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ABSTRACT
Eosinophils have long been recognized as a central effector cell in the lungs of asthmatic 
patients. They contribute to airway inflammation and remodeling through releasing several 
molecules such as cytokines, granule proteins, lipid mediators and extracellular traps/
vesicles. Repeated evidence reveals that intense eosinophil infiltration in upper and lower 
airway mucosae contributes to the pathogenesis of aspirin-exacerbated respiratory disease 
(AERD). Persistent eosinophilia is found to be associated with type 2 immune responses, 
cysteinyl leukotriene overproduction and eosinophil-epithelium interactions. This review 
highlights recent findings about key mechanisms of eosinophil activation in the airway 
inflammation of AERD. In addition, current biologics (targeting type 2 immune responses) 
were suggested to control eosinophilic inflammation for AERD patients.
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INTRODUCTION

Aspirin-exacerbated respiratory disease (AERD) is characterized by hypersensitivity to 
nonsteroidal anti-inflammatory drugs (NSAIDs), asthma and chronic rhinosinusitis (CRS) 
with nasal polyps (NPs).1 Overproduction of cysteinyl leukotrienes (cysLTs) is a hallmark 
of AERD in the pathogenic mechanisms. CysLTs induce smooth muscle constriction 
and potentially enhance eosinophil accumulation in the bronchial mucosa.2 Therefore, 
eosinophilia is commonly found in peripheral blood and upper and lower airway mucosae of 
AERD patients.3 In addition, AERD is a type 2 immune-mediated airway disease associated 
with increased expression of Th2 cytokines such as interleukin (IL)-4, IL-5 and IL-13, 
resulting in persistent eosinophilic inflammation.4 Although many studies have shown 
evidence that activated effector cells such as eosinophils, neutrophils, mast cells and platelets 
are involved in the pathogenesis of AERD,5 this review emphasizes recent insights into how 
eosinophils work in airway mucosa of AERD patients.
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SECTION 1: EOSINOPHILS RELEASE MULTIPLE 
MEDIATORS
A novel molecule released from activated eosinophils may provide a new perspective, as 
AERD is not fully explained by type 2 cytokines (via Th2/ILC2 responses) or overproduced 
cysLTs. Extracellular traps from eosinophils composed of DNA and granule proteins are 
involved in innate immunity and associated with several allergic diseases.6 Moreover, recent 
studies have revealed that eosinophils from asthmatic patients secrete higher levels of 
extracellular vesicles, leading to the development and progression of asthma.7 These findings 
suggest that activated eosinophils contribute to the pathogenesis of AERD through producing 
several molecules (Table). However, further investigations are needed to understand the role 
of innate immune responses to activate eosinophils in AERD.

CysLTs
CysLTs, a class of inflammatory lipid mediators, contribute to several characteristic 
features of AERD. These molecules are derived from effector cells through arachidonic acid 
metabolism (upon ingesting COX-1 inhibitors such as aspirin and NSAIDs) that oxidizes 
arachidonic acid to form unstable intermediate leukotriene (LTA4).8 In eosinophils, LTA4 
is changed into LTC4 by the enzyme LTC4 synthase and sequentially converted into LTD4.9 
Urinary LTE4 (a stable end product) levels, a biomarker for systemic leukotriene production, 
are significantly higher in AERD patients compared to patients with aspirin-tolerant asthma 
(ATA) at baseline. Furthermore, these levels even increase 100-fold on aspirin challenge.10 
These mediators contribute to eosinophil activation, mucus production, vascular leakage, 
and edema, which enhance airway inflammation and remodeling in AERD patients.11

Eosinophil extracellular traps
Activated eosinophils release extracellular traps in an NADPH oxidase-dependent manner 
(associated with reactive oxygen species production), which is distinct from apoptosis and 
necrosis.12 Many reports have demonstrated that eosinophil extracellular traps are often 
associated with blood and tissue eosinophilia.13,14 Extracellular traps have a function in 
innate immunity to infectious disease; however, these molecules are cytotoxic enough to 
induce tissue damage in asthmatic airways.15,16 In addition, the percentage of eosinophils 
forming extracellular traps was significantly elevated under severe airway inflammation.17 
Although the pathophysiological function of extracellular traps has not been completely 
determined, our current study demonstrates that the percentage of eosinophils producing 
extracellular traps is negatively correlated with baseline forced expiratory volume in 1 second 
and positively correlated with the levels of eosinophil-derived neurotoxin in serum.18 These 
suggest that extracellular traps may play a crucial role in severe eosinophilic inflammation 
and airway obstruction.
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Table. Mechanisms of activated eosinophils in the pathogenesis of aspirin-exacerbated respiratory disease CysLT, 
cysteinyl leukotriene; IL, interleukin.
Key factors Main sources Function
Type 2 immunity

IL-5 Th2/ILC2 Increase eosinophil activation/survival
CysLT overproduction

LTE4 Eosinophils Elevate eosinophil accumulation
Induce smooth muscle constriction

Eosinophil-epithelium interaction
Extracellular traps/vesicles Eosinophils Enhance airway inflammation



Eosinophil extracellular vesicles
Extracellular vesicles are small molecules that contain multiple bioactive proteins, lipids, and 
nucleic acid, which are important for intercellular communication.19 These membrane-bound 
carriers are continuously released by several cells and contain different cellular components, 
depending on their origin.20 Extracellular vesicles have been implicated in the pathogenesis 
of multiple diseases such as cancer, metabolic disorders, and allergic diseases.21-24 
Because of their abundance and unique composition, these molecules have potential as a 
biomarker for the diagnosis and prognosis of a wide variety of diseases.25 Recently, it has 
been demonstrated that eosinophils from asthmatic patients secrete a greater quantity of 
extracellular vesicles than those from healthy control subjects.26 Moreover, production of 
extracellular vesicles from eosinophils was enhanced in response to inflammatory stimuli 
such as eotaxin-1 and tumor necrosis factor-α.27 These findings are important to understand 
the complicated secretory activities of eosinophils underlying immune responses. It is 
evident that extracellular vesicles participate in allergic diseases with a significant implication 
in asthma progression. However, further studies are still needed to clarify a specific role of 
extracellular vesicles in AERD patients.

SECTION 2: EOSINOPHILS INTERACT WITH AIRWAY 
EPITHELIAL CELLS
Airway epithelial cells represent the first line of the barrier which constantly maintains the 
mucosal interface epithelium. These cells are involved in innate immunity by expression 
of diverse pattern recognition receptors against viruses, microorganisms or environmental 
pollutants.28 Moreover, infiltration of immune cells into the proximity of epithelium results in 
the induction of adaptive immunity through interactions with epithelial cells.29 Epithelium-
derived cytokines such as IL-33, IL-25 and thymic stromal lymphopoietin (TSLP) are 
implicated in the pathophysiology of asthma.30 In addition to inflammatory features, airway 
remodeling (changes in the structure and function of epithelium) found in asthmatic patients 
results in increased resistance of airflow.31 AERD patients present a remodeling process 
that affects both the upper and lower airways.32 Several molecules released from airway 
epithelium have been reported to be associated with airway inflammation and remodeling.

Surfactant protein D (SPD)
SPD is a member of the collectin family of proteins mainly produced by airway epithelial 
cells.33 This molecule is a component of innate immunity within the airways binding to 
pathogens and inducing phagocytosis by interacting with phagocytic cells.34 In addition, SPD 
modulates allergic responses through the regulation of eosinophil activation.35 Emerging 
evidence has demonstrated that SPD is associated with several pulmonary diseases including 
asthma.36 The SPD level in BALF is significantly lower in patients with severe asthma than 
in those with mild asthma or healthy control subjects.37 Recently, our group has revealed 
that the serum SPD level was reduced in AERD patients compared to ATA patients. 
Moreover, the increased number of eosinophils (LTE4-mediated) in the lungs enhances 
airway inflammation and remodeling; however, SPD treatment attenuates the symptoms in 
mice,38 indicating that SPD may have a protective function against eosinophils in the airway 
inflammation of AERD.
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Folliculin (FLCN)
FLCN is an intracellular protein expressed in several inflammatory cells including airway 
epithelial cells.39,40 This molecule has been suggested to be associated with activation of 
epithelial cells and maintenance of the integrity of the epithelium barrier through regulation 
of cell-cell adhesion and expression of cell-cell junctions.41,42 Impairment of epithelial 
barrier function (change in junctional complexes) is important in allergic disease including 
occupational asthma.43,44 In AERD patients with NPs, airway epithelium is disrupted by 
detachment of epithelial cells and damage of intercellular junctions.45 In addition, our recent 
study demonstrated a significantly higher level of serum FCLN in the AERD group compared 
to the ATA group.46 Airway eosinophilia found in AERD could increase FLCN release from 
airway epithelial cells, which enhances epithelial activation and disruption, suggesting that 
modulation of FLCN may be a potential therapeutic target for AERD.

Periostin
Periostin (a secreted matricellular protein) is produced by airway epithelial cells, leading to 
eosinophilic inflammation in asthmatic patients.47 It has been demonstrated that periostin 
is a key player for inducing airway hyperresponsiveness in mice.48 In addition, expression of 
periostin in airway epithelial cells is up-regulated in the presence of IL-13 (a pleiotropic Th2-
cytokine) in vitro.49 IL-13 is released by several immune cells such as eosinophils, mast cells, 
basophils, and activated T cells.50 Previously, we have shown that the serum periostin level 
was significantly higher in patients with AERD (severe asthma/eosinophilic asthma) than 
in those with ATA. In addition, the serum periostin level is positively correlated with blood 
and sputum eosinophil counts.51 Furthermore, our recent evidence reveals that production 
of periostin is markedly elevated under the eosinophilic condition and positively associated 
with the transforming growth factor-β1 level.52 Therefore, periostin may play a crucial role in 
eosinophilic inflammation and remodeling in the airway of AERD patients.

SECTION 3: THERAPEUTIC APPROACH

For the management of AERD patients, anti-inflammatory medications including inhaled/
systemic corticosteroid with or without long-acting beta2-agonist have been prescribed 
to achieve symptom controls with absolute avoidance from aspirin/NSAIDs.53 Regarding 
aspects of cysLTs overproduction, several drugs such as leukotriene receptor antagonists 
and 5-lipooxygenase inhibitors have been applied to suppress the leukotriene production 
pathways. In addition, a monoclonal antibody targeting the high-affinity receptor binding 
site on human immunoglobulin E (IgE) was suggested for AERD treatment.54 Furthermore, 
some ongoing studies on several biologics (targeting type 2 immune responses) have been 
under clinical trials to control eosinophilic inflammation in AERD patients.

Anti-IL-5 antibody
Previous studies have shown an abundant cytokine and chemokine milieu consistent with 
type 2 immunity in AERD.4 Some investigations confirmed that there were significant 
correlations between levels of IL-5 and cysLTs/ECP in NPs and nasal lavage fluid in AERD 
patients. IL-5 is also elevated in CRS with NPs in AERD patients compared to healthy 
controls or those with sinusitis without polyps, suggesting that IL-5 plays an important 
role in eosinophilic inflammation in upper and lower airway mucosae of AERD.55 There are 
monoclonal anti-IL-5 or anti-IL-5 receptor antibodies such as mepolizumab, reslizumab, 
and benralizumab, which are suggested effective for severe eosinophilic asthma.56 In the 
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same context, they could also be applicable to control eosinophilic inflammation in upper 
and lower airway mucosae of AERD.57 Mepolizumab was evaluated in a small, randomized 
trial of patients with severe NPs, which proposed that it was beneficial for eosinophilic NPs, 
a key feature of AERD.58 Therefore, inhibition of type 2 response has a potential benefit in 
managing both conditions, CRS/NPs and AERD.

Antibodies to IL-33 and TSLP
Although eosinophilic inflammation reflects the effect of Th2 cells and allergen-specific 
IgE, there is a complementary pathway mediated by the innate immune system promoting 
the similar inflammatory process, especially as an amplifier of Th2 response. Eosinophilic 
inflammation is initiated by cytokines such as IL-33 and TSLP which are substantially 
derived from epithelial and other barrier cells damaged by microbes or toxins.59,60 IL-33 is an 
alarmin-like cytokine that activates both myeloid and lymphoid innate effector cells, thereby 
facilitating production of cytokines like IL-5, IL-13 and IL-9.61-63 A recent study demonstrated 
that IL-33 might be another cytokine playing an important role in the pathogenesis of AERD. 
The same study revealed that IL-33 was up-regulated in the airway epithelial layer and 
depended on cysLTs expression in mouse models, suggesting that IL-33 is a component of 
cysLT-driven innate immune response that promotes activation of mast cells and is attributed 
to AERD pathogenesis.64 Moreover, IL-33 is a potent stimulus for eosinophil activation that 
exacerbates airway inflammation.65 TSLP is an IL-7-like cytokine thought to be important 
in bronchial asthma, atopic dermatitis, and NPs, and induces type 2 cytokine production; 
therefore, it can activate eosinophils and basophils.66,67 A previous study investigated the 
effect of human monoclonal anti-TSLP IgG2λ in allergic asthmatic patients, suggesting a 
beneficial effect in reducing bronchoconstriction and airway inflammation against allergen 
challenge.59 Another report demonstrated that TSLP promoted mast cell-derived PGD2 
production and dysregulation of this kind of innate immune system substantially contributes 
to the pathogenesis of AERD.68 Although these antibodies against IL-33 and TSLP are under 
clinical trial, they will be future treatment targets for AERD.

CONCLUSION

The clinical feature of AERD is moderate to severe asthma comorbid with CRS and NPs, 
which is associated with eosinophilic inflammation and cysLT overproduction in upper 
and lower airways. The pathophysiology of AERD is complicated; however, activation of 
immune cells (especially eosinophils), dysregulation of the arachidonic acid metabolism 
and alteration of genetic/epigenetic factors are important mechanisms in AERD patients. 
In addition, a novel molecule released by eosinophils (extracellular traps and extracellular 
vesicles) may provide an explanation of more severe airway inflammation and remodeling 
in AERD. A lower level of SPD (protective function) with higher levels of FLCN and periostin 
(pathogenic functions) further suggest playing critical roles of eosinophils interacting with 
airway epithelium, contributing to the pathogenesis of AERD. Therefore, biologics targeting 
eosinophilic inflammation may have potential benefits to manage AERD patients (Figure).
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