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Cystic fibrosis is a genetic disease typically characterized by progressive lung damage
and premature mortality. Pulmonary exacerbations, or flare-ups of the lung disease,
often require hospitalization for intensive treatment. Approximately 25% of patients with
cystic fibrosis do not recover their baseline lung function after pulmonary exacerbations.
There is a relative paucity of evidence to inform treatment strategies for exacerbations.
Compounding this lack of evidence, there are a large number of treatment options
already as well as becoming available. This results in significant variability between
medication regimens prescribed by different physicians, treatment centers and regions
with potentially adverse impact to patients. The conventional strategy is to undertake
essential randomized clinical trials to inform treatment decisions and improve outcomes
for patients with exacerbations. However, over the past several decades, clinical
trials have generally failed to provide information critical to improved treatment and
management of exacerbations. Bayesian adaptive platform trials hold the promise of
addressing clinical uncertainties and informing treatment. Using modeling and response
adaptive randomization, they allow for the evaluation of multiple treatments across
different management domains, and progressive improvement in patient outcomes
throughout the course of the trial. Bayesian adaptive platform trials require substantial
amounts of preparation. Basic preparation includes extensive stakeholder involvement
including elicitation of consumer preferences and clinician understanding of the research
topic, defining the research questions, determining the best outcome measures,
delineating study sub-groups, in depth statistical modeling, designing end-to-end
digital solutions seamlessly supporting clinicians, researchers and patients, constructing
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randomisation algorithms and importantly, defining pre-determined intra-study end-
points. This review will discuss the motivation and necessary steps required to embark
on a Bayesian adaptive platform trial to optimize medication regimens for the treatment
of pulmonary exacerbations of cystic fibrosis.

Keywords: adaptive trial, platform trial, Bayesian, cystic fibrosis, exacerbations, master protocol, response
adaptive randomisation

BACKGROUND

Cystic fibrosis (CF) is a genetic disease typically characterized by
progressive lung damage and premature mortality. Pulmonary
exacerbations, or flare-ups of the lung disease, often require
hospitalization for intensive treatment. Pulmonary exacerbations
remain an important driver of progressive loss of lung function
and premature death in CF. Up to 25% of patients do not
recover their baseline lung function, typically measured as the
forced expiratory volume in 1 s (FEV1), after an exacerbation
(Sanders et al., 2010). Key to improving survival is the prevention
of loss of lung function with each exacerbation. Reflecting
this, when the James Lind Alliance recently canvassed research
priorities from over 1,000 CF consumers from 23 countries,
management of CF exacerbations, and specifically identification
of the most effective/least toxic antibiotics, figured among their
priorities (Rowbotham et al., 2018).

There are grounds for believing that better treatment of
exacerbations may reduce the loss of lung function and thus
improve survival. There is substantial variation in the rate of
decline between individuals, even among those with the same
primary genetic mutations. The demonstrated heterogeneity
in outcomes among those with access to the same range of
treatments (Stephenson et al., 2017), indicates that response may
depend on individual patient characteristics or factors present
during an exacerbation. Given these considerations, we identify
three general questions that need to be addressed in order to
improve the management of CF exacerbations: (a) What are the
optimal interventions where multiple options exist; (b) How does
optimal treatment vary by different patient characteristics; and
(c) Do treatments have cumulative or antagonistic effects when
used in combination.

Despite considerable research effort, answers to these
questions have remained elusive. Antibiotics are a mainstay of the
treatment of pulmonary exacerbations. A recent Cochrane review
identified 40 studies of antibiotic treatment of CF exacerbations
(Hurley et al., 2015). Most studies evaluated only two antibiotics
and were small, inconclusive, never replicated, and completed
a decade or more ago. The reviewers concluded that “No
specific antibiotic combination can be considered to be superior
to any other, and neither is there evidence showing that the
intravenous route is superior to the inhaled or oral routes”
(Hurley et al., 2015). The failure of this review of several decades
of research to reach any meaningful conclusion is symptomatic
of the challenges of conducting trials in CF. Continuing to
undertake conventional trials may never usefully address this
clinical uncertainty, and certainly not within a timeframe that will
benefit many of the current generation of people with CF.

Recent advances in clinical trial methods can help to
evaluate complex interventions for rare conditions like CF.
These innovations allow for improved trial efficiency and may
be more conducive to participation by patients and clinicians
alike. These methods have recognized validity, having been used
particularly in commercial cancer trials, accepted for regulatory
purposes by both the Food and Drug Administration (Woodcock
and LaVange, 2017) and the European Medicines Agency, and
published in high impact journals. These methods are being
applied in trials of the treatment of breast cancer (I-SPY2)
(Park et al., 2016), severe community-acquired pneumonia
(REMAP-CAP (NCT02735707)), and brain cancer (GBM-
AGILE) (Alexander et al., 2018). Here, we describe the planning
for BEAT CF, a Bayesian adaptive platform trial that aims to
optimize the management of CF exacerbations.

BEAT CF aims to be an exemplar of the REMAP (randomized,
embedded, multi-arm, adaptive, platform) trial approach (Angus,
2015). The key features of BEAT CF are the use of Bayesian
statistical inference, flexible sample size, the comparison
of several different treatment options simultaneously and
in combination, response adaptive randomization, and the
evaluation of treatment responses in different types of patient.
Key to the successful implementation of BEAT CF will be its
nesting within a treatment register, embedding of trial procedures
in routine clinical care and a digital health approach that
is dynamic to adapt to the informatics and data integration
challenges (Bellgard et al., 2017). A core (master) protocol
will allow the sequential introduction of new interventions
over time, as initial questions are answered. Each of these
features will be introduced below, contrasting REMAP trials with
more traditional trial approaches, and highlighting the benefits,
challenges and limitations inherent in establishing a REMAP trial
for a complex clinical domain.

CORE PROTOCOL

A limitation of undertaking sequential disconnected trials is
that the lack of standardized eligibility criteria, trial endpoints,
subgroup definitions, and comparator treatments makes the
aggregation of such data complex and uncertain. The core
protocol of a REMAP trial aims to standardize these design
elements so that treatment responses can be meaningfully
aggregated across trials, across settings and over time. For BEAT
CF, we propose to broadly involve clinicians and other domain
experts, consumers and other stakeholders in this decision-
making. Investment in the development of an overarching core
protocol is also intended to prevent reinventing the wheel for each
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trial, improving efficiency through the sharing of infrastructure,
and reducing the time to commencement and completion. In
addition to standardizing specific design elements, the core
protocol can also set out an overarching governance framework,
including how the safety of participants is monitored. A core
protocol implemented across multiple centers might institute a
platform for the ready identification of potentially eligible study
participants, facilitating enrolments.

BAYESIAN STATISTICAL INFERENCE

Up until now, most clinical trials, and all trials in managing CF
exacerbations, have been traditionally designed trials which have
employed frequentist statistical inference. Frequentist statistical
inference underlies the vast majority of clinical studies, although
thanks to increasing computer processing capacity, there has
been a steady resurgence in Bayesian statistical inference in
recent years (Green et al., 2015). In brief, frequentist inference
assesses the likelihood of an observation, such as the observed
difference in treatment effect between an investigational and a
control treatment if no true difference exists (Berry, 2006). If
an observation is very unlikely under this “null hypothesis” (i.e.,
it would rarely occur just by chance), this is taken as evidence
that, to the contrary, a true difference exists. Frequentist inference
flips the question of the probability that a difference exists, into a
question about the probability of a result if no difference exists.
To apply frequentist inference, one needs to be able to enumerate
all the possible ways that a trial could have unfolded (that is the
possible number of treatment successes and failures across both
arms), and this requires many aspects of the design to be fixed in
advance (e.g., randomization probabilities, sample sizes, number
of treatment arms). If these components are not fixed it may be
impossible to enumerate the number of possible ways that a trial
may have unfolded and therefore to calculate how “unlikely” an
observation is. Fixing the design so as to confine the number of
possible outcomes makes the frequentist analysis tractable, but
it comes at the cost of lost flexibility. New methods allow the
design to be adapted as data accrues according to established
rules (Saville et al., 2014), and these rules can be designed to
maximize efficiency (including the chance of a conclusive result),
or to maximize the chance that participants receive optimal
treatment, or both.

Whereas frequentist inference is based solely on the likelihood
of an outcome, Bayesian inference is directly concerned with the
actual question, i.e., the probability of a difference in treatment
effect, or the most probable values of the true difference in
treatment effects. Bayesian inference does this by combining the
likelihood of the observation for the range of possible treatment
differences with the baseline probability (or “prior”) of those
possible treatment differences (Dmitrienko and Wang, 2006).
Bayesian inference provides a straight-forward mechanism for
updating one’s estimate of the most probable range of treatment
differences as new observations are made, that is, as data accrues
(Connor et al., 2013). Trial designs that are adaptive can unfold
in any one of a nearly limitless number of ways, so estimating
how “unlikely” a particular result is (that is a particular instance

of treatment responses among those who receive an intervention
or control) is very hard to determine. The ability to update
the probabilities for a range of possible treatment differences as
new data accrues therefore makes Bayesian inference very useful
for adaptive studies, although it should be noted that adaptive
designs based on frequentist inference have also been advocated.

RESPONSE ADAPTIVE RANDOMISATION

When we have surveyed Australian CF clinicians, we have found
that, like colleagues in the United States (West et al., 2017), they
use a wide range of antibiotics to treat pulmonary exacerbations.
Sequentially comparing the relative efficacy of all currently
used antibiotics two-at-a-time would take an unfeasibly long
time, notwithstanding the complexity of antibiotic combinations.
Furthermore, assessing all antibiotics contemporaneously in a
multi-arm trial would require an unfeasibly large number of
participants. REMAP trials aim to greatly improve the efficiency
of multi-arm trials using response adaptive randomisation
(RAR). RAR is the progressive, rule-based assignment of an
increasing proportion of new participants to interventions which
appear most promising, and the potential elimination of those
which are demonstrated to be inferior to alternatives options
(Berry et al., 2015; Cellamare et al., 2017) (Box 1). Rather than
having a fixed ratio of treatment assignment across arms, the
ratio is updated (or adapted) at predefined intervals based on
evidence from accruing data (Connor et al., 2013). At each
analysis we will estimate the probability that each treatment, or
treatment combination, is superior to all other options for a
given patient type. Future treatment assignments will be based
on these probabilities such that probability of assignment to a
treatment is proportional to the probability that treatment is
better than all other options for a given patient type (Connor
et al., 2013). Randomization to ineffective treatments may
be suspended or entirely eliminated if pre-specified futility
boundaries are met (Berry et al., 2015). By assigning progressively
more randomized participants to the best strategies and dropping
ineffective therapies, it is expected that RAR will produce
better patient outcomes for patients who participate in the
trial (Connor et al., 2013).

SUBGROUP EFFECTS

One challenge for clinicians when trying to apply clinical trial
results to their clinical practice is in determining whether the
results are applicable to their own patient population, or indeed
to a specific patient at hand. In pulmonary exacerbations, for
example, it seems highly plausible that exacerbations represent

BOX 1 | Response adaptive randomisation.
• The progressive, rule-based assignment of an increasing proportion of new
participants to interventions which appear most promising.
• The potential elimination of interventions demonstrated to be inferior to
available alternatives when pre-specified futility boundaries are met.
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a range of pathophysiologic processes, with responses to certain
treatments influenced by the predominant process and, in the
case of exacerbations caused by infecting bacteria, the species,
and susceptibility profile of those bacteria (Doring et al., 2012).
However, most trials are only interested in measuring average
treatment effects of an intervention over a study population,
and implicitly assume individuals respond homogenously to
different interventions or treatment combinations. If a difference
in treatment effects between subgroups is expected, the trialist
will need to confine the trial to only the patient group which
is expected to respond, or will run parallel trials in each group.
If a difference in treatment response is hypothesized but not
expected, the trialist can choose to aggregate data across the
subgroups unless a statistical test for heterogeneity confirms a
difference in treatment effects across subgroups, in which case the
results for the two groups are reported separately. The problem
with the latter approach is that such tests are relatively insensitive
for true differences which can lead to inappropriate pooling of
results; the problem with splitting by patient subgroups is that
the precision is diluted by ever shrinking sample sizes. This
is a problem in CF where the range of potential subgroups
and plausible treatment effect modifiers is very large, based on
variation in sputum microbiology, disease stage, and prior and
concurrent treatment history.

REMAP trials aim to estimate specific treatment responses
across a range of predefined patient subgroups much more
efficiently than traditional trials. Such subgroups could be defined
by factors that plausibly impact on response to treatment,
or more specifically, influence the probability of a better
response to one treatment than another, for example baseline
lung function and airway microbiology status in the case
of pulmonary exacerbations. Bayesian modeling can be used
to allow the observed treatment response in one group to
inform the probable treatment effect in another. Bayesian prior
distributions are carefully calibrated to control the amount of
borrowing of information between respective sub groups, and
are verified in the design stage via simulation (Berry and Berry,
2004). This differs from the extreme approaches of complete
pooling (i.e., ignoring subgroups effects and estimating a single
common treatment effect) or no pooling (i.e., independent
estimation of treatment effects in each subgroup). The Bayesian
modeling approach can be described as being in between
these two extremes, with partial pooling of information from
patient subgroups. For subgroups with small sample sizes, the
estimated subgroup treatment effects tend to be closer to each
other. As sample sizes increase within subgroups, estimation of
treatment effects may grow apart depending on the observed data
within the subgroups.

COMPARISON OF MULTIPLE
DIFFERENT TREATMENT OPTIONS
SIMULTANEOUSLY

Like most chronic diseases, the management of CF pulmonary
exacerbations is complex and multimodal (Elborn, 2016; Waters
et al., 2016; West et al., 2017). Traditional trial designs typically

do not account for multimodality but instead focus on one or
more treatments within a single therapeutic “domain,” where
domain refers to a set of mutually exclusive treatment options.
In the management of pulmonary exacerbations for example,
therapeutic domains include the choice and route of antibiotic
(both primary/backbone and adjunctive) (West et al., 2017), the
use of mucoactive therapies (including dornase alpha, hypertonic
saline, and mannitol) (Bakker et al., 2014; Dentice et al., 2016),
the use of immune modulators (steroids, non-steroidal anti-
inflammatory drugs, and macrolides) (Ghdifan et al., 2010; Lands
and Stanojevic, 2016), and type and intensity of airway clearance
therapies. Trials that attempt to evaluate a complex multi-modal
intervention typically evaluate them as a fixed “bundle”; the
limitation of this approach is that it makes it impossible to know
which components of the bundle, if any, are effective, which
ineffective or deleterious, and whether any combinations are
synergistic or antagonistic.

In the REMAP design, participants can be randomly assigned
to one of two or more options across each of two or more
therapeutic domains. Participants are therefore assigned to
one of many possible treatment combinations. This gives rise
to a multi-dimensional estimation problem. For example, in
a REMAP with three therapeutic domains each with three
treatment options, there are 33 (twenty seven) combinations
and therefore 27 separate treatment effects to be estimated,
ignoring any subgroup-specific effects. As for subgroup effects,
this multi-dimensional estimation problem is made tractable
by the use of Bayesian modeling which allows, for example,
the observed treatment outcomes among patients receiving a
backbone antibiotic together with one adjunctive antibiotic, to
inform the estimated treatment effect of the same backbone
antibiotic when given in conjunction with a different adjunctive
antibiotic, and vice versa (Berry and Berry, 2004).

A PLATFORM TRIAL WITH A
DECISION-BASED MASTER PROTOCOL

Most clinical trials are stand-alone, time-limited, and designed
to answer a single efficacy or comparative efficacy question.
Regardless of whether the trial is conclusive or not, any follow-
up or completely new questions usually require the establishment
of a new trial. Typically there is little or no transfer of study
infrastructure between trials which is wasteful of resources.
Also, trials of interventions for CF exacerbations have variously
measured different but related outcome measures, such as the
absolute or relative improvements in the predicted FEV1, or
the proportion of patients returning to some fraction of their
“baseline” FEV1, or the reduction in some composite measure
of symptoms. Furthermore, trials have measured these endpoints
at variable lengths of time after initiation of CF exacerbation
therapy. Failure of concurrent and consecutive trials to adopt
the same endpoints has made it impossible to compare, let alone
aggregate, results across studies. More recently there have been
efforts to establish consistent endpoints, or core outcome sets,
for trials in cystic fibrosis and other trials (Stanojevic and Ratjen,
2016; West et al., 2017).
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A REMAP trial aims to achieve greater efficiency through
a core (or master) trial protocol. The core protocol sets out
exactly what data are to be collected including the primary
and any secondary endpoints, and the procedures around how
data is captured and managed, including the trial governance
arrangements. Any treatment options which are subject to
random assignment are dealt with in a series of appendices to
the master protocol, with a therapeutic domain and all treatment
options within that domain covered by its own appendix.

This use of a core protocol facilitates consistency in trial
endpoints and processes over time. The modular structure of
the protocol allows for the domain-specific trial appendices
to be modified over time without changing the core protocol;
treatment options within a domain can be added or removed
according to pre-specified rules and entire domains can be added
or removed over time. Once the superiority of a treatment has
been established over all other treatments within an existing
domain, a new domain with unanswered questions could replace
the existing domain (Berry et al., 2015). This circumvents the
need for setting up an entirely new clinical trial. For example if
the optimal combinations of backbone and adjuvant antibiotics
for CF exacerbation have been determined for individual patient
sub-groups, a new phase of the study might focus on optimization
of immune modifiers, mucoactive agents, airway clearance
strategies or other therapeutic domains.

Non-inferiority and equivalence findings can also be evaluated
in a REMAP trial. In particular, the study would still result in
improvement in care if it was able to eliminate one or more
inferior treatment arms, while showing the remaining treatment
arms are equivalent. In addition, some treatments may require
an efficacy superiority margin to be favored relative to other
treatments in the presence of differing toxicity/safety profiles.
We are currently investigating various options for incorporating
toxicity into the primary analysis and RAR algorithm.

EMBEDDING IN ROUTINE CLINICAL
CARE

Despite the potential efficiencies gained through the use of
adaptive processes, a REMAP trial must nonetheless enroll
a large number and broad range of participants if it is to
efficiently address the full range of management questions.
For this to occur, a REMAP trial needs to be successfully
embedded in routine clinical care. Embedding, in which
trial participation occurs seamlessly with delivery of care
and with minimal additional impost on either clinician or
participant, requires extensive stakeholder involvement in
the design and strong buy-in by clinicians and patients. To
secure this, REMAP investigators must spend considerable
effort eliciting clinician’s expert understanding of the subject
domain, as well as consumer input into identification of
patient-centered study outcomes. Clinicians and patients
may be more likely to engage with a trial for which there
is prospect of a personal benefit from participation. Unlike
traditional trials which are ethically predicated on no
expectation of a personal benefit, response adaptive processes

of REMAP trials are designed to improve the chances that a
participant receives optimal therapy, and minimize the chance of
inferior therapy.

Many traditional trials blind the participant, or the outcome
assessor, or both, to the treatment assignment, usually through
the use of matched placebos or sham treatments. Blinding
helps to safeguard against bias that might arise, especially if
the clinician, patient or assessor have preconceptions about the
relative effectiveness of the treatment options. Complete blinding
of participants is typically not feasible in a REMAP owing to
the large number and range of therapeutic options evaluated,
together with the desire to achieve successful embedding in
routine care. In any unblinded study (regardless of equal or
response adaptive randomization), there is the risk that patient’s
or physician’s knowledge can affect outcomes. This can be
minimized through the choice of objective outcomes such
as change in FEV1, especially if the person performing the
measurement is, herself, blinded to the treatment assignment.
For unblinded studies incorporating RAR, there is additional risk
of operational bias resulting from a site’s perceived impression
of adaptive randomization. Although it would be difficult to
measure any such bias that might exist in this setting, we
believe that knowledge of the best performing treatments at the
site level would only be obvious in settings where there is a
dominant treatment receiving greater randomizations across all
or most subgroups. In such a setting, the risk of bias may be
outweighed by the risk of continued randomization to under-
performing arms.

DIGITAL HEALTH SOLUTION
CONSIDERATIONS

The implementation of REMAP trials demands a rethink
on approaches to data management, flow, sharing and the
interfaces necessary to engage with participants, clinicians, and
study coordinators. Whereas in conventional trials, paper-based
records might be sufficient to manage the workflow and capture
trial data, in a REMAP the need for continuous and iterative
interaction between clinicians, patients, and statisticians demand
digital solutions.

Any solution needs to ensure that data are captured
electronically in order to support frequent pre-planned,
scheduled analyses. Logic checks need to be built-in and designed
to minimize data entry errors and the need for corrections which
would otherwise delay analyses. All data needs to be held securely
and privacy ensured – potentially identifiable information needs
to be held at the site and not accessible to those who are not
directly involved in patient care, including researchers. There
should be facility for patients (or their parents) to directly enter
symptom information, or patient reported outcomes (Napier
et al., 2017). It is necessary for the randomisation procedure
to accommodate the RAR process – that is, it is essential that
any embedded randomisation process must be capable of being
updated over time following each analysis. Static randomisation
processes, for example those employing fixed randomisation
lists, will not be fit-for-purpose.
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Lessons learnt from the successful deployment of clinical
registries offer insights into the types digital infrastructure
required to implement REMAP trials (Bellgard et al., 2013;
Lacaze et al., 2017). For instance, patient-centric registries
allow patients to securely register through online registration
with configurable online informed consent (Bellgard et al.,
2012; Napier et al., 2017). Others have demonstrated the
potential value of rich and well-collected patient registry
data for improving patient decision-making in CF beyond
simple rule-based algorithms (Alaa and van der Schaar,
2018). Online clinical reporting forms and participant
questionnaires that can be configured by coordinators
without software development skills enables the digital health
solution to dynamically adapt to requirements (Bellgard
et al., 2014). Longitudinal data capture and time-stamped
ongoing patient assessments can be captured either by the
patient themselves or by the clinician through automated
notifications (Bellgard et al., 2015). In addition, patient
registry platforms can have multi-lingual support and
data elements can be derived allowing logic steps to be
incorporated (Napier et al., 2017).

CONSENT

In traditional two-arm trials, once informed consent for
participation has been obtained, recording that consent is
relatively straight-forward. For a REMAP trial, where a
participant may be offered randomisation across a number
of therapeutic domains, capturing participant consent is more
complex. For example participants might happily accept random
assignment of treatment in one domain, but not in another.
In some situations, specific treatment options, and possibly
entire domains, may not be available in all centers. In the
case of a REMAP in managing CF exacerbations, a participant
might decline randomisation during one exacerbation, but accept
randomisation during a subsequent exacerbation. Furthermore, a
participant might never accept random assignment of treatment,
but might nonetheless agree to have their treatment and
outcome data collected in a treatment register. Consenting
to a REMAP is not simply a binary choice to participate
or not, and this complex and nuanced consent needs to be
captured and efficiently and faithfully reflected in subsequent
study processes.

Because of the complex nature of REMAP trial designs, it
may not be possible to achieve adequately informed consent
at the time of acute illness. It may be necessary to provide
detailed education to prospective participants in the non-
acute setting. In the case of a REMAP for managing CF
exacerbations, for example, an option would be to obtain
consent in a dynamic and stepwise fashion. In the first
step, prospective participants may be invited to consent to
enrolment in a prospective treatment register, in which patients
simply agree to allow their treatment and outcome data to be
captured to inform future best practice. This could occur in
the outpatient setting, and could be supported by extensive
education about the REMAP design and processes. Separately,

those who are enrolled in the treatment register can then be
invited to opt-in to randomized care at the time of pulmonary
exacerbations. Because participants will have already received
education in the outpatient setting, this additional consent to
randomisation can be expedited so as not to unnecessarily
disrupt the delivery of care. In this two-level consent process,
participants may agree to have their treatment and outcome
data captured in the treatment register, but not always (or
perhaps never) further consent to receive randomized care of
their exacerbations. Similarly, the treating clinician may decide
against random treatment assignment for a patient during a given
exacerbation. Having patients opting out of randomisation, or
their clinicians deciding against random treatment assignment,
is an issue found in nearly every randomized clinical trial.
Patients who opt out of randomization are not included in
the primary analysis. Hence, the generalizability of the primary
analysis results is limited to a population of patients who are
willing to be randomized. Whereas traditional clinical trials
disregard data arising from unrandomized patients as inherently
uninformative due to potential bias, it may be possible within
the context of a REMAP to utilize this data for hypothesis
generation, or possibly even for formal integration into treatment
effect estimates.

ETHICS STATEMENT

Similar to all clinical trials BEAT CF will require approval by
participating institutions’ ethics and governance committees.
Such committees will be confronted with a range of
innovative features including the novel study design, complex
Bayesian statistics, the absence of blinding to allocated
treatment, and dynamic consent. Involvement of ethics
and governance committees from the early planning stages
may help to avoid roadblocks in the approval process.
Evidence of extensive consumer involvement in study
design and planning may also be looked upon favorably by
these committees.

TRIAL EFFICIENCY AND COST

REMAP trials have the potential to be highly cost-efficient as
multiple research questions can be addressed simultaneously
in a single clinical trial (Berry et al., 2015). Thus, while there
are significant initial costs associated with establishing the
trial, these costs can be defrayed across many questions of
interest. Additionally, the trial platform allows for efficiency
with a single data capture and governance platform across
multiple centers. If REMAPs are effectively embedded in
clinical care the incremental costs of inclusion of additional
study sites may be relatively small, and offset by improved
effectiveness and cost-efficiency of care. The use of a core
protocol allows new domains to be studied without the
need to develop an entirely new protocol. While REMAP
designs are motivated by the desire to greatly improve
the efficiency of clinical comparative effectiveness research,
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to date these efficiencies remain largely unproven and may
only be achieved if a REMAP design aligns with the specific
objectives of the study.

LIMITATIONS AND CHALLENGES

Whilst a Bayesian adaptive platform trial many potentially
provide many benefits for the study of CF exacerbations, specific
challenges still remain. Some of these challenges transcend
statistical design. For example, the precise definition of an
exacerbation remains controversial (Goss and Burns, 2007;
Stenbit and Flume, 2011). The clinical decision to hospitalize
for treatment of an exacerbation may vary from one treatment
center to another (Johnson et al., 2003) but has been successfully
used as a pragmatic definition in clinical trials. Furthermore,
the decision to admit to hospital can potentially be standardized
between participating study sites (Ferkol et al., 2006). Secondly,
exacerbations may have multiple etiologies requiring different
optimal treatments (Stenbit and Flume, 2011). However, similar
to asthma, different etiologies that result in the same clinical
phenomenon (i.e., exacerbation) can usefully be studied as
a single entity. Thirdly, the optimal duration of treatment
for exacerbations remain contentious (Szentpetery and Flume,
2018) and there is uncertainty about best outcome measure,
and timing of the outcome measure, for studying treatment
effect. Such challenges face all clinical trials of exacerbations
but can be overcome in the CF community where collaborative
effort is the norm.

Another challenge for platform trial is population drift that
can influence results. This can be addressed with Bayesian
modeling that accounts for changes in population over time.
Logistical challenges include the need for rapid data accrual
to inform adaptations. Digital solutions, discussed above, can
be applied to facilitate timely data capture. Many of the
abovementioned limitations are discussed elsewhere (Saville
and Berry, 2016), alongside the statistical efficiencies obtained
through adaptive platform strategies.

IN SUMMARY

There is a need to optimize the management of pulmonary
exacerbations of CF, but the traditional clinical trial approach

may not be a feasible approach for addressing the multitude
of clinical questions. REMAP trial designs may offer a much
more effective and efficient approach to finding answers to the
many questions confronting CF patients and clinicians. Features
include response adaptive randomisation, and the ability to
compare multiple different treatment options simultaneously
over a range of patient sub-groups. Once the original research
questions have been answered, the platform design with a core
protocol would facilitate the seamless transition to follow-up
questions. For such a trial to be successful for the study of
exacerbations of CF the trial will need to be embedded in routine
clinical care and innovative digital solutions will be required for
implementation. Overall, the challenges are large but the gains for
CF could be considerable.
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