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Fish larvae differ greatly from the adult form in their morphology and organ functionality. 
The functionality of the gastrointestinal tract depends on the expression of various pumps, 
transporters, and channels responsible for feed digestion and nutrients absorption. During 
the larval period, the gastrointestinal tract develops from a simple closed tube, into its 
complex form with differentiated segments, crypts and villi, as found in the adult. In this 
study, we characterized the expression of three peptide transporters (PepT1a, PepT1b, 
and PepT2) in the gastrointestinal tract of Mozambique tilapia (Oreochromis mossambicus) 
larvae along 12 days of development, from pre-hatching to the completion of yolk sac 
absorption. Gene expression analysis revealed differential and complimentary time-
dependent expression of the PepT1 variants and PepT2 along the larval development 
period. Immunofluorescence analysis showed differential protein localization of the three 
peptide transporters (PepTs) along the gastrointestinal tract, in a similar pattern to the 
adult. In addition, PepT1a was localized in mucosal cells in the larvae esophagus, in much 
higher abundance than in the adults. The results of this study demonstrate specialization 
of intestinal sections and absorbance potential of the enterocytes prior to the onset of 
active exogenous feeding, thus pointing to an uncharacterized function and role of the 
gastrointestinal tract and its transporters during the larval period.
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INTRODUCTION

The development of the gastrointestinal tract during larval stages has been studied in many 
fish species, such as European sea bass (Dicentrarchus labrax) (García Hernández et  al., 2001; 
Sucré et  al., 2009), Senegalese sole (Solea senegalensis) (Ribeiro et  al., 1999), Mozambique 
tilapia (Oreochromis mossambicus) (Lo and Weng, 2006), Nile tilapia (Oreochromis niloticus) 
(Tengjaroenkul et  al., 2000, 2002), gilthead seabream (Sparus aurata) (Sarasquete et  al., 1995; 
Elbal et  al., 2004; Mata-Sotres et  al., 2016), Atlantic cod (Gadus morhua) (Kjorsvik et  al., 
1991), California halibut (Paralichthys californicus) (Gisbert et  al., 2004), and Summer flounder 
(Paralichthys dentatus) (Bisbal and Bengtson, 1995). In the early years, studies focused mostly 
on morphological description, while in recent years, studies have explored gene expression 
and regulation. While many different species have been studied, there are great species-specific 
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differences in feeding and digestive ontogeny even within the 
same family (Rønnestad et  al., 2013). The zebrafish (Danio 
rerio) has been established as a model organism for various 
developmental studies. However, when addressing feeding and 
nutritional physiology, this species is not an ideal model (Ribas 
and Piferrer, 2014). Unlike most teleost species, the zebrafish 
lack a stomach, which changes the digestion and absorption 
processes that occur during feeding. Hence, there is a need 
to explore and advance our knowledge in other species.

Tilapia is an important group in the cichlid family with 
increasing research interest in its physiology, genetics, and 
regulatory processes (Kocher, 2004; Yan et  al., 2013; Sacchi 
et  al., 2014). Fujimura and Okada (2007) documented the 
developmental stages of the Nile tilapia and compared them 
to the zebrafish larvae development. Although they found some 
similarity along this period, there are great differences in the 
time frame of different physiological aspects. For example, 
while the differentiation of the unpaired fins and the pectoral 
fins occurs at 22–34  days post fertilization (dpf) in zebrafish, 
in the Nile tilapia, it was recorded before 10 dpf. By contrast, 
the yolk sac absorption period is twice as long in the Nile 
tilapia than in the zebrafish (Fujimura and Okada, 2007). The 
yolk sac is the main nutrient and energy source for the 
developing larva before the onset of exogenous feeding. Therefore, 
this disproportion between growth and yolk utilization raises 
the need to characterize the development of the tilapia 
gastrointestinal tract. Moreover, the slow rate of yolk absorption 
may correspond to slower gastrointestinal development and 
thus delay digestion and absorption of exogenous feed.

Protein is an important nutrient in fish diets, as it supports 
energetic supply for physiological processes and growth, in 
addition to tissue and protein construction (Sire and Vernier, 
1992; Dolomatov et al., 2011). In addition to being an energetic 
source and building blocks for proteins, amino acids also 
play an important role in many physiological processes such 
as signaling and gene expression (Wu, 2010). During ontogeny, 
the yolk is the larvae source for protein (Kamler, 2008). 
Exogenous feeding is considered a cue for the gastrointestinal 
development. In the Nile tilapia, exogenous feeding was 
reported to begin around 12–13  days post fertilization and 
was coined as “Early Juvenile” period (Fujimura and Okada, 
2007). Starved Nile tilapia larvae showed delayed development 
of the digestive system (Fabillo et al., 2006). However, several 
studies on Nile and Mozambique tilapia examined the 
expression and activity of gastrointestinal enzymes, and 
detected the presence and activity of these enzymes prior 
to exogenous feeding (Tengjaroenkul et  al., 2002; Lo and 
Weng, 2006). These phenomena of digestion and absorption-
related genes expressed prior to exogenous feeding were also 
recorded for the peptide transporter 1 (PepT1) in zebrafish 
(Verri et  al., 2003). These findings raise questions as to the 
specific expression period of the peptide transporters (PepTs) 
in tilapia larval stages.

PepTs are the only known absorption system for small 
peptides in the intestine, which result from protein digestion 
and break down, along with free amino acids (FAA).  
PepTs are solute carriers-proton-dependent transporters, 

members of the POT family and coded by the slc15a genes. 
These transporters are mainly known for their important 
role in di- and tri-peptides absorption into the enterocytes – 
the epithelial cells of the intestine. In mammalians, two 
peptide transporters have been found, PepT1 and PepT2, 
but in fish, there are three transporters, with two PepT1 
paralogs (Gonçalves et  al., 2007; Romano et  al., 2014; Con 
et  al., 2017). All three transporters have been found to 
be expressed in the tilapia intestine, with differential expression 
along the intestine, depending on the intestinal segments, 
environmental factors, and nutrient availability in the intestinal 
lumen (Huang et  al., 2015; Con et  al., 2017).

In recent years, there has been increased interest and 
research on PepTs’ participation in protein absorption in 
fish under different environmental and dietary conditions 
(Hakim et al., 2009; Bakke et al., 2010b; Bucking and Schulte, 
2012; Koven and Schulte, 2012; Verri et  al., 2016; Con et  al., 
2017; Orozco et  al., 2017; Chourasia et  al., 2018; Hallali 
et  al., 2018; Kokou et  al., 2019). However, there are few 
studies addressing these transporters at the larval and juvenile 
stages. As these transporters were shown to have an important 
role in protein absorption, the aim of this study was to 
characterize them in the early stages of the Mozambique 
tilapia gastrointestinal development.

MATERIALS AND METHODS

Animals
Mozambique tilapia fish used in this study were derived from 
a stock maintained at the aquaculture facility of the Agricultural 
Research Organization (ARO). This stock originated from Natal, 
South Africa, and was brought to Israel in the 1970s.

Ethics
This study was approved by the Agricultural Research 
Organization Committee for Ethics in Experimental Animal 
Use, and was carried out in compliance with the current laws 
governing biological research in Israel (Approval number: 
IL-650/15).

Tissue Distribution
Tissue samples of gills, esophagus, stomach, liver, spleen, muscle, 
heart, intestine, kidney, skin, brain, pituitary, and fat were 
taken from four males Mozambique tilapia (54  ±  3  g). The 
intestine from each fish was divided into three segments; 
anterior intestine (AI), middle intestine (MI), and posterior 
intestine (PI). The tissues were kept in 1  ml of RNA-save 
buffer (Biological Industries, Mishmar Haemek) at −20°C until 
RNA extraction procedure.

Larvae Sampling
Breeding families consisting of one male and 4–6 females, in 
200 L aquaria, were constantly monitored to observe spawning. 
Two days after spawning and fertilization (2 dpf), eggs were 
removed from the females’ buccal cavities and transferred to 
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hatching jars. Each experiment was conducted on full-sibs from 
a single spawn.

In order to determine the main tissues expressing the peptide 
transporters in the larvae, 60 larvae (full sibs from a single 
spawn) were sampled at 9 dpf and dissected using microsurgery 
under binocular. The yolk sac was removed and the 
gastrointestinal tract was separated from the larvae body. Tissue 
samples (GI tract and Larvae body) from 10 larvae were pooled 
(six replicas per tissue), and stored in 1 ml of RNA-save buffer 
at −20°C until RNA extraction procedure.

In order to track the expression of the PepT transcripts 
along the embryonic period, six embryos from an additional 
spawn were sampled daily, commencing from 3 dpf to 14 dpf. 
Each larva served as an individual biological replica. The larvae 
were kept in 1  ml of RNA-save buffer at −20°C until RNA 
extraction procedure.

For immunofluorescence staining, a second time-course 
experiment was conducted. Larvae from a single spawn were 
sampled each day, between 6 to14 dpf. The larvae were fixed 
in 4% PFA for 10  min and then dried on paper. The yolk sac 
was removed using microsurgery under binocular while making 
sure that the gastrointestinal tract remained untouched. Following 
the yolk sac removal, the larvae were incubated in 4% PFA 
for 24  h at 4°C, followed by two washes in PBS, 50% ethanol, 
and stored in 70% ethanol at 4°C. The larvae were then 
dehydrated through a series of graded ethanol baths to displace 
water (1  h in 70, 96, and 100% of ethanol, followed by two 
Xylen baths for 1  h). Samples were then embedded in paraffin 
and 5-μm sections were cut using a microtome and placed on 
microscope slides. The slides were incubated overnight on a 
39°C heated plate and were stored at 4°C until staining.

RNA Extraction and cDNA Synthesis
Total RNA was extracted using Trizol reagent, purified from 
DNA contamination using TURBO DNA-free Kit (Ambion), 
quantified with Nano-Drop spectrophotometer (Thermo 
Scientific), and then reversed transcribed into cDNA using 
Verso cDNA Synthesis Kit (Thermo Scientific).

Quantitative Real-Time PCR  
Analysis (qPCR)
For each gene, forward and reverse primers for qPCR analysis 
(Table 1) were tested in all samples using a PCR reaction. 
elongation factor 1 (EF-1), GAPDH, and β-actin genes were used 
as reference genes. Geometric average was calculated for all 
reference genes, and this value was used for the relative 

expression calculation. qPCR reactions were conducted using 
Fast SYBR™ Green Master Mix on StepOnePlus Real time 
PCR system (Applied Biosystems). For each set of primers, 
sequential 1:4 dilutions of cDNA mix were used to create 
standard curves to determine reaction efficiency, slopes and 
template dilution. The reaction’s efficiency was confirmed to 
be  in the range of 92.4–105%. The data obtained from the 
real time PCR were analyzed using the ∆∆Ct method.

Immunofluorescence Staining
Tissues sections slides from larvae and adults were stained 
according to the protocol described by Con et  al. (2017). 
Briefly, slides were prepared for immunostaining using a 
series of washes with Xylen, decreasing ethanol concentration 
and PBS-T 0.05% buffer. Antigen retrieval was performed 
using citrate buffer (1.8  mM citric acid and 8.2  mM sodium 
citrate) heated to 100°C for 10 min followed by three washes 
with PBS buffer. Slides were blocked for 1  h at room 
temperature with blocking solution (1% NGS, 1% BSA in 
PBS-T 0.05%), followed by 1-h incubation at room  
temperature with primary antibody solution (1:200 dilution 
in blocking solution). The slides were washed three times 
in PBS-T 0.05% and incubated with the secondary antibody 
solution (goat α rabbit- Cy3 diluted 1:200 in blocking solution) 
for 1 h at room temperature in the dark. Following incubation, 
the slides were washed again with PBS-T 0.05% in the  
dark and stained with 2.85  μM DAPI solution. Following a 
short rinse in PBS, the slides were covered with a cover 
glass and the stained sections were examined using a 
confocal microscope.

Statistical Analysis
Statistical analyses were conducted separately, for each experiment 
and each expressed gene, using one-way analysis of variance 
(ANOVA). Post hoc comparisons among groups were performed 
using the Tukey-Kramer HSD for tissue distribution and larvae 
time-course real time results, and Student’s t-test for the ratio 
between the GI tract and the larvae body (α  =  0.05). Data 
are presented as means ± SEM.

RESULTS

Tissue distribution of the PepT transcripts presented high 
abundance of the PepT transcripts in the intestinal segments 
(Figure 1). PepT1 variants were the highest in the AI segment 

TABLE 1 | Primers for quantitative real-time PCR.

Gene GeneBank Forward Reverse

slc15a1a KX034112.1 CCAAGCCAGAACAAGGTAACA GGCTCAATTAGTCCCAAGTCC
slc15a2 KX034111.1 CTGCGAACGCTTCTCCTACT CGCTGAAAGCATGGTAGACA
slc15a1b KX034110.1 TAAAACCCTGCCTGACTTCC AATCCTCATTAGCCCCAAAA
gapdh XM_003452690 GGCATCGTGGAAGGTCTCAT CATTTTACCAGAGGGCCCGT
Beta actin XM_003443127 CCACCCAAAGTTCAGCCATG ACGATGGAGGGGAAGACAG
ef1 XM_003458541 TCAACGCTCAGGTCATCATC ACGGTCGATCTTCTCAACCA
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(p  <  0.0001), while PepT2 expression was detected in the MI 
and PI segments. PepT2 was also found to express in the kidney 
but in lower level compare to the MI segment (p  <  0.0001). 
The expression level in the rest of the tissues was significantly 
lower (p  <  0.0001) than in the intestine (Figure 1). Overall, 
the intestine and kidney were found to be  the main tissues 
expressing the PepT variants. The qPCR analysis of dissected 
larvae revealed that the GI tract had significantly higher expression 
(p  <  0.0001) of the PepT variants in comparison to the larvae 
body. The ratio between expression levels in the GI tract and 
the larvae body was approximately 565 for PepT2, 46,000 for 
PepT1a, and 140,000 for PepT1b transcripts (Figure 2).

The qPCR analysis of all three PepT variants revealed major 
differences between the expression patterns of the PepT isoforms 
(Figure 3). Both PepT1a and PepT1b relative expression showed 
significantly elevated expression at 7 dpf, followed by a decrease 
until 11 dpf. PepT2 transcript expression showed a different 
pattern from the other two, with a complementary trend. PepT2 
expression did not change significantly between 3 and 10 dpf, 
followed by an elevation of expression at 11 dpf that was 
sustained until the end of sampling, at 14 dpf.

The staining of the cross sections revealed a section specific 
protein expression. PepT1a and PepT1b differed in their 
expression along the intestinal segments, with PepT1a staining 
in the esophagus and anterior to middle intestine and PepT1b 
expression starting only around the middle intestine. On the 
other hand, PepT2 staining was detectible only at the distal 
sections of the intestine (Figures 4, 5). There was no staining 
in the stomach of the larvae (data not shown). The esophagus 
staining was specific to the basolateral membrane of the mucosal 
cells, and only with PepT1a (Figures 6A,B), while at the 
different intestinal sections, all three antibodies stained the 
apical membrane of the enterocytes.

When comparing day 7 and 14 dpf, there was no significant 
difference in the staining of each variant (Figures 4, 5). However, 
at day 6 post fertilization, the only detection of PepT1a was 
in the esophagus and the anterior segment of the intestine 
(data not shown).

Staining of esophageal sections from an adult Mozambique 
tilapia exhibited more complex crypts and villi, with high 
number of goblet cells; however, only a few cells were stained 
with the PepT1a antibody. Although seen in a much lower 

FIGURE 1 | Relative expression of slc15a1a, slc15a1b, and slc15a2 in different tissue of the adult Mozambique tilapia. The bars represent the average fold change 
of the tissue compare to the gills.

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Con et al. Peptide Transporters in the Pre-Feeding Tilapia Larva

Frontiers in Physiology | www.frontiersin.org 5 July 2019 | Volume 10 | Article 808

number of esophageal goblet cells, the staining in the adult 
resemble to the one found in the larvae, with the entire cell 
stained (Figure 6).

DISCUSSION

Larvae differ greatly from the adults in various aspects (Dabrowski, 
1984). Compared to the fully developed intestine of the adult 
fish, the larvae intestine is much less complexed (Govoni et al., 
1986; Kolkovski, 2001). Along the intestine of adult fish, there 
are changes in various parameters of the lumen content, such 
as pH levels (Nikolopoulou et  al., 2011), ion concentrations 
[reviewed by Marshall and Grosell (2006)], nutrients content 
(Orozco et  al., 2018), and microbiome composition (Hallali 
et  al., 2018). In line with these changes, differences between 
the intestinal sections have been shown in their morphology 
[reviewed by Wilson and Castro (2010)] and genes expression 
levels (Rimoldi et  al., 2015; Ronkin et  al., 2015; Nitzan et  al., 
2016; Con et  al., 2017; Orozco et  al., 2018). PepTs early 
expression in the Mozambique tilapia larvae is compatible with 
previous reports on early expression of protein digestion and 
absorption molecular systems. With the much higher PepTs 
expression in the larvae GI tract compared to the rest of the 
body (several orders of magnitude), we  can safely consider 
the qPCR analysis of the whole larva as representative of the 
GI tract. In this study, PepT1 variants were detectable already 
from 3 dpf, with a significant increase at 6–7 dpf. This corresponds 
to the findings reported by Verri et  al. (2003) for zebrafish 
embryos, showing detectable and increasing expression from 

3 dpf. Our findings show a trend of steady increase of PepT2 
expression from 11 dpf. In zebrafish, Romano et  al. (2006) 
showed a steady expression for PepT2 from 3 dpf. In addition 
to these correlations, in Mozambique tilapia larvae, expression 

FIGURE 2 | Expression of slc15a1a, slc15a1b, and slc15a2 in the 
gastrointestinal tract in comparison to the body, in Mozambique  
tilapia larvae (9 dpf).

A

B

C

FIGURE 3 | Relative expression of slc15a1a (A), slc15a1b (B),  
and slc15a2 (C), along 12 days post fertilization (3–14 dpf). Expression 
presented as fold change relative to the 3 dpf time point. Different letters 
indicate significant difference between days post fertilization.
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of trypsinogen and chymotrypsinogen was detectable from 
1  day post hatching (Lo and Weng, 2006), which correspond 
to 6 dpf in our study. Trypsin was found to interact with the 
PepTs extracellular domain (Beale et  al., 2015); thus, there is 
further support for the functionality of these small peptide 
absorption systems in early developmental stages.

PepT1 is a high capacity/low affinity transporter, fit to 
efficiently absorb at high substrate concentrations, while PepT2 
is a low capacity/high affinity transporter, fit to efficiently absorb 
at low substrate concentrations. Indeed, Orozco et  al. (2018) 
showed that protein contents decrease along the intestine during 
feed digestion and absorption. Corresponding to their kinetics 
differences, in the adult fish, PepT1 variants are highly expressed 
in proximal intestinal sections and PepT2 expressed in distal 
intestinal sections (Con et al., 2017). In addition, PepTs expression 
was shown to be affected by feed availability (Terova et al., 2009; 
Koven and Schulte, 2012; Tian et  al., 2015). In line with the 
pattern observed in the adult fish, the immunofluorescence 
analysis demonstrated differential localization of the three PepT 
isoforms in the Mozambique tilapia pre-feeding larva. These 
findings indicate specialization of intestinal sections in the 
primary intestine, prior to exogenous feeding, and may suggest 

that these transporters are regulated by an additional mechanism, 
separate from exogenous feed availability.

The real-time analysis revealed that in parallel to the segments 
effect on the expression of these three variants, the expression 
was also affected by time points during this developmental 
period. The two PepT1 variants showed a similar expression 
pattern along the time course of the larval development, with 
a significant increase in expression levels at 6–7 dpf, while PepT2 
showed an increase in expression levels only at 11 dpf, the 
same time point when there was a decrease in PepT1s expression. 
Such a complementary pattern, maintaining high expression of 
peptide transporters along larval development, implies on either 
a change in nutrients availability, or that these transporters have 
some different, unknown, roles during larval development. 
Nonetheless, the nutritional and developmental significance of 
intestinal nutrient absorbance for the larva, need further study.

A new observation was detected in the current research when 
examining the PepT1 variants. While in the adult Mozambique 
tilapia, PepT1a and Pept1b are expressed and localized together 
in the anterior and middle intestine, as shown in the tissue 
distribution analysis and in our previous work (Con et al., 2017), 
in the larvae these two variants are separated in the anterior 

FIGURE 4 | Immunofluorescence staining of cross sections of 7 dpf larvae with rabbit anti PepT (different variants) (red) and with Dapi for nuclei staining (blue). 
Scale bar 50 μm.
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intestine. PepT1a was found to express at the beginning of the 
GI tract, with strong expression in esophageal goblet cells and 
in the apical membrane of the enterocytes in the anterior and 
middle intestine. PepT1b protein expression on the other hand, 
started only in the middle intestine. Until now, intestinal 
co-expression of these two variants were only reported in adult 
tilapia (Huang et al., 2015; Con et al., 2017; Chourasia et al., 2018), 
Asian weather loach (Misgurnus anguillicaudatus) (Gonçalves 
et al., 2007), killifish (Fundulus heteroclitus) (Bucking and Schulte, 
2012), and European sea bass (Kokou et  al., 2019). These two 
variants, found in numerous fish species, resulted from the 
teleost-specific whole-genome duplication (Gonçalves et al., 2007; 
Con et  al., 2017). The conservation of two paralogous genes 
through evolution indicates on functional difference between 
them. To our knowledge, this is the first time that a clear 
localization difference was found between PepT1a and PepT1b.

Immunofluorescence localization of the PepT1a in the esophagus 
was unexpected, as PepT1 expression was reported mainly in 
the intestine (Verri et  al., 2003; Rønnestad et  al., 2007; Terova 
et  al., 2013), while the few studies that examined the esophagus 
did not detect PepT expression (Amberg et  al., 2008; Ahn et  al., 
2013; Orozco et  al., 2017). Two of these studies analyzed the 

PepT1b variant (Amberg et  al., 2008; Ahn et  al., 2013), which 
did not express in the esophagus also in our study. The tissue 
distribution analysis in the adult fish showed similar results to 
Orozco et  al. (2017). However, immunofluorescence staining of 
adult and larvae esophagus showed a great difference in the 
stained goblet cells. The low abundance of stained cells in the 
adult tissue correlates with the low transcripts expression. Thus, 
this localization of PepT1a is a novel finding regarding differences 
between the larval and adult phenotypes.

In fish, the esophagus has an important role in maintaining 
salt and water balance. It has been shown that the desalination 
of seawater starts at the esophagus, which exhibit a low membrane 
permeability to water together with active and passive absorption 
of ions [reviewed by Grosell (2006)]. There are numerous goblet 
cells scattered throughout the esophagus epithelial, and it has 
been suggested that there are two goblet cells population 
differing by their maturation stage (Abaurrea-Equisoain and 
Ostos-Garrido, 1996). These cells participate in mucosa secretion 
in the GI tract. The mucosa plays a role in nutrients absorption 
and protection against pathogens (Bakke et  al., 2010a). The 
expression of PepT1a in the goblet cells was unexpected and 
to the best of our knowledge, was never reported in any 

FIGURE 5 | Immunofluorescence staining of cross sections of 14 dpf larvae with rabbit anti PepT (different variants) (red) and with Dapi for nuclei staining (blue). 
Scale bar 50 μm.
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organism. Further investigation is needed in order to understand 
if this transporter participates in the mucosa production and/or 
secretion in the Mozambique tilapia larvae.

The localization of PepTs on the apical membrane of the 
enterocytes, as seen in the immunofluorescence staining, 
demonstrates that the intestine can uptake peptides even in the 
pre-feeding larvae. Our results indicate that in addition to the 
yolk sac absorption there might be  another source of nutrients 
supplementation, even at early developmental stages. These 
nutrients might be of exogenous (passively driven into the larva 
gastrointestinal tract), endogenous, or of microbial source. This 
hypothesis, as well as the nutritional and developmental significance 
of intestinal nutrient absorbance for the larva, needs further study.

Many studies have shown the importance and effects of 
levels, and source and forms of protein in the feed on adult 
fish growth and physiology (Abdelghany, 2003; Failla et  al., 
2006; Ostaszewska et  al., 2010; Kumar et  al., 2012; Goosen 
et  al., 2014). Zambonino Infante et  al. (1997) showed that 
replacement of 20% of the fish meal in the fish diet with fish 

meal hydrolysate (75% di-tri peptide) significantly improved 
growth performance, increased proteolytic capacity of the 
pancreas, and affected intestinal enzymes activity in European 
sea bass larvae. In common carp (Cyprinus carpio), the addition 
of small peptides to the feed, increased the expression of PepT 
transcript and the abundance of cholecystokinin (CCK) secreting 
cells in the intestine (Ostaszewska et al., 2010). In mammalians 
primary tissue culture, it has been shown that the activity of 
PepT1 evoked the glucagon-like peptide-1 (GLP-1) secretion, 
depending on the activity of L-type Ca2+ channels 
(Diakogiannaki et al., 2013). These evidences for the participation 
of PepT activity in regulatory processes, together with the 
reports of the early expression in fish larvae, before full yolk 
absorption, raise the possibility that small peptides and PepT 
activity have some regulatory role in larval development and 
that the effects of small peptides on larvae development are 
mediated by PepTs activity in the enterocytes.

In summary, our results show that all three PepT variants 
are expressed in the intestine of the Mozambique tilapia during 

A B

C D

FIGURE 6 | Immunofluorescence staining of cross sections of 7 dpf (A), 14 dpf (B) larvae, and adult esophagus (C,D) with rabbit anti PepT (different variants) (red) 
and with Dapi for nuclei staining (blue). Scale bar 200 μm (A) and 50 μm (B–D).
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the larval development period, long before the onset of 
independent-active eating. The results also exhibit a difference 
between PepT1a and PepT1b protein expression. To our 
knowledge, this is the first evidence of the expression of all 
three PepTs in the intestine of fish larva. The early and section 
specific expression of these important nutrient transporters 
opens further questions regarding their role in the early 
larval stages.
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