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Dynamic patterns of information flow in
complex networks
Uzi Harush1 & Baruch Barzel1

Although networks are extensively used to visualize information flow in biological, social and

technological systems, translating topology into dynamic flow continues to challenge us, as

similar networks exhibit fundamentally different flow patterns, driven by different interaction

mechanisms. To uncover a network’s actual flow patterns, here we use a perturbative

formalism, analytically tracking the contribution of all nodes/paths to the flow of information,

exposing the rules that link structure and dynamic information flow for a broad range of

nonlinear systems. We find that the diversity of flow patterns can be mapped into a single

universal function, characterizing the interplay between the system’s topology and its

dynamics, ultimately allowing us to identify the network’s main arteries of information flow.

Counter-intuitively, our formalism predicts a family of frequently encountered dynamics

where the flow of information avoids the hubs, favoring the network’s peripheral pathways, a

striking disparity between structure and dynamics.
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The recent years have witnessed major advances in our
ability to map the structure of many natural and man-
made complex systems1–5, from social networks6 and

infrastructure systems7, 8 to sub-cellular interaction mapping has
uncovered several universal characteristics, observed across net-
works of vastly different domains, such as the small-world phe-
nomenon11 or the commonly observed fat-tailed degree12, 13 and
weight14, 15 distributions. Our ultimate goal, however, is to
translate these structural characteristics into functional predic-
tions pertaining to the system’s dynamic behavior16–18. For
instance, we wish to use the topology of the gene regulatory
network to gain insight into the functional pathways along which
genetic information is transmitted19, 20, or to translate the social
network topology into predictions on the propagation of influ-
ence through social ties21, 22. The problem is that information
flow is not determined solely by the static network topology, but
also by the nonlinear dynamics characterizing the interactions
between the nodes18, 23. Hence, the same network may exhibit
fundamentally different patterns of information flow under dif-
ferent dynamics: epidemic spread, ecological interactions, or
genetic regulation.

To observe these patterns we employ here a perturbative
approach, a fundamental tool to uncover information propaga-
tion24, specifically applicable in the context of network dynam-
ics17, 18, 25, 26. We then analytically track the propagation of
signals between nodes, identifying the main pathways through
which these signals penetrate the network. Our results show that
despite the diversity of potential interaction mechanisms, the
patterns of information flow are governed by universal laws that
can be directly linked to the system’s microscopic dynamics.

Results
Quantifying information flow. We consider a system of N
components (nodes) linked via a weighted and directed network
Aij. Each node is characterized by a time dependent activity xi(t),
i = 1, …, N, whose meaning depends on the specific application:
for instance, the concentration of a protein in a cellular network,
the abundance of a species in an ecological networks or the
probability of infection of an individual in a social network. The
system’s dynamics is driven by18, 27

dxi
dt

¼ M0 xið Þ þ
XN
j¼1

AijM1 xið ÞM2 xj
� �

; ð1Þ

where the first term on the r.h.s. accounts for i’s self-dynamics,
and the second term captures the impact of i’s interacting part-
ners. By appropriately selecting the nonlinear functions

M = (M0(x), M1(x), M21) provides a rather general description of
complex system dynamics, including frequently used models to
describe the behavior of social21, 28–30, biological25, 31–33 and
technological34, 35 systems (Table 1). Note that in (1) the
weighted link Aij represents the rate of incoming influence from xj
to xi, hence Aij = Ai←j, a directed link outgoing from j, incoming to
i.

We can track the propagation of a signal through the system
(1) by following how a local perturbation in the steady-state
activity of a source node n impacts the activities of all remaining
nodes in the system, giving rise to the linear response matrix17, 18

Gmn ¼ dxm=xm
dxn=xn

����
���� ¼ dlog xm

dlog xn

����
����: ð2Þ

The terms of Gmn capture the level of information spread form
the source n to a specific target node m. Summing over all targets,
we obtain the total capacity of information distributed from n
throughout the network as

Zn ¼
XN
m¼1

Gmn; ð3Þ

capturing the cumulative response of the system to the signal dxn.
Consider the contribution of an intermediate node i to Zn: first

the signal dxn reaches i, then i responds by shifting its own
activity by dxi, in effect creating a new signal that helps propagate
dxn to the rest of the network. If we now artificially set dxi = 0, we
freeze i’s activity, forcing it to remain unperturbed, and hence
preventing it from propagating the signal xn onward. The result is
Z if g
n , capturing the level of information spread from n under the

freezing of xi, effectively blocking all flow of information n → m
via pathways that pass though i (Fig. 1a). More generally, we can
freeze the flow through an entire network path, Π = {i, Aij, j, Ajk,
k, …}, in which case we block the flow of information through a
sequence of nodes and links, providing ZΠ

n . This allows us to
quantitatively evaluate the contribution of Π to the flow from the
source n as

FΠ
n ¼ Zn � ZΠ

n

Zn
; ð4Þ

capturing the fraction of Zn that was mediated through the Π
pathway. Averaging over all n we obtain Π’s overall flow

FΠ ¼ 1
N

XN
n¼1

FΠ
n ; ð5Þ

Table 1 Network dynamics

Dynamics Equation Symbol ω ξ Class

Population dxi tð Þ
dt ¼ �x3i ðtÞ þ

PN
j¼1 Aijx2i ðtÞ P 5

3
2
3

Degree driven

Regulatory
dxi tð Þ
dt ¼ �xi tð Þ þ

PN
j¼1 Aij

x
1
3
j ðtÞ

1þx
1
3
j ðtÞ

R1
2
3 � 1

3
Degree driven

Epidemic dxi tð Þ
dt ¼ �xi tð Þ þ

PN
j¼1 Aij 1� xi tð Þð Þxj tð Þ E 0 −1 Homogeneous

Biochemical dxi tð Þ
dt ¼ 1� xi tð Þ �

PN
j¼1 Aijxi tð Þxj tð Þ B 0 −1 Homogeneous

Mutualistic dxi tð Þ
dt ¼ xi tð Þ 1� xi tð Þð Þ þPN

j¼1 Aijxi tð Þ x2j ðtÞ
1þx2j ðtÞ

M −1 −2 Degree avert

Regulatory dxi tð Þ
dt ¼ �xi tð Þ þ

PN
j¼1 Aij

x2j ðtÞ
1þx2j ðtÞ

R2 −1 −2 Degree avert

We applied our formalism to six different types of dynamics of the form (1): P captures population dynamics through birth-death processes;32 R1 captures regulatory dynamics, e.g., gene regulation, via
the Michaelis–Menten model, with a Hill coefficient of h= 1/333; E is the susceptible-infected-susceptible (SIS) model for epidemic spread;28–30 B captures biochemical dynamics, e.g., protein-protein
interactions, modeled using mass-action kinetics;31, 41 M represents mutualistic interactions between species in an ecological network42 and R2 is the same as R1 with a different Hill coefficient, h= 2.
For each dynamics we also show ω (8) and ξ (9), and its classification as degree-driven flow (red), homogeneous flow (green) or degree-averting flow (blue). A detailed description and analysis of all
models appears in Supplementary Note 2
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quantifying, systematically, the contribution of each pathway to
the spread of signals (Gmn) throughout the network. In case
FΠ � 1, Π’s contribution to the flow of information in the
system (1) is marginal; if, however, FΠ ! 1, then almost all
information flows through Π.

To place our proposed measure of flow (5) in context we
emphasize the distinction between influence and flow. Most
often, network components—nodes, links, pathways—are ranked
according to their dynamic impact on the network, e.g., seeking
the most influential nodes36. In the context of our current
formalism, such impact is captured by the magnitude of Zn (3),
namely the response of the system to n’s perturbation. However,
most of the time a network component is not the source of
information, but rather the mediator of the information that
constantly travels between arbitrary locations on the network. For
example, when a single gene n out of N ~ 104 is perturbed, that
gene is the only source of information, whereas the role of all
remaining genes is to propagate n’s signal, supporting flow as
mediators, not as sources. Hence FΠ, designed to capture the
efficiency of a pathway as a “pipe” rather that a source of
information flow, provides a crucial, overlooked, metric of the
ongoing dynamic role continuously played by all network
components.

Observing the patterns of flow. To observe the diverse patterns
of flow exhibited by (1) we constructed a set of model and
empirical networks, capturing systems from a broad range of
scientific domains, including weighted scale-free networks with
scale-free weights (SF1—undirected, SF2—directed); protein
interactions from human and yeast cells (Human PPI37 and Yeast
PPI9); two online social networks (UCIonline38 and Epoch39) and
a bipartite ecological network, capturing plant-pollinator rela-
tionships (ECO1, ECO240). We then implemented six different
types of frequently used dynamic models M, capturing diverse
forms of interaction mechanisms: the susceptible-infected-
susceptible model21, 28–30 for epidemic spreading Eð Þ, biochem-
ical interactions via mass-action-kinetics31, 41 Bð Þ, mutualistic
dynamics in ecology42 Mð Þ, population dynamics32, 35 Pð Þ, and
genetic regulation as captured by the Michelis–Menten model33,
43 (R1 and R2), all summarized in Table 1.

For each system we measured the flow through all nodes and
edges, F i and F ij, respectively. For F i we selected Π = {i} in (5), a
path including a single node, and for F ij we repeated the
calculation with Π = {Aij}, freezing sequentially all edges. Hence,
we obtain the contribution of all individual nodes F ið Þ and edges
F ij
� �

to the flow of information in the system. We find that the
patterns of flow exhibit an extremely high level of diversity across
the different systems, as expressed by the distinct size distribution
of nodes (or width of edges) across the twenty-four layouts
presented in Fig. 2. For instance, in Fig. 2a–f we show the flow
patterns obtained by applying different dynamics (M) to the same
network (SF1). It shows that despite the fact that Aij remains the
same, the dynamic patterns of flow are highly distinctive. For P
and R1 information flow is dominated by a few selected central
nodes. In contrast, under E and B the same network exhibits a
distributed flow, with almost all nodes equally contributing to the
spread of information. Finally, M and R2 show yet another
pattern of information flow, with a seemingly random scatter of
flow hubs spread throughout the network. Such diversity is also
observed for SF2 (Fig. 2g–l), or for the empirical networks, where
the same topology exhibits profoundly different flow patterns,
depending on the system’s dynamics (Fig. 2m–x). Hence, the
patterns of flow are a consequence not just of the topology, but of
the intricate interplay between this topology and the system’s
interaction dynamics (Fig. 1b, c). Taken together, the twenty-four

dxn

M

M = (M0(x), M1 (x), M2 (x))

Si,in,Si,out,Aij �,�

Aij

Aij

dxn

dxm
dx

m
{i}

dxin n
m m

i i

a

b

c

d

Fig. 1 Observing and predicting the flow of information in a network
environment. a The spread of information through the network is captured
by the propagation of activity changes (signals) between network
components (nodes). Here the activity of the source node n is perturbed,
giving rise to the signal dxn (black). The information from this signal
reaches the target node m, whose response dxm is mediated through all
relevant pathways (red, blue). By freezing the activity of the intermediate
node i (right), we block the blue pathway, resulting in a reduction of
information flow in the network, and a diminished response dx if g

m , which
now includes only the red portion, lacking the blue contribution. The
diminished dx if g

m allows us to quantify i’s contribution to the flow of
information from n to m, or, by summing over all pairs m, n its overall
contribution to the flow, F i. b The topology of a complex system is given by
the weighted and directed network Aij, a random network with arbitrary
degree/weight distribution. c Similar networks may exhibit diverse flow
patterns, depending on the microscopic interaction mechanisms between
the nodes, as captured by M= (M0(x), M1(x), M2(x)) in (1). Hence,
different dynamics, e.g., biochemical, social or ecological, may lead to
fundamentally different flow patterns (red, green, blue). d Our goal is to
predict how topological characteristics (Aij) interplay with the system’s
interaction dynamics (M) to produce the observed flow patterns. The
topology is characterized by Si,in, Si,out and the weights Aij; the dynamics is
captured by the exponents ω and ξ. Together they provide the flow through
Eqs. (6) and (9). The diversity of flow patterns, i.e., red, green, and blue in c,
can be captured by a single universal flow function
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networks of Fig. 2, demonstrate a highly diverse set of flow
patterns, illustrating the extreme challenge in predicting the
dynamics of information flow in complex systems.

Predicting the system’s flow patterns. To understand the origins
of the observed flow patterns we derive F i’s dependence on the
network’s degree distribution, by linking it with the in and out
weighed degrees of all nodes, Si;in ¼

PN
j¼1 Aij and

Si;out ¼
PN

j¼1 A
>
ij . We show in Supplementary Note 1 that, on

average, information flow scales with a node’s in/out-degree as

F i � Si;outS
ω�1
i;in ; ð6Þ

where the scaling exponent ω is fully determined by the system’s
dynamics M. To understand the contribution of M = (M0(x),
M1(x), M2(x)) we link ω in Supplementary Note 1 to the Hahn
series expansion

M2 W�1ðxÞ� � ¼ X
ΓðnÞ

Cnx
ΓðnÞ; ð7Þ

where W(x) = −M1(x)/M0(x) and W−1(x) denotes its inverse
function. The Hahn44 expansion (7) is a generalization of the
Taylor expansion to allow for both negative and real powers; the
powers Γ(n) represent a well-ordered set in ascending order with
n, namely Γ(0) represents the leading power in the expansion of
M2(W−1(x)), Γ(1)> Γ(0) is the next power and so on. The

exponent ω in (6) can be linked directly to the system’s dynamics
via (7) as

ω ¼ 1� Γð0Þ Γð0Þ≠0
1� Γð1Þ Γð0Þ ¼ 0

�
; ð8Þ

hence ω is determined by the leading non-vanishing exponent in
(7). While the specific value of ω depends on the dynamic model
M (P;R1, etc.) the formula (8) to extract it from a given model is
universal, providing a step-by-step method for constructing the
flow in (6). An explicit example is shown in Methods.

Equations (6–8), represent our first analytical result, exposing
the rules that govern the flow of information in a complex
network. The scaling exponent ω helps us link between the
system’s structure (Si,in, Si,out) and its dynamic patterns of
information flow F ið Þ, providing the connection we seek between
the system’s topology and its actual observed flow patterns
(Fig. 1d). In other words, Eq. (6) helps us translate topological
characteristics, such as the weighed in/out degrees, into dynamic
insights pertaining to the flow of information, thus addressing a
fundamental challenge of network science17, 45.

Most importantly, our formalism predicts that the diversity
observed in Fig. 2 is, in fact, rooted in a deep universality,
expressed by the mapping of structure to dynamics that appears
in (6). To test this, we revisit the “zoo” of twenty-four diverse flow
patterns presented in Fig. 2 and confront the observed flow
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Fig. 2 Dynamic information flow in model and real networks. We measured the flow (5) through all nodes in a set of model and real networks, on which we
implemented the six dynamic models of Table 1. The size of each node and the width of each link are proportional to their flow F i and F ij. a–f For SF1, a
weighted network with scale-free degree/weight distributions, we observe highly diverse flow patterns across the different dynamic models: in P a and R1

b flow is dominated by extremely few nodes; in E c and B d flow is distributed over all nodes; in M e and R2 f we find again that only a selection of nodes
dominates the flow, though different than the one dominating P and R1. Hence, different dynamics give rise to distinctive flow patterns despite using the
same network. g–l Flow through SF2, a directed and weighted scale-free network. m–x For each dynamics we also observe the flow in relevant empirical
networks: ecological dynamics P;Mð Þ on plant-pollinator networks (ECO1, ECO2), sub-cellular dynamics (B, R1, R2) on protein interaction networks
(Human PPI, Yeast PPI), epidemic flow Eð Þ on social networks (UCIonline, Email Epoch). Together, 24 combinations of networks and dynamics, exhibit a
seemingly unpredictable “zoo” of diverse flow patterns
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through all nodes F i with our universal prediction
FTh

i ¼ Si;outSω�1
i;in , taking for each system the relevant Aij and

the appropriate value of ω, as predicted by (8). Strikingly, we find
in Fig. 3a that despite their diverse and unpredictable behavior, all
layouts of Fig. 2 collapse onto the universal linear plot (solid line)
predicted by (6). This collapse demonstrates the predictive power

of our formalism, taking a set of fundamentally different systems,
from gene regulation to online social networks, cast on extremely
diverse networks, and showing that they are all driven by similar
rules of information flow, encapsulated within the universal
relationship (6).
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Fig. 3 Predicting the observed flow patterns. We used Eqs. (6) and (9) to predict the flow of information in the twenty-four systems of Fig. 2, finding that
despite their diverse behaviors, they all emerge from these two universal equations. a F i vs. FTh

i ¼ Si;outSω�1
i;in for all layouts of Fig. 2. As predicted, all flow

patterns condense around the single analytically derived function (linear solid line) of (6), with their diversity rooted in the different values of the dynamic
exponent ω (8). The color/shape representing each network appears adjacent to the appropriate layout in Fig. 2, e.g., SF1 with dynamics P (Fig. 2a) is
represented by dark red circles, SF2 with P (Fig. 2g)—dark red squares, etc. b F ij vs. FTh

ij , as predicted in (9), for all networks/dynamics of Fig. 2, showing
an agreement that spans over sixteen orders of magnitude. c–h Revisiting the flow patterns of the directed scale-free network SF2 (identical to Fig. 2g–l). i–
n F i vs. FTh

i as extracted from the SF2 layouts shown in c–h. The arrows point in the direction of large Si,in (red) and Si,out (blue). For instance, under P
dynamics (ω= 5/3) the flow increases with both in/out degrees, hence both arrows point upwards. In contrast for R1 (ω= 2/3), nodes with large Si,in are
concentrated at the bottom left, contributing less to the flow. The strength of the effect is captured by the length of the arrow. Equation (6) rearranges the
nodes, locating the in-hubs at the high flow limit (top right) or at the low flow limit (bottom left) depending on the value of ω, providing qualitative insight
on the characteristics that increase/decrease flow for each type of dynamics. o–t F ij vs. FTh

ij as obtained from SF2. The arrows point in the direction of
large Sj,in (blue) and Si,in (red). Details on all networks and dynamic simulations are outlined in Supplementary Note 3. Error bars represent 95% confidence
intervals (Supplementary Note 3)
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To gain a better grip on the mapping of (6) we focus
specifically of the flow patterns of SF2 (original layouts appearing
in Fig. 2g–l and presented again for convenience in Fig. 3c–h). In
Fig. 3i–n we present the collapse plot of F i vs. FTh

i , this time only
for SF2, showing each dynamics separately. Once again we
observe the derived universality, in which all data collapses along
the theoretically predicted solid lines. However, the important
point here is that now we can observe how the role of all nodes
changes across the different dynamics, as expressed through their

location in each of the six plots. For instance, in P, where ω = 5/3,
Eq. (6) predicts that nodes with high Si,in contribute more to the
flow, hence occupying the top right quadrant of Fig. 3i, as noted
by the direction of the red arrow. In contrast, for R1 (ω = 2/3,
Fig. 3j) the flow negatively scales with Si,in, concentrating the high
in-degree nodes toward the bottom left quadrant, thus capturing
the qualitative difference in flow patterns across the different
models, as predicted by our theory. The effect becomes more
dramatic as ω is decreased in E;B;M and R2, pushing the in-
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hubs further towards the limit of small F i (bottom left), as
symbolized by the length of the red arrows (Fig. 3k–n).

Next, we seek a similar universality to the one observed for F i
that can capture edge flow F ij. To observe this we show that, on
average, the contribution of the Aij link to the propagation of
information follows (Supplementary Note 1)

F ij � AijSi;outS
ξ�1
i;in S

ξ
j;in; ð9Þ

where ξ =ω − 1 and ω is taken from (8). Hence F ij, associated
with the link from j to i (Ai←j) depends linearly on the link weight
and on its target’s outgoing weighted degree Si,out, a rather
expected interpretation of topology into information flow. The
role of i and j’s in-degrees, however, is more complex, affected
also by the system’s dynamics through ξ. To test this prediction
we measured the i,j-flow, F ij, through all links in the networks of
Fig. 2. Once again, in Fig. 3b, we observe that the seemingly
random behavior observed in Fig. 2 hides a deep universality, in
which all systems, despite their diverse topology/dynamics,
condense around the predicted linear plot F ij � FTh

ij , where
FTh

ij is taken from our analytically predicted (9). The specific
results obtained from SF2 are expanded in Fig. 3o–t, also
indicating the roles of large Si,in (red arrows) and large Sj,in (blue
arrows) in each system.

The results of Fig. 3a, b and their expansion in Fig. 3i–t, expose
an extremely robust universality, sustained across multiple orders
of magnitude and diverse networks and dynamics, together—
exposing an intricate balance: on the one hand, different systems
exhibit highly distinct flow patterns, e.g., the different roles of in/
out hubs in Fig. 3i–t. Yet, at the same time, all this richness,
enabled by the topology/dynamics interplay, indeed the “zoo” of
flow patterns observed in Fig. 2, is shown to originate from two
universal analytically predictable sources, Eqs. (6) and (9).

Universality classes of flow. To obtain a deeper understanding of
the implications of the derived universality we now focus on
undirected networks, namely networks where all links are bi-
directional (Aij ≠ 0 ⇔ Aji ≠ 0), but not necessarily weight-sym-
metric, hence potentially Aij ≠Aji. For randomly distributed
weights, such networks have, on average, Si;in � Si;out � Si, which
in (6) and (9) provide (Supplementary Note 1)

F i � Sωi ð10Þ

F ij � Aij SiSj
� �ξ

: ð11Þ

These scaling relationships predict three highly distinctive
dynamic universality classes:

Degree driven flow (ω> 0, Fig. 4a–f, red). In case ω> 0 the
flow F i in (10) increases with the weighted degree Si, indicating
that the flow of information is dominated by the high degree
nodes. The greater is ω, the more pronounced is the effect and

hence the more dominant is the role of the hubs. Equation (8)
predicts that P and R1 belong to this class with ω = 5/3 and ω = 2/
3, respectively. This analytical prediction is perfectly confirmed in
Fig. 4a, d on the weighted scale-free network SF1 (circles).

Homogeneous flow (ω = 0, Fig. 4g–l, green). In case ω = 0 we
have F i independent of Si, hence the contribution of the hubs to
the flow of information is, on average, identical to that of the
peripheral nodes. This represents homogeneous flow, where all
nodes have almost similar contribution to the flow of informa-
tion, independent of the network’s often heterogeneous degree
distribution. Using Eq. (8) we predict that E and B belong to this
class. Indeed, Fig. 4g, j indicates that despite the three orders of
magnitude diversity in the weighted degrees Si, their contribution
to the flow is largely homogeneous.

Degree-averting flow (ω< 0, Fig. 4m–r, blue). For M and R2,
Eq. (8) predicts ω = −1< 0, indicating that F i decreases with Si.
Hence, strikingly, for this class of dynamics information flow
tends to avoid the hubs, being dominated mainly by the majority
of low degree nodes. Such counter-intuitive flow patterns, which
favor the peripheral nodes, represent a highly unexpected
outcome of prediction (8), and yet they are fully supported by
the results presented in Fig. 4m, p, where F i is in fact inversely
proportional to Si. These results, which defy the natural
interpretation of topology to dynamics, highlight the importance
of our formalism as well as its predictive strength, allowing us to
expose such unique patterns of information flow.

Our formalism further predicts that ω and ξ, and consequently
the three universality classes, are fully determined by the
dynamics M through (8), independent of the network topology
Aij. Hence we implemented all six dynamic models (Table 1) on
the relevant networks from Fig. 2. We also included several
additional canonical model networks, such as an Erdös-Rényi
network, and scale-free networks with binary (SF3) and normally
distributed (SF4) weights, (in addition to SF1 that features scale-
free distributed weights). We find that despite the diversity of the
examined networks, the behavior of F i and F ij consistently
exhibits the universal scaling predicted by (10) and (11), across all
examined networks (Fig. 4).

Centralized vs. peripheral information flow. The analysis above
helps us uncover the main arteries of information flow in a
complex network, quantifying the contribution of each node/link,
and hence of all pathways to the flow of information, as emerges
from the interplay between the system’s topology (Aij, Si) and its
interaction dynamics (M, ω, ξ). To visualize this we used the
scale-free SF1, presented in Fig. 2a–f, this time using a hub-
central layout, in which the hubs (large Si) are located at the
center, and the low degree nodes (low Si) tend to the periphery.
For the degree-driven P and R1 we observe a centralized
information flow, in which the cross-talk between all nodes is
primarily mediated by the hubs located at the core of the network
(Fig. 4c, f, red). As predicted, the effect is more pronounced for
the P dynamics, where ω is larger. Using the same network with

Fig. 4 Universality classes of dynamic flow. We measured the flow F i and F ij through all nodes/edges for the six dynamic models of Table 1. We ran each
dynamics on four different networks: Erdős-Rényi (ER, triangles), scale-free with scale-free weights (SF1, circles), scale-free unweighted (SF3, squares) and
scale-free with normally distributed weights (SF4, diamonds). We compare the observed results with the predictions of (10) and (11) (solid lines), namely
F i vs. the weighted degree Si and F ij vs. the product SiSj. a, b For P we predict ω= 5/3 and ξ= 2/3 (solid lines), a degree driven flow, in agreement with
the observed results (symbols). c To observe the implications of the degree driven flow we layout the nodes of SF1 with the hubs at the core and the low
degree nodes at the periphery. As predicted, we find that the flow condenses around the hubs (large nodes, thick edges at center), which, in this dynamics,
are responsible for most of the information flow throughout the network. d–f For R1 we predict ω= 2/3, ξ= −1/3, again featuring hub-centralized flow.
Here, the effect is weaker, due to the lower value of ω compared with P. g–l For E and B we predict ω= 0, ξ= −1, a homogeneous flow, where hubs and
peripheral nodes have, on average, an equal contribution, as indicated in the layouts, in which flow is distributed evenly among all nodes/links. m–r For M
and R2 we predict ω= −1, representing degree-averting flow. In this class information flow favors the small nodes, avoiding the short paths that are
centralized around the hubs, expressed in o, r by the dominance of the network periphery in both layouts. In all classes, the fact that the scaling (ω, ξ) is
independent of the network Aij (ER, SF1, SF3, SF4) confirms that our classification depends only on the system’s dynamics

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01916-3 ARTICLE

NATURE COMMUNICATIONS |8:  2181 |DOI: 10.1038/s41467-017-01916-3 |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


the same layout, the homogeneous E and B exhibit a non-
centralized flow pattern, in which all nodes/pathways participate
equally in spreading information (Fig. 4i, l, green). Finally, the
degree-averting M and R2 show peripheral flow, in which
information favors the longer, decentralized pathways that
traverse through the exterior low degree nodes (Fig. 4o, r, blue).

Taken together, these distinct flow patterns, all obtained from
the same network (SF1), illustrate the potential disparity between
the static network topology and the actual dynamic pathways of
information flow. Indeed, flow sometimes condenses around the
hubs (red), distributes evenly across nodes (green), favors the
network periphery (blue), or follows any other pattern within (6)
and (9), as dictated by ω and ξ. Therefore to truly utilize networks
as the tool they are designed to be—for visualizing the flow of
information—one must use our analytically derived (6)–(11) to
translate the network topology into actual pathways of informa-
tion flow.

Additional flow patterns. At the heart of our analytical formal-
ism lies Eq. (1), whose universal structure covers a broad range of
steady-state dynamics, as captured in Table 1 and demonstrated
in Figs. 2–4. To expand the applicability of our formalism, we
now turn to two systems that extend beyond the boundaries of
(1), and use numerical analysis to observe their flow patterns.

Epidemic spreading. The concept of dynamic flow can help us
understand, and hence mitigate, the spread of epidemics, a most
pertinent threat to our global health46. Indeed, to design efficient
immunization strategies, we must identify the nodes with the
highest contribution to the flow of information (or viruses). To
observe this, we implement the susceptible-infected-recovered
model, in which each node can be in one of three states, S, I, or R,
representing a generalization of (1) to account for multidimen-
sional activities xi(t). Freezing each node, we find that F i � Si,
representing a degree driven flow (Fig. 5a, red). This suggests that
the optimal mitigation strategy is to immunize the hubs—a rather
expected result. However, measuring the flow at later times, we
find that the role of the hubs diminishes, indicated by the
receding flow curve for large Si in Fig. 5b (green), up to a point
where F i sharply decreases with Si, entering a rather extreme
state of degree-averting flow (Fig. 5c, blue). Hence disease
spreading exhibits an evolving flow pattern, being degree driven
at the early stages of the contagion and degree averting as the
system approaches the pandemic state. The reason for this
transition is that the well-connected hubs become infected, and
hence non-susceptible, at the early stages of the spread, at which
point they cease to contribute to the viral flow (Fig. 5d).

To test these evolving flow patterns in an empirical setting, we
used air-traffic data46, capturing the international mobility of 7 ×
106 individuals per day over the course of 3 years between N =
1,292 major international airports. Indeed, we find that flow
evolves over time, condensing around different nodes at different
stages of the contagion (Fig. 5e–j). These findings are crucial for
developing efficient mitigation strategies based on air-traffic
interventions, such as immunizing or quarantining passengers at
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Fig. 5 Evolving flow patterns in epidemic spread. We used the susceptible-
infected-recovered (SIR) model to track the spread of disease in a weighted
scale-free network and measured the flow through all nodes. The system
exhibits evolving flow patterns: a F i vs. Si at t= 0 exhibits a positive
scaling, representing degree-driven flow (red). b At later times the role of
the hubs gradually diminishes and F i begins to decay in the limit of large Si,
a lack of scaling resembling homogeneous flow (green). c As the system
approaches the pandemic state (large t) F i begins to sharply decrease with
Si, entering a strongly degree-averting flow regime (blue). d Susceptibility
vs. t of a hub node (black) and a low degree node (gray). The hubs become
infected (non susceptible) at earlier times, and hence cease to contribute to
the spread—leading to the transition from degree-driven (red) to degree-
averting (blue) flow patterns. e The flow through the empirical weighted
international air-traffic network (nodes—international airports; edges—
volume of human travel on route) under SIR, as represented by node size at
t= 0, namely at the start of the outbreak. f F i vs. Si for the aviation network
at t= 0. The positive scaling confirms the degree driven flow. g, h At a later
time we find, on the same network, a different flow pattern, in which the
flow through the hubs begins to decline. i, j Finally, for large t the flow
enters the degree averting regime, as F i strongly avoids the hubs. In j we
show also the flow curve obtained at t= 3 (green watermark) for
comparison. Indeed for t= 10 (blue) we observe a much stronger decline in
hub-flow than that observed at t= 3, demonstrating the gradual evolution
towards degree-averting flow. These evolving flow patterns illustrate the
non-trivial mapping of the static topology to the observed dynamic
behavior. See detailed description in Supplementary Note 5. Error bars
represent 95% confidence intervals (Supplementary Note 3)
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strategic air routes. Such interventions help reduce the spread of
disease at the price of negatively impacting the mobility of people
and goods, a burden, which may significantly impact the global
economy. To minimize the damage, we seek optimal mitigation
strategies, which employ minimal intervention. Our analysis
suggests that hub-immunization, the commonly assumed strat-
egy, is only effective at the early stages of the spread. As the
spread unfolds the dynamic flow diffuses towards the peripheral
pathways.

In a broader perspective, such time dependent flow patterns
expose the limited predictive power offered by the static topology,
which remains unchanged in time. Our formalism, on the other
hand, was able to uncover the time evolving flow patterns,
providing crucial insights on the dynamic nature of disease
propagation, as well as practical implications on its mitigation.
For the detailed analysis of this system see Supplementary Note 5.

Metabolism. As our final example we analyze information flow
in Glycolysis (Fig. 6a47), a well-mapped metabolic pathway that
consumes glucose (triangle) to form the energy-rich ATP
molecule (pentagon). This biochemical sequence can be accu-
rately modeled via mass-action-kinetics (Fig. 6b), giving rise to a
rather rich module structure, including third and fourth order
reactions, that help us extend our analysis beyond pairwise
dynamics. Instead of i,j links, we now have modules that
represents chemical reactions, grouping together interacting
substrates and catalysts (large gray circles), whose reactions
generate flux (arrows), that link each module to its product
molecules.

In this system, information flows from the input glucose to the
output ATP, hence, by perturbing the glucose levels (a signal), we
can measure the contribution of all reactants (nodes) or reactions
(modules) to the flow, by sequentially freezing each node/module,

dxP

dt

dt
= kcatxCS

kcatkf

kr

C + S1 + S2 CS→C + P

= −kfxCxS1xS2 + krxCS + kcatxCS
dxC
dt

dxS1
dt

= −kfxCxS1xS2 + krxCS

dxS2
dt = −kfxCxS1xS2 + krxCS

dxCS = −kfxCxS1xS2 − krxCS − kcatxCS
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Fig. 6 The balanced flow of a metabolic pathway. a The Glycolysis pathway, transforming glucose (triangle) into ATP (pentagon) visualized as a hyper-
network. Each of the 10 modules (large gray circles) represents a chemical reaction, grouping together the substrates and catalysts (nodes) that participate
in the interaction (catalysts i= 1, …, 10; substrates i= 11, …, 28). The arrows represent the flux levels from each interaction (module) to its product nodes.
b Each interaction module comprises one or more substrates S1,S2, whose reaction, producing the product P, is catalyzed by the catalyst C. The bound
catalyst CS is an intermediate molecule, bridging between the interacting module (C,S1,S2) and its products (P). The dynamics of each interaction is
captures through mass-action kinetic equations, mapping the flux emerging from each module (arrow) to the appropriate nth order equation term. c The
flow from the input glucose to the output ATP through all nodes, as represented by node size. The pathway exhibits a balance of positive (blue) and
negative (red) flows, representing the regulatory nature of metabolism, that restricts information flow from source (glucose) to target (ATP), ensuring a
sustained level of ATP in the face of environmental perturbations. Catalysts have typically a tiny F i, as expressed by their small size. d The flow through
each module (size/color of modules) represents the contribution of a reaction to information flow. e, f Bar plot capturing the observed flows through
nodes/modules, portraying the balance of positive and negative flows. The small F i associated with the catalysts is also marked. See detailed description in
Supplementary Note 6
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and tracking the consequent changes in ATP production
(response). The resulting flow patterns, shown in Fig. 6c–f expose
a balance of positive (blue) and negative (red) flows, indicating
that although some nodes/modules enhance the spread, others
mitigate it, by negatively contributing to the flow. This balanced
picture illustrates the role of metabolism as a regulatory process,
intended to sustain the desired output levels (ATP) in the face of
environmental perturbations (glucose signal), achieved by
restricting the efficiency of information flow. Interestingly, our
flow analysis naturally distinguishes between substrates and
catalysts, the latter showing extremely low F i (Fig. 6c, e). This
finding is supported by empirical observations, that biochemical
outputs are highly insensitive to changes in enzyme concentra-
tion48. For the detailed analysis of this system see Supplementary
Note 6.

Discussion
From neuronal signals to gene regulation, complex networks
function by enabling the flow of information between nodes.
Understanding the rules that govern this flow is a crucial step
toward establishing a theory of network dynamics. Our approach
here is to separate the contribution of the topology (Aij) from the
dynamics (M, ω, ξ), allowing us to efficiently translate topological
characteristics (Si,in/out, Aij) into dynamic predictions (F i, F ij).
This will potentially enable us to leverage the vast amounts of
data collected in recent years on the topology of real networks,
into an understanding of their actual flow patterns. For instance,
here we have shown that degree heterogeneity, a ubiquitous
characteristic observed by almost all real networks1, translates
into one of three classes of flow: hubs may either dominate
information flow (red), have no impact on the flow (green) or
have a marginal role, effectively being the “shock-absorbers” of
the network’s signal propagation (blue).

Our derivations are exact for a random Aij with arbitrary
degree/weight distributions, and under the assumption of small
perturbations. We further establish their robustness when these
assumptions are violated in Supplementary Note 4, confronting
our predictions against large perturbations or non-random
characteristics of Aij, such as clustering C and degree-
correlations Q49. We find that extreme levels of C or Q may
result in a systematic decrease in ω, representing a reduction in
the role of the hubs. This occurs due to the prevalence of loops in
these limits, providing alternative pathways for the signals to
bypass the well-connected nodes, a purely topological effect,
observed independently of the dynamics. Still, even with these
minor deviations in the precise values of ω or ξ, our macro-scale
qualitative classification of flow patterns (degree-driven, homo-
geneous, degree-averting) remains unaffected, representing an
intrinsic characteristic of the system’s internal mechanisms M,
which is highly insensitive to microscopic discrepancies.

In a broader perspective, our predicted universality indicates
that the macroscopic flow patterns of complex systems are con-
trolled by only a few relevant parameters of the system’s micro-
scopic dynamics, in this case the leading powers of the expansion
(7). Such disparity between the unlimited microscopic degrees of
freedom, and the restricted set of macroscopic behaviors lays the
basis for a statistical mechanics theory of network dynamics,
allowing us to systematically translate a complex system’s
microscopic description, in terms of Aij and M, to its anticipated
large-scale dynamic behavior, e.g., centralized vs. peripheral flow.

Methods
Example: flow in regulatory dynamics. Our formalism provides a step-by-step
procedure to translate the topology Aij into dynamic flow F , through the expo-
nents ω and ξ. As an example we consider gene regulatory dynamics R, where

(Supplementary Note 2)

dxi
dt

¼ �xai þ
XN
j¼1

Aij

xhj
1þ xhj

; ð12Þ

with a, h> 0. The contribution of all paths to the flow is governed by the exponents
ω and ξ, which we now exemplify how to analytically extract in three steps: First,
we break the dynamics into the three components of M, providing

M0ðxÞ ¼ �xa; M1ðxÞ ¼ 1; M2ðxÞ ¼ xh

1þ xh
: ð13Þ

We then construct the power series (7): first writing W(x) = −M1(x)/M0(x) = x−a;
then inverting it to obtain W−1(x) = x−1/a; finally, using (7) we construct the power
series as

M2 W�1ðxÞ� � ¼ x�
h
a

1þ x�
h
a

¼ 1� x
h
a þ O x2

h
a

� �
: ð14Þ

From (14) we extract the leading powers of M2(W−1(x)) as Γ(0) = 0 and Γ(1) = h/a.
We next use Γ(n) in (8) to predict ω and ξ =ω − 1: here, since Γ(0) = 0, Eq. (8)
predicts

ω ¼ 1� Γð1Þ ¼ 1� h
a
; ð15Þ

providing, for R1 (a = 1, h = 1/3), ω = 2/3, a degree-driven dynamics, and for R2

(a = 1, h = 2) ω = −1 a degree-averting dynamics. Hence, on the same network, a
slight change in the dynamics (value of h) leads to fundamentally different flow
patterns. A detailed analysis of all dynamics in Table 1 appears in Supplementary
Note 2.

Data availability. We make our code DynamicFlow.m (Matlab) available with this
submission. The code accepts a user defined network and dynamics and provides
the dynamic flow patterns as output, together with the scaling relationships
reported throughout the paper. Specifically, the code allows users to reproduce all
results presented in the paper. All empirical networks used in this work are publicly
available online.
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