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We conceptualize protein folding as motion in a large dimensional dihedral angle space. We use Lagrangian mechanics and
introduce an unspecified Lagrangian to study the motion. The fact that we have reliable folding leads us to conjecture the totality
of paths forms caustics that can be recognized by the vanishing of the second variation of the action.There are two types of folding
processes: stable against modest perturbations and unstable. We also conjecture that natural selection has picked out stable folds.
More importantly, the presence of caustics leads naturally to the application of ideas from catastrophe theory and allows us to
consider the question of stability for the folding process from that perspective. Powerful stability theorems from mathematics are
then applicable to impose more order on the totality of motions. This leads to an immediate explanation for both the insensitivity
of folding to solution perturbations and the fact that folding occurs using very little free energy. The theory of folding, based on
the above conjectures, can also be used to explain the behavior of energy landscapes, the speed of folding similar to transition state
theory, and the fact that random proteins do not fold.

1. Descriptive Introduction

Processes that proceed reliably from a variety of initial con-
ditions to a unique final state, regardless of changing condi-
tions, are of obvious importance in biophysics. Proteins in an
appropriate solution fold to unique forms and serve as a flag-
ship example of stable processes in biology.

In this paper, we suggest how the action principle in clas-
sical mechanics could be used to analyze the stability of the
protein folding process, which is of obvious importance per
se, but because the techniques described here follow from
fundamental physics, this approach will also be useful in the
study of the stability of other biophysical processes.

In this introduction, we present a number of technical
issues in a descriptive style. Technical details are discussed
in a later section.

The action principle is a traditional starting point for
classical mechanics.The action is a path integral of the differ-
ence between kinetic and potential energy (the Lagrangian),
between an initial and final time over a trajectory 𝑆(𝑡) =

∫
𝑡

𝑡0

(𝑇 − 𝑉)𝑑𝑡. (The trajectory is implicit here.) The action is

a scalar. The energy terms are written in generalized coordi-
nates which take into account some or all constraints on the
motion. The use of generalized coordinates makes this for-
malism particularly suited to moving parts of a complicated
mechanical system. Standard treatments of the action prin-
ciple allow for time-dependent potentials, which is also con-
venient for complicated processes. Direct applications of the
action principle (i.e., without necessarily using the equations
ofmotion that arise when the first variation of the action is set
equal to zero) usually entail successive approximations [1].

When applied tomechanics the vanishing of the first vari-
ation of the action immediately yields the (Newtonian) equa-
tions of motion.Thus the physical picture described is that of
particlesmoving along trajectories according to the equations
of motion.

The most important degrees of freedom in protein mole-
cules are dihedral angles associated in pairs with amino acid
residues. In a common protein there might be 500 or more
such angles. In folding, the molecule starts in some random
assortment of these angles andmoves toward a specific native
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set of angles. We speak of this motion as taking place in the
space of dihedral angles.

If one considers protein molecules moving along trajec-
tories in dihedral angle space, then several things are clearly
missing from the trajectory picture.

First, the trajectories evidently move toward the common
end point or points along the way to the native state but there
is nothing explicit in the trajectory itself to define such a
convergence; an energy landscape [2–5] is usually invoked to
funnel the trajectories toward the end state.

Second, trajectories coursing through a rough energy
landscape would arrive at the end point over a range of times,
that is, diffusion. In contrast, many molecules have nar-
row melting curves and fast folding times that seem more
appropriate to gas phase chemistry (TST). This is currently
approached by postulating that the energy landscape [3, 6] is
sufficiently smooth.

Third, there is the stability of the folding process. Con-
sider an unfolded molecule in a dilute solution of a suitable
denaturing agent. Such an agent interferes with the stability of
the native state of themolecule but, curiously, does not deflect
the process into alternative folded forms. Similarly, many
other perturbations have little or no impact upon the final
folded form.

Fourth, there is the problem of initial conditions. In the
current view, a folding-ensemble of denatured protein mole-
cules begins at the top of a funnel shaped energy landscape
and proceeds down the funnel to the unique native state.
The various conformations at the top of the funnel are
equivalent in the sense that setting various initial conditions
or subjecting themolecules to various perturbations results in
conformations that are still in the folding-ensemble. The tra-
jectory picture, per se, does not address ensemble behavior;
again [7, 8], the energy landscape is invoked to explain how
all the molecular trajectories behave in the same way.

These issues can all be addressed from a fundamental
physics starting point by considering the vanishing of the
second variation of the action [9–12]. This is an approach
which has had spectacular success in modern optics wherein
light rays focus, especially to a caustic [13].

Before we proceed we need to define some terms. Recall
that the action is a function on arcs. If the first variation with
fixed endpoints is zero, thenwe call that arc a critical arc. If the
second variation is positive for that arc, then that arc is a local
minimum of the action. It is often convenient to regard the
arc as part of a longer trajectory. If we fix one endpoint of the
arc at a point of the trajectory and move the other along the
trajectory away from the fixed endpoint, wemay reach a point
and thus determine an arc, for which the second variation
is zero. If we move the movable endpoint even further away
from the fixed endpoint, the second variation will become
indefinite; that is, it can take on both positive and negative
values. Typicallywhenwehave a family of trajectories starting
from a fixed point or fixed initial curve or surface, they will
form an envelope, that is, a curve or surface to which all the
trajectories are tangent, and the points of tangency will be
points along the trajectories at which the second variation
vanishes. This envelope is referred to as “caustic.” If the enve-
lope happens to be a point, then we call that point a “focus.”

When we have such an envelope, it dominates the motion in
the sense that all of the trajectories meet it or pass through it.
(In a later section of this paper we cover this subject again in
more mathematical detail.)

Some excellent examples of caustics in classical mechan-
ical systems can be found in [9].

The concept of convergence is not, as we have just said,
contained explicitly in individual trajectories. Rather, the
concept of convergence or focusing ofmechanical trajectories
is best described by considering families of trajectories. If
the dynamics of particles entails a caustic, then it is possible
in principle to understand how a family of trajectories can
behave in a coherent manner.

We next proceed to explain how powerful theorems of R.
Thom and V. Arnold can be used to understand this behavior
quantitatively.

We shall not attempt to define the stability of a shape in
this paper. (We refer the reader to Section 6)However, for this
discussion of protein folding, stability means that the topol-
ogy of a part of the native state (or of an intermediate state) is
not altered by perturbations. See [14] for a similar concept.

We need two additional technical terms to be used in
describing the action: state variable and control parameter.
We do not require the mathematical definitions of these
terms, but those definitions are readily available in the
literature.

A simple way to look at state variable in a mechanical sys-
tem is to think of space and time coordinates that are used to
describe the motion. At a point in space and time, the
description of the physical system will depend upon various
control parameters. For example these may describe the
interface with some apparatus. For our purposes, the control
parameters in folding are not tightly defined.The shape of the
caustic will be defined entirely in terms of control parameters.
They are assumed to be constant after folding and may turn
out to be measurable distances or angles in the native state.
Excellent examples of state variables and control parameters
can be found in the literature, for example, [15].

The mathematics tells us that under appropriate con-
straints there is a finite set of stable forms of the action near a
critical point. Natural selection has evidently picked out these
stable forms for biological molecules by choosing dynamics
containing critical points. The stability arises because an
ensemble of actions can change into one another as a result
of a perturbation but the topology is not affected.

A simple example of this is the familiar cusp:

𝑆 (𝑠) =
1

4
𝑠
4
+
1

2
𝑎𝑠
2
+ 𝑏𝑠. (1)

Consider the case where this is topologically stable andwhere
𝑠 is a state variable and 𝑎 and 𝑏 are some variables (control
parameters) that appear in the Lagrangian.Then the remark-
able thing about this form is that for fixed values of 𝑎 and 𝑏

all possible perturbations have already been accounted for [11,
15]. So, if this is the action around the point 𝑠 = 0, then pertur-
bations that have the formof higher order polynomials in 𝑠do
not change the shape of 𝑆(𝑠). This highly nonobvious result
means that a trajectory or trajectories passing through a
moderately rough energy landscape will not be topologically
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perturbed by small changes in terms of the state variables
(other than the two included in (1)).Theother remarkable fact
is that this cusp is one of only seven polynomial forms which
have this remarkable property. If we suppose that folding
occurs onlywhen the action takes amultitrajectory form (and
natural selection has eliminated unstable folds), then there
are only seven distinct types of critical points. The possible
trajectories fall into families or ensembles having the property
that perturbing one member of the ensemble changes it into
another member of the same ensemble.

Finally, we note that the physics and mathematics show
that, when critical points are present in a dynamic, the critical
point dominates the motion.

We summarize what we have described so far.

(1) We start with the principle of stationary action
applied to the dynamics of protein molecules.

(2) To account for folding we turn to a standard formal-
ism for focusing.

(3) Two types of focus appear in the formalism: stable
and unstable. We assume that natural selection has
eliminated unstable foci.

(4) Thom’s theorems now tell us that there are just seven
possible functional forms for the action at a focus.
Thom also tells us that these actions are stable against
perturbations.

Said differently, we are shifting our attention away from
individual trajectories in dihedral angle space, with particles
propagating according to the equations of motion, and
toward groups of trajectories that share a common multitra-
jectory action and which converge in dihedral angle space.

This completes a descriptive introduction to the idea of
a critical point in the molecular dynamics. Before continuing
this subject inmore detail, we next discuss the folding process
that is under examination in this paper.

2. Two-State Folder and Torsion Waves

In this section, we set up the folding problem that we wish to
address in a subsequent section.

We shall focus our analysis upon two-state folders; in
particular, we are interested in the nonequilibrium transitions
between the denatured and folded or intermediate states
[16, 17].

Themolecules are not under overall tension, so transverse
waves and resonances with wavelength comparable to the
length of the chain are disfavored. Torsional motions, which
might include some long range waves, are favored by the
geometry. A plausible picture is that energy is released at var-
ious localized points resulting in waves of torsional contrac-
tion or expansion which propagate away from the production
point, generally with attenuation.

The theory described here does not depend upon the
torsional form of the waves.

The details will ultimately depend upon whether the
waves scatter off one another. In an earlier work on a continu-
ous backbonemodel, the present authors showed that solitons

are a possibility. Solitons pass through one another without
shape change [18].

Aswe have said, the action is a scalar which depends upon
energy and upon the path taken by a particle. For the two
state folders, the action will depend upon the path taken by
a molecule from unfolded to folded states. This path may be
thought of as occurring in dihedral angle space.Themolecule
starts with a set of dihedral angles. It changes conformation
following a path through dihedral angle space for which the
first variation of the action is zero.

3. Toy Model

At this juncture, we pause to introduce a toy model which is
solely intended to illustrate our points (and not to address the
hard realities of folding dynamics [19]).

Let us simplify the torsional wavemotion to just one axial
degree of rotational freedom, that is, an angle, 𝜃, describing
a torsional shear, which will serve as an overly simplified
generalized coordinate, and it serves to allow us to construct
a model action.

It is common in simulations of folding to introduce angu-
lar spring potentials 𝑉(𝜃) = 𝑘𝜃

2 for dihedral angles; these
potentials depend upon the sequence. Critical points appear
where we have a multitrajectory action, as we have empha-
sized above. To introduce that, we make the spring force
asymmetrical.The force needed to turn a given dihedral angle
depends upon the direction of turning and the angle at which
it sits.

If we place the critical point 𝜃 = 0 at the folded end of the
dynamical path, then the kinetic energy at that end point is
negligible.

Fortunately, for our purposes, a static version of this
mechanical arrangement is well known in the catastrophe
theory literature, where it is known as the Zeeman machine
[15]. If natural selection rejects all unstable folding motions
(and if this rotation is important in folding), then it turns out
that the cusp in (1), with 𝜃 = 𝑠, describes the potential energy,
including any additional perturbations. Setting the kinetic
energy aside for illustration we can now construct an action.

We get,

𝑆 (𝜃) =
1

4
𝜃
4
+
1

2
𝑎𝜃
2
+ 𝑏. (2)

In this case, 𝑎 and 𝑏 will be sequence dependent. The exact
relationship between those parameters and the spring con-
stants and lever arms is found in [15]. Introducing mutations
to a given molecule could either change 𝑎 and/or 𝑏 or disrupt
the form (2) altogether.

Obviously, at 𝜃 = 0, 𝛿𝑆 = 𝛿
2
𝑆 = 0 as per our hypothesis.

If this were a valid theory of the torsional response to a
wave passing through, then that response would be indepen-
dent of modest perturbations other than the last two terms.

We could also use this potential to construct probability
distributions and to derive statistical moments such as ⟨Δ𝜃2⟩.
The moments derived from (1) are generally of simple form
and change with 𝑎 and 𝑏. Note, of course, that we have not
specified the action for the entire molecule here.The 𝜑 analy-
sis of mutations will depend upon other parts of themolecule
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as well as this short segment. The details of moment analy-
sis for various catastrophes are worked out in detail in [11].

We emphasize that this is a toy model which illustrates
how a wave on a molecule can develop a critical point and be
used in some calculations ofmeasurable quantities and shows
how the shape can be independent of perturbations, perhaps
such as dissipative forces and energy rough spots.

The toy model has no detailed structure (i.e., no
sequence).However, it has unsymmetrical forces that can give
rise to critical points and thereby to stability. Note that the
spring forces that are often used in simulations do not have
these properties.

4. Addressing the Issues

With our descriptive introduction complete, we can now
address the four issues listed above.We start with the assump-
tions that there is a critical point in the molecular dynamics
and that natural selection has picked out stable folds.

The first point, that trajectories converge, is a direct
implication of the presence of the critical point.

The explanation of the remaining three issues (the energy
landscape is apparently smooth, the folding process is stable
under modest perturbations, and the initial conditions in
the denatured state do not matter very much) follows from
the insensitivity of the action to perturbations. The energy
landscape may have many rough spots but if they are not too
extreme, then they do not change the multitrajectory action
and hence do not change the time to reach the folded state.

The time to the folded state (or to an intermediate state)
for a short segment of the protein is a result of two important
factors: (i) a Boltzmann factor describing the escape from a
potential well into the transition state and (ii) a microscopic
local rate factor, 𝛾, describing how long it takes atomsmoving
on a fixed trajectory to collide and bind. The rate in the
unfolded to folded direction takes the form,

Rate → 𝛾 exp(−Δ𝐺
†

𝑘
𝐵
𝑇
) , (3)

where Δ𝐺† is the transition state free energy.
This picture of motions, that occur along multiple similar

trajectories until contact and bond formation take place, is
compatible with the observations that the time to folding is
roughly proportional to contact order [16, 20, 21].The factor 𝛾
in (3) increases with distance along the chain and hence with
contact order.

As it can be seen directly from (3), a linear dependence of
the free energy upon the concentration of denaturant might
look likeΔ𝐺† = (Δ𝐺

†

0
)𝐶 giving chevron plots. It is also appar-

ent that some proteins can fold at very high rates since the
atoms only have tomove along specific trajectories allowed by
the presence of the critical point. Said differently, diffusion
takes place before the molecules cross the barrier but follow
trajectories toward a specific point (in action space) there-
after. Of course, not all proteins fit this simple picture.

5. Analysis Continued

An observation that follows the semiquantitative description
that we have presented so far is that some simplifications
in folding result from the presence of a critical point in the
molecular dynamics. For example, for two-state folders, the
denatured and folded forms can both exist in equilibrium.
The denaturing agent may impact the entropy but not the
degrees of freedom associated with the folding. (This phe-
nomenon is more general than protein folding. Catalysts that
change the rate of a reaction by many orders of magnitude,
by changing the heat flow to the thermal reservoir, without
changing the reaction products, are well known [22].)

Torsion waves on molecules in solution are expected to
dissipate energy. The reliability of folding in the presence of
agents that change the entropy or viscosity suggests that the
degrees of freedom that participate in folding in an essential
way are not impacted by dissipation. The theory presented
here explains using a combination of critical points and
natural selection.

Another application of our theory is to address the
question of why biological proteins fold to unique final forms
while random polymers do not. Our theory suggests qualita-
tively that the former have critical points in the dynamics and
fold along specific sets of trajectories while the latter do not
have critical points and fold diffusively to various end shapes.
Another way to look at this is that the energy landscape may
be rough for random polymers and they do not share the
immunity to perturbations of biological proteins.

The topomer-sampling theory of Debe and collaborators
[23] considers folding in the restricted space of topomers
(smooth transformations of the native conformation). That
limits the number of degrees of freedom needed for diffusive
search. (We remark that Thom’s theory of generic stability
uses functional forms that are interrelated through smooth
coordinate changes (diffeomorphisms).) Our theory makes
a stronger statement than topomer-sampling theory which
is, that the action of the paths has critical points; allowable
action must support multiple trajectories.

There are several alternative explanations for why trajec-
tories that pass through a caustic continue to the native state.
One is that the caustic is small and it sits in a steep part of the
energy funnel not far from the minimum. A similar phe-
nomenon is the formation of an alpha helix.There is an initial
energy barrier, but once that is passed, the helix quickly falls
into place.

Our theory has neither reached the point in development
where the sequence dependence can be pinned down nor
identified the dynamical relationship between critical points
and specific folds. However, some comments are in order. For
torsion waves, this theory clearly requires that the sequence
influences the mechanical parameters of torsional motion.
An important feature is multitrajectory action. A single
trajectory theory, like TST for gas phase reactions, will not
develop critical points; critical points are of essence due to
multiple alternative paths.

A major difference between our theory and others is that
here the vanishing of the second variation of the action is
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utilized to make connections to the existence of envelopes,
that is, caustics and hence to catastrophe theory.

6. Physics, Mathematics, and the Literature

This section is a concise treatment of physics and mathe-
matics. We document this with references, especially books,
where appropriate.

General references are as follows:
For mathematics is [10].
For catastrophe theory is [11]. Other useful treatments
of catastrophe theory are [15, 24] and for catastrophe
theory in chemical kinetics is [25].
For physics are [9, 12, 13].The physics and mathemat-
ics explained in the context of optics are found in [13].
For completeness we mention that the action prin-
ciple, including the formation of caustics, can be
derived as a short wavelength limit of quantum
mechanics [11, 15]. This is explicit in the book by
Schulman [26] wherein the Feynman path integral
formulation of quantummechanics is used (especially
Chapter 15 on caustics in quantummechanics).We do
not use quantum mechanics in this paper.
For protein science we suggest [22, 27]. Additionally,
various review papers, some of which are cited in the
text, for example, [3, 5, 19, 28–30].
Early ideas underlying this work can be found in [31].

A particularly useful application of the calculus of variations
to mechanics most commonly goes under the name of
Hamilton’s principle of least action or stationary action.Other
comparable principles exist but will not be discussed here
[9]. In simple situations, Hamilton’s principle can be stated
as follows: among all possible trajectories which take a single
particle from a fixed initial position at a fixed initial time 𝑡

0
to

another position at moment 𝑡
1
, the realized motion is that for

which the action integral

𝑆 = ∫

𝑡1

𝑡0

𝐿 (𝑥, �̇�, 𝑡) 𝑑𝑡 (4)

is stationary. The integrand 𝐿(𝑥, �̇�, 𝑡) = 1/2𝑚�̇�
2
− 𝑉(𝑥, 𝑡) is

referred to as the Lagrangian and the variable 𝑥 may be a
generalized coordinate.

In order to apply Hamilton’s principle we need to intro-
duce variations of a particular arc that will be denoted by
𝑥
0
(𝑡). We do this by introducing an arbitrary function 𝜉(𝑡),

with 𝜉(𝑡
0
) = 𝜉(𝑡

1
) = 0, a real parameter 𝜀 which is usually

viewed as being very small, and considering the family of
curves:

𝑥
𝜀
(𝑡) = 𝑥

0
(𝑡) + 𝜀𝜉 (𝑡) . (5)

One thus obtains the action as a function of 𝜀, 𝑆(𝜀).The impli-
cation of the first variation being stationary, that is, 𝑑𝑆/𝑑𝜀 = 0

for all possible families 𝑥
𝜀
, is that the realized motions must

satisfy what is called the Euler-Lagrange equation:
𝑑

𝑑𝑡

𝜕𝐿

𝜕�̇�
−
𝜕𝐿

𝜕𝑥
= 0. (6)

We compute the second variation for curves that satisfy the
Euler-Lagrange equations; that is, we compute (𝑑2𝑆/𝑑𝜀2)(0).

We get,

𝑑
2
𝑆

𝑑𝜀2
(0) = ∫

𝑡1

𝑡0

[−𝜉
2 𝜕
2
𝑉

𝜕𝑥2
+ 𝑚 ̇𝜉
2
]𝑑𝑡. (7)

To deal with the integral one can expand 𝜉(𝑡) in terms of spe-
cial functions appropriate to the behavior of 𝑥

0
and use their

properties to simplify the above integral.We shall not explore
that subject here.

When the second variation is positive, meaning that
(𝑑
2
𝑆/𝑑𝜀
2
)(0) > 0, for all 𝑥

𝜀
, one can show that 𝑥

0
minimizes 𝑆

compared to all arcs “close to” 𝑥
0
with the same endpoints.

To appreciate the sign of the second variation one wants
to consider families of trajectories of realized motions. The
simplest situation to consider is that for which the action 𝑆 is
independent of the parameterization. We then consider such
a family, where each trajectory begins at a particular point,
or along a particular curve, or on particular surface. Let us
suppose all the motions are to begin along a curve which is
parameterized using a parameter 𝑢. Then we can regard 𝑆

as a function of 𝑢 which identifies the initial point and the
position 𝑥, which is thought of as the terminal point of a
curve realizing the motion; thus we write 𝑆(𝑢, 𝑥). To obtain
an arc that achieves a minimum value of the action from the
initial curve to a particular 𝑥

1
, we solve (𝜕𝑆/𝜕𝑢)(𝑢, 𝑥

1
) = 0

for 𝑢. If 𝑢
1
is a solution, then (𝜕𝑆/𝜕𝑢)(𝑢

1
, 𝑥) = 0 is the

equation for an arc of a realized motion through 𝑥
1
that

minimizes 𝑆 if (𝜕2𝑆/𝜕𝑢2)(𝑢
1
, 𝑥
1
) > 0. If on the other hand

(𝜕
2
𝑆/𝜕𝑢
2
)(𝑢
1
, 𝑥
1
) = 0, that is, the second variation is zero, this

then identifies the presence of a caustic and 𝑥
1
is a member

of the caustic.
The curves defined by (𝜕𝑆/𝜕𝑢)(𝑢, 𝑥) = 0 form an envelope

and 𝑥
1
is the point at which the curve (𝜕𝑆/𝜕𝑢)(𝑢

1
, 𝑥) = 0

through 𝑥
1
is tangent to the envelope. In higher dimensions,

simple derivatives are replaced by partial derivatives and the
second derivative is replaced by the Hessian, that is, the
matrix of second derivatives. The vanishing of the ordinary
second derivative is replaced by the vanishing of the determi-
nant of the Hessian.

In typical applications of singularity theory, or catastro-
phe theory, one considers a given function of several vari-
ables, which are referred to as state variables and control vari-
ables. One focuses on the form of sets determined by setting
to zero the first and second derivatives of the given function
with respect to state variables and takes advantage of known
generic solutions of those equations for certain numbers
of control variables. The function 𝑆(𝑢, 𝑥) introduced above,
where 𝑢 is a state variable and 𝑥 is a control variable, fits
this situation since we are clearly interested in sets where
(𝜕𝑆/𝜕𝑢)(𝑢, 𝑥) = 0 and (𝜕

2
𝑆/𝜕𝑢
2
)(𝑢, 𝑥) = 0. This is how one

can establish a connection between calculus of variations and
catastrophe theory.

Noticing that geometric optics fails in this situation,
Berry and Upstill comment that this failure is “catastrophic”
because this is just the point at which catastrophe theory
becomes applicable.
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Where caustics are present we have a strong focusing of
trajectories into a space that is very closely circumscribed
by up to five control parameters [11]. A critical point, where
the above matrix vanishes, dominates the dynamics in that
neighborhood around that point.

The conditions on the partial derivatives just mentioned
are the same as the conditions for catastrophe theory to
obtain.There are many texts on catastrophe theory so we will
just remark that stability of the catastrophe (caustic) against
perturbations of the state variables (time and space) is the
major result we have used.

Let us consider the limitations of this conjecture.
An important issue is the degree of sensitivity to pertur-

bations. For example, the strength of the denaturing agents
may be so great that our conjecture may not apply. There
appears to be no general rule from catastrophe theory to
quantify the limits of allowed perturbations; the answer is in
the details.

Another limitation is the possible appearance or nonap-
pearance of falseminima. Further researchwill be required to
understand this issue. In a special case, however, if there is a
single, long-lived false minimum (with the molecules slowly
leaking down to the thermodynamic minimum), then our
conjecture may apply to the false minimum. We remark that
prions may be such a case.

7. General Comments

We emphasize that in this paper we are not addressing the
issue of protein structure [22, 30]; rather, we are addressing
the issue of the stability of the folding process, especially
the earliest stage from denatured ensemble forward. Prospec-
tively, a full understanding of the early phases is potentially
very useful in experiment design where it is necessary to
evaluate the impact of various external factors on the shape of
the native state (e.g., fluorescence resonance energy transfer
(FRET), various denaturants, etc.), in the design or discovery
of agents or environmental factors [32], that interfere with
folding, and in engineering new proteins that fold in specific
ways. Retrospectively, an understanding of the stability of the
earliest phases of folding has potential value in the study of
the last common ancestor and the origin of life.

8. Future Directions

The calculations to check these ideas in model molecules are
not simpler than traditional folding simulations. However,
the results are different.

If the putative caustic appears somewhere along the fold-
ing path, then a simulation of the action up to that point can
reveal it.The quantitative test is the vanishing (or near vanish-
ing) of the Hessian determinate, as described in the previous
section. The number of computations is formidable but, for
simple molecules, not beyond supercomputer capacity.

Should a caustic be indicated along the folding path?
This can be confirmed by searching for a saddle point in the
action as the integration is continued to a point just beyond
the caustic. Again, the computations are formidable but not
impossible.

Once a caustic is found in amodel, it will become possible
to tune model parameters to optimize folding.

9. Conclusions

The phenomenon studied is the motion of protein molecules
in a variety of initial conditions, in the presence of various
perturbations, terminating in a unique final state in spite of
the relatively little free energy available.

The principle of stationary action leads immediately to
equations of motion. However, equations of motion describe
the propagation of themolecule along trajectories in dihedral
angle space and tend to obscure the behavior of groups of
trajectories. Moreover, as noted originally by Levinthal, the
number of conformations in dihedral angle space is of cosmo-
logical proportions.

By treating the problemdirectly using the principle of sta-
tionary action and putting the equations of motion aside, it is
possible to treat groups of trajectories that behave in a similar
manner, in particular, trajectories that converge either to a
focus or to a caustic.

The resulting treatments narrow the number of possible
paths through dihedral angle space because all trajectories
pass through very narrow caustics located somewhere along
the folding path.

The result of direct analysis from the action is that two
types of focusing emerge: stable and unstable.We assume that
natural selection has eliminated the unstable focusing. This
treatment leads immediately to the strong stability of the pro-
cess of folding. Many features of the folding process emerge
directly.

As in most biological processes, protein folding entails
a large number of complicated forces and parameters that
change with conformation (i.e., with time during folding)
and, as just mentioned, it takes place in a space of very high
dimension. Yet folding does indeed lead to unique final forms
even in the presence of denaturing agents that are chosen to
disrupt the final shape.

This complexity might be enough to send any theorist
back to his coffee pot. However, when this is approached from
the viewpoint of the direct application of principle of station-
ary action, an idea takes shape rather naturally. The idea is
that the fundamental dynamics ofmolecularmotion contains
critical points that dominate themotion andmake themotion
less vulnerable to disruption by various changing forces and
conditions.This dominance of dynamical behavior by critical
points is well established in physics.

We have shown how this idea emerges from the action
principle and have given semiquantitative explanations for
many of the phenomena that have been documented in labo-
ratories and in simulations over the past five or six decades.

For theories that start with themolecule in its native state,
unfold it in the lab or in simulation and then refold it; the acid
test is prediction of the native form. By startingwith the dena-
tured state and applying physics andmathematics to study the
stability of the folding process, we have only a germ of a full
theory of folding and we cannot predict structures, not even
approximately.
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No theories, which are consistent with classical mechan-
ics, are in contradiction with the least action and the vanish-
ing of the first variation of the action for the dynamics of the
molecule during folding.The fundamental departure embod-
ied in this work is the putative vanishing of the second vari-
ation of the action, implying that various trajectories can be
treated as a unit, and the role of natural selection in eliminat-
ing unstable folds.

What we have accomplished is to show that these putative
critical points provide a level of quantitative understanding
of many observed features as follows: rapid rates (TST like
behavior), smoothness of the energy landscape, nonfolding
of randompolymers, insensitivity tomany perturbations, and
some qualitative insights into other features of folding such as
the importance of topology and contact order.

The obvious next steps in the development of this theory
are to learn exactly how the critical points emerge in terms of
sequence and to learn how the critical points relate to specific
structures.
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