of dw1 on these traits were recovered.
However, the peak associated with dw1 in chromosome 9 was sig-
nificantly linked to variation in above ground biomass traits (di-
rectly measured biomass, plant surface area), as well as multiple
metrics for root size/area (Supplementary Figure S8C). In contrast
to dw3 and similar to dw2, dw1 may play equivalent roles in de-
termining organ size for both below ground and above ground
plant organ systems.

Multi-trait analysis also recovered a number of novel signals
across the genome. The pairing and direction of effect sizes for
these traits enables greater interpretability of the resulting MTAs.
In some cases, these are straightforward trade-offs. The trait-
associated marker located at 6.08 MB on chromosome 4 one allele
is associated with longer panicles, but these panicles are also
narrower and less dense. The other allele present at this locus
produces shorter, fatter, and denser panicles, resulting in
increases in seed moisture levels at harvest (Figure 4C). A number
of other multiple trait associations identified were also consistent
known trade-offs in plant growth and development. A trait-
associated marker located at 60.66 MB on chromosome 6 is asso-
ciated with increases in seed oil and protein content, and many
important micronutrients. However, the same allele is also asso-
ciated with decrease in panicle volume and solidity (high
throughput phenotyping) and decreases in grains per panicle and
grain weight per panicle (conventional phenotyping) (Figure 4D).
Multiple trait associations can also reveal explanations for poten-
tial associations which would otherwise be potential breeding
targets. For example, improving root architecture has been pro-
posed as a target for enhancing drought tolerance or nutrient up-
take (Paez-Garcia et al. 2015). A marker on chromosome 8 located
at 55.23 MB had large effects on multiple root traits including
greater root width, larger total root area, and a smaller root angle
(Figure 4E). In isolation, this might appear a promising target for
root-based breeding. However, multiple trait analysis also identi-
fied that this allele is associated with delays in flowering time
and increases in total node numbers. These results suggest that
the observed increases in root extent and root area may be an in-
direct result of delayed vegetative to reproductive transition.

Discussion
The SAP has been widely adopted and proven to be a long-lasting
resource for the sorghum genetics community. The syntenic con-
servation of GWAS hits between sorghum and maize means the
SAP also provides information on gene function in maize (Zheng
et al. 2020). In the interval between the start of the analyses in
this paper and submission for publication, at least five additional

studies employing this population have been posted online in-
cluding studies of provitamin A (Cruet-Burgos et al. 2020), geospa-
tial association with parasitic plants (Bellis et al. 2020), resistance
to different fungal sources of grain mold (Prom et al. 2020), ge-
netic determinants of the root-associated microbiome (Deng et al.
2021), and herbicide resistance (Pandian et al. 2020). Our results
suggest that simply increasing the marker density of the SAP—
and similar community association populations—may more than
double the number of true positive MTAs detection in future
studies with the same population. Care should be taken to record
and disseminate accession-specific trait measurements from
GWAS in ways that facilitate future reanalyses as additional ge-
netic marker datasets become available. In our study, we identi-
fied 40 papers which included the collection of one or more new
trait datasets from the SAP. Through data curation and annota-
tion, we have increased the proportion of papers from 50% to 64%
where traits have been publicly released with IDs which can be
associated back to genetic marker data, facilitating reuse and
reanalysis (Table 1). However, adopting both community norms
that emphasize the need to store and disseminate trait datasets,
as well as developing a central repository for sorghum pheno-
typic data would likely increase the proportion of trait datasets
generated by the sorghum genetics community, which will con-
tinue to contribute to new discoveries and understanding in years
to come. Similarly, it will be important to maintain and distribute
seed of the SAP to lower barriers to entry into sorghum quantita-
tive genetics for new research groups and to avoid the risk of
failed or misleading results due to lines that are swapped or du-
plicated. Seed is currently maintained and distributed by the
USDA NPGS; however, resource constraints at NPGS can limit
how often the lines of this panel can be increased. Informal lab to
lab distribution has acted as a fallback source of seed. However,
in the long term, this approach runs the risk of propagating
swaps, labeling errors, or pollen contamination, reducing the
comparability of data generated by different research groups
with different germplasm sources. An analysis of published RNA-
seq data labeled as coming from the maize reference inbred B73
found at least three distinct clades of genetically distinct B73
accessions and that relationships between these samples recapit-
ulated advisor–advisee relationships (Liang and Schnable 2016).
In Arabidopsis thaliana, a widely used commercial source for the
reference inbred Col-0 was found to contain substantial intro-
gressions of non Col-0 origin (Shao et al. 2016). Storage and dis-
semination of trait data and associated metadata for future
studies will aid both in detecting new associations as genetic
marker datasets increase in density, and in expanding our knowl-
edge of pleiotropy, as shown here. Additionally, this community-
based strategy will facilitate the development and validation of
predictions from empirical crop growth models, and the investi-
gation of the genetic basis of phenotypic plasticity and genotype
by environment interactions.

Strong selection will often act on rare, large effect, and pleio-
tropic loci (Orr 2000). Here, loci identified in a joint analysis of 176
trait datasets tended to fall into one of two categories, either
showing associations with large (>40) number of trait datasets or
small (<10) trait datasets, with these datasets often representing
measures of the same trait in multiple environments or multiple
distinct but highly correlated traits (Figure 4B). This pattern does
not appear to be an artifact introduced by variation in statistical
power as a result of either effect size or allele frequency as both
loci associated with many traits or associated with only several
traits include examples with both high and low Bayes factor val-
ues (Supplementary Figure S7). This stands in contrast to studies
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in the related species of maize where little evidence has been
found for pleiotropic quantitative genetic loci segregating in pop-

ulations (Tian et al. 2011; Wallace et al. 2014), but this difference

should be interpreted cautiously until and unless similar wide-
scale multivariate analyses are conducted in maize association

populations, given the differences in both methodological

approaches and patterns of LD. An analysis of historical yield
data in common bean employing MashR also identified two geno-

mic intervals associated with pleiotropic effects on different phe-

notypes (MacQueen et al. 2020). If the difference in the prevalence
of pleiotropy between maize and sorghum continues to be ob-

served in additional studies, it may reflect the distinct histories of

both maize and sorghum in temperate North America, and the

distinct histories of widely used association panels in each spe-
cies. The first reports of sorghum cultivation in the southeastern

United States date to either 1838 or 1855, likely as the result of in-

troduction from the Caribbean (Vinall et al. 1936). Two temperate
adapted strains of sorghum were introduced into the Great Plains

approximately 150 years ago followed by rapid selection by farm-

ers for earlier flowering and shorter stature (Quinby 1975).
Temperate maize in the United States is much older with adapta-

tion to temperate highlands occurring over an approximate

2000 years period starting 4000 years ago, allowing for more grad-
ual selection and therefore less likely to capture pleiotropic loci

(Swarts et al. 2017). Similarly, many of the lines in the SAP trace

their origin to a conversion process where genes needed for tem-
perate adaptation were introgressed through multiple genera-

tions of strong phenotypic selection (Stephens et al. 1967; Casa

et al. 2008), while both the most widely employed maize associa-
tion panel and the maize nested association panel were assem-

bled from lines already adapted to the temperate United States

(Flint-Garcia et al. 2005; Gage et al. 2020). However, a key limita-
tion of single marker level analyses, including both MashR and

conventional GWAS, is that the estimated effects of a given SNP

reflect not only the effect of that SNP itself but also all SNPs in LD
with the tested marker (Urbut et al. 2019). Given the high degree

of LD observed in the SAP Morris et al. (2013a) and the absence of

saturation level genetic marker data, it is not possible to rule out

that any given combination of variation in multiple traits associ-
ated with a single marker may result from multiple causal poly-

morphisms in the same or adjacent genes.
As high throughput phenotyping approaches become more

widely adopted, direct measurements of pleiotropy may become
more feasible. Once sensor datasets are collected (e.g. RGB

images, LIDAR point clouds, hyperspectral data cubes) and algo-

rithms for numerically quantifying specific traits are developed,
the additional cost extracting measurements of non-target traits

from the same sensor data is minimal. A better understanding of

pleiotropic relationships for specific loci and across groups of
plant traits may aid significantly in reducing inadvertent selec-

tion and prioritizing candidate loci for introgression into elite

germplasm for sorghum and related species. A greater under-
standing of potential pleiotropic effects may help to prioritize

which off target phenotypic effects should be tested for either

when evaluating natural variants or when generating gene edits.
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