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Abstract

We examined the presence of maximum information preservation, which may be a fundamental principle of information
transmission in all sensory modalities, in the Drosophila antennal lobe using an experimentally grounded network model
and physiological data. Recent studies have shown a nonlinear firing rate transformation between olfactory receptor
neurons (ORNs) and second-order projection neurons (PNs). As a result, PNs can use their dynamic range more uniformly
than ORNs in response to a diverse set of odors. Although this firing rate transformation is thought to assist the decoder in
discriminating between odors, there are no comprehensive, quantitatively supported studies examining this notion.
Therefore, we quantitatively investigated the efficiency of this firing rate transformation from the viewpoint of information
preservation by computing the mutual information between odor stimuli and PN responses in our network model. In the
Drosophila olfactory system, all ORNs and PNs are divided into unique functional processing units called glomeruli. The
nonlinear transformation between ORNs and PNs is formed by intraglomerular transformation and interglomerular
interaction through local neurons (LNs). By exploring possible nonlinear transformations produced by these two factors in
our network model, we found that mutual information is maximized when a weak ORN input is preferentially amplified
within a glomerulus and the net LN input to each glomerulus is inhibitory. It is noteworthy that this is the very combination
observed experimentally. Furthermore, the shape of the resultant nonlinear transformation is similar to that observed
experimentally. These results imply that information related to odor stimuli is almost maximally preserved in the Drosophila
olfactory circuit. We also discuss how intraglomerular transformation and interglomerular inhibition combine to maximize
mutual information.
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Introduction

How is sensory information received by sensory receptor cells

transferred to higher brain regions? The data processing inequality

of information theory states that any kind of information

processing can only reduce the amount of information [1].

Sensory information is therefore gradually lost as it is passed to the

next processing stage. However, for sensory information to be

conveyed accurately to higher brain regions, as much information

as possible should be preserved. Thus, it is conceivable that a

principle common to all sensory modalities is ‘to maximally

preserve the information’ [2]. Here, we investigated the presence

and mechanisms of maximum information preservation in the

olfactory system using a network model and physiological data of

neural responses [3,4].

We chose the Drosophila antennal lobe as a model circuit because

it has many advantages for investigating information transformation

within the circuit. First, it is organized into discrete compartments

termed glomeruli as in the vertebrate olfactory bulb (Fig. 1 (A)) [5,6].

All olfactory receptor neurons (ORNs) expressing the same odorant

receptor gene send their axons to the same glomerulus, where they

synapse onto second-order projection neurons (PNs) [7,8]. The

dendrite of each PN is confined within a single glomerulus [9–11].

Local neurons (LNs) interconnect glomeruli and mediate both

excitation and inhibition [6,12–22]. This glomerular architecture

simplifies physiological investigations of the circuit’s connectivity.

Second, there are only approximately 50 glomeruli in Drosophila [5]

compared with approximately 1800 in mice. In each glomerulus,

about 40 ORNs converge onto an average of three PNs [23–26].

Third, the responses of ORNs and PNs to various odors have been

extensively analyzed [3,4,23,24,27]. These advantages enabled us to

study information processing in the olfactory system on the basis of

an olfactory network model that takes account of (1) the actual

connectivity, (2) almost all neurons engaged in the olfactory

processing, and (3) the response properties of ORNs and PNs to

real odorants.

Importantly, because odor information in both the ORN and

PN layers is represented by population activities of various types of

ORNs and PNs [3,4,27,28], the investigation of information

processing in the olfactory system requires consideration of as
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many of the neurons that contribute to information processing as

possible. However, quantitative assessment of information pro-

cessing in large neuronal populations is difficult and few studies

have examined large neural populations engaged in sensory

information processing [29]. Here, we utilized the above three

advantages to construct a network model that includes approxi-

mately half of all the neurons engaged in olfactory information

processing and computed the amount of information contained in

the entire neural population.

Recent investigations have shown that PNs are broadly tuned to

odors, whereas ORNs are narrowly tuned [3,30]. In ORNs, most

odor responses cluster in the weak end of their dynamic range. In

PNs, however, odor responses are distributed more uniformly

throughout their dynamic range. This is a result of nonlinear

transformation between ORN and PN responses. The nonlinearity

amplifies weak ORN inputs greatly, but does not amplify strong

ones as much. As PNs use their dynamic range more efficiently than

ORNs, this transformation is thought to assist the decoder in

discriminating between different odors. However, it is also expected

that the neural variability of PN responses will increase when weak

ORN inputs are amplified strongly. Confirmation that nonlinear

transformation does increase odor discriminability requires quan-

titative verification that considers not only the separation of mean

neural responses, but also the variability of responses. In this study,

we quantitatively determined whether the nonlinear firing rate

transformation was optimum in terms of maximum information

preservation by computing the mutual information between

odorant stimuli and PN responses in our network model. Mutual

information quantifies odor discriminability taking into account not

only the separation of mean neural responses but also the variability

of responses without any assumption of specific decoders.

In the Drosophila antennal lobe, two main processes contribute to

transform neural representations in ORNs into those in PNs,

namely intraglomerular transformation and interglomerular inter-

action through LNs. The shape of the nonlinear transformation

between ORN and PN firing rates is therefore formed by these two

factors [3,12–16,31]. We simply parameterized the form of

intraglomerular transformation as one variable and the strength

of LN input to each glomerulus as another variable. By

systematically varying these two variables, we found that mutual

information between odor stimuli and PN responses was maximized

when the intraglomerular transformation preferentially amplified a

weak ORN input and the net LN input was inhibitory. This is the

very combination observed experimentally [13,31]. Furthermore,

the shape of the resultant nonlinear transformation was similar to

that obtained experimentally [3]. These results suggest that ORN

activity is transformed into PN activity in a near-optimal manner so

as to preserve the maximum information. We also discuss how the

intraglomerular transformation and interglomerular interaction

contribute to increase mutual information.

Methods

Network model of the Drosophila antennal lobe
In this section, we describe the construction of a network model

of the Drosophila antennal lobe (Fig. 1 (B)). There are three types of

neurons in the Drosophila antennal lobe: ORNs, PNs, and LNs. We

assume that these neurons fire according to a Poisson process with

a time-independent firing rate for ORNs and a time-dependent

firing rate for PNs and LNs. Our network model has a two-layer

feed-forward architecture consisting of an ORN layer and a PN

layer. The antennal lobe is subdivided into characteristic structures

called glomeruli that constitute discrete processing channels. All

the ORNs expressing a particular receptor converge onto the same

glomerulus and connect to PNs [7,8], with the dendritic arbors of

individual PNs confined within a single glomerulus [9–11]. Each

PN therefore receives direct input from just one ORN type (Figs. 1

(A) and (B)). Our model incorporates all these characteristics of the

antennal lobe circuit.

First, for the model of ORNs, we assumed that ORNs show only

excitatory responses to odors and that these responses are time-

independent. We determined the ORN firing rates for a given odor s
by using Hallem and Carlson’s [4] comprehensive study, which

measured responses of 24 types of ORNs to over 100 odors. The

value of the mean ORN firing rate in response to odor s is denoted

by f k,ORN (s), where superscript k indicates the glomerular identity.

The values of f k,ORN(s) are shown in Fig. 2 (A) (Fig. 1 in ref. [4]).

Figure 2 (B) shows a histogram of the ORN firing rate. Most ORN

odor responses are clustered at the weak end of the dynamic range of

the ORNs, with this being a characteristic feature of their responses.

Second, for the LN model, we assumed that (1) LNs receive

synaptic input from all ORNs and (2) LNs innervate all PNs. These

assumptions were made in order to reflect recent experimental

observations that the strength of an inhibitory lateral input was

positively correlated with the total ORN activity evoked by each

odor [13] and that all the PNs examined received interglomerular

excitation [12]. The former observation would imply that the odor

tuning of the lateral input is similar across glomeruli. For simplicity,

we assumed that the synaptic strengths between ORNs and LNs

and between LNs and PNs are homogeneous. The total inputs from

ORNs to LNs are modeled by

hORN?LN (t)~
XNORN

j~1

XNg

k~1

X

t
k,ORN
j

vt

L

NORN Ng

exp {(tk,ORN
j {t)=t

� �
, ð1Þ

where NORN is the number of ORNs within a single glomerulus, Ng

is the total number of glomeruli in the network, tk,ORN
j is the time

when the jth ORN in the kth glomerulus fires, and L is the synaptic

strength between ORNs and LNs. L is set to 10. Synaptic inputs

from ORNs are modeled by an exponential with a time constant t.

Figure 1. Schematics of the Drosophila olfactory circuit. (A) Drosophila olfactory circuit. (B) Circuit network model.
doi:10.1371/journal.pone.0010644.g001

(1)
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We set t to 2 ms. The results of our study were insensitive to the

absolute value of t (data not shown). Synaptic events before time t
are all summed up linearly in Eq. 1. We assumed that the LN firing

rate f LN (t) increases linearly with the strength of input hORN?LN (t),
i.e.,

f LN (t)~hORN?LN (t): ð2Þ

Third, for the PN model, we chose a configuration in which

each PN receives direct input from ORNs in a single glomerulus,

hORN?PN , and lateral input from LNs, hLN?PN . Therefore, the

total inputs received by a PN at time t are modeled by

hk
i (t)~hORN?PN (t)zhLN?PN (t), ð3Þ

hORN?PN (t)~
XNORN

j~1

X

t
k,ORN
j

vt

J

NORN

exp {(tk,ORN
j {t)=t

� �
, ð4Þ

hLN?PN (t)~
XNLN

j~1

X
tLN
j

vt

K

NLN

exp {(tLN
j {t)=t

� �
, ð5Þ

where NLN is the number of LNs and tLN
j is the time when the

jth LN fires. In Eq. 4, J is the synaptic strength between ORNs

and PNs. We chose a configuration where ORNs are connected

to PNs in an all-to-all manner and the synaptic strength between

ORNs and PNs is homogeneous, reflecting the experimental

findings [31,32]. In Eq. 5, K is a parameter controlling the

strength of lateral input from LNs. Lateral input is excitatory

when Kw0 and inhibitory when Kv0. Although the net LN

input is inhibitory, as observed experimentally [13], excitatory

LNs are also present within the antennal lobe [12,14,15]. We

examined the effects of both excitatory (Kw0) and inhibitory

(Kv0) lateral inputs on odor discriminability on the basis of PN

responses. The PN firing rate at time t is determined by the

strength of input hk
i (t) as

f k,PN
i (t)~

0 for hk
i (t)vhth

fmax
exp (ahk

i (t)){ exp (ahth)

exp (ahmax){ exp (ahth)
for hthvhk

i (t)vhmax

fmax for hk
i (t)whmax

8>>><
>>>:

ð6Þ

where hth is an input threshold value below which the PN firing
rate is 0 and hmax is the value above which the PN firing rate is
saturated at the maximum value fmax. The relationship between
ORN and PN firing rates for different a values when hth~0,
hmax~0:4, J~1, and K~0 (no lateral input) is shown in Fig. 3.

Here, a controls the shape of the transformation between ORN

and PN firing rates within a glomerulus. The functional form of

Eq. 6 suitably describes the actual relationship between ORN

and PN firing rates [3,13]. When av0, the intraglomerular

transformation preferentially amplifies weak ORN inputs and

when aw0, it rather suppresses weak ORN inputs. We call the

firing rate transformation concave when av0 and convex when

aw0.

From Eqs. 3–6, we can see that the strength of feed-forward

connections between ORNs and PNs J is just a scaling

parameter, i.e., free parameters are only the ratio of strength of

feed-forward and lateral connections, K=J, and a. For

simplicity, we set J to 1 without loss of generality. Parameters

K and a determine the relationship between ORN and PN

firing rates. We investigated the optimum firing rate transfor-

mation between ORNs and PNs from the viewpoint of

maximum mutual information by systematically changing K
and a.

The parameters hth and hmax were fixed as follows. First, we

determined hmax so that the PN firing rate saturates when the firing

rate of a presynaptic ORN is nearly 250 Hz (Fig. 3). Specifically,

hmax was set to 0.4. Second, we determined hth based on the

experimentally observed relationship between ORN and PN firing

Figure 2. Properties of ORN responses. (A) Experimental data for 24 types of ORN responses to 110 odors adapted from Fig. 1 in Hallem &
Carlson [4]. Colors show ORN firing rates. (B) Histogram of ORN response magnitudes obtained from the data in panel (A).
doi:10.1371/journal.pone.0010644.g002
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rates without lateral input [13]. This experiment showed that the

slope of the ORN-to-PN firing rate transformation close to the

origin was very steep in the absence of lateral input. This indicates

that hth is very small. The relationship between ORN and PN firing

rates for different values of hth is shown in Fig. 4. When hth is 0.04

(dot-dashed line in Fig. 4), the slope at the origin is nearly 0. This is

inconsistent with the experimental data [13]. For simplicity, we set

hth to 0 (see ‘Effect of static firing threshold on mutual information’

for cases of different hth). When we determine hth and hmax as

described above, our model emulates the experimentally observed

firing rate transformation in [13] for a certain value of a.

Mutual information
We computed the mutual information between population

activities of PNs r and odors s. A component of vector r is the

number of spikes emitted by a PN within a time bin Dt. We set Dt
to 10 ms. Since we defined the maximum PN firing rate as

200 Hz, two spikes are emitted on average by PNs with the highest

firing rate. To reduce the amount of computation, we set a

threshold value for r, denoted by rmax, and reset the number of

spikes as rmax whenever a PN spikes more than this value. We set

rmax to 5 considering that the probability of there being more than

five spikes within a bin is less than 0:02.

The mutual information is given by

I(r; s)~H{Hn ð7Þ

H~{
X

r

P(r) log2 P(r) ð8Þ

Hn~{
X

r

X
s

P(s)P(rDs) log2 P(rDs), ð9Þ

where H is the entropy and Hn is the noise entropy and P(s) is

uniform for all odors; that is, P(s)~1=ns, where ns is the number of

odors. We estimated the conditional probability distribution P(rDs)
by simulating the network model 400 times.

P
r represents the

summation over all possible PN activity patterns. The number of all

possible PN activity patterns is (rmaxz1)NgNPN , where Ng is the

number of glomeruli and NPN is the number of PNs within each

glomerulus. The computational costs grow exponentially with the

number of neurons, so the mutual information calculation is limited

Figure 3. Transformation between ORN and PN firing rates for
various values of a. LN input was set to 0 (K~0). The PN firing
threshold, hth, is 0. a is 0 (solid line), 30 (dashed line), 230 (dot-dashed
line).
doi:10.1371/journal.pone.0010644.g003

Figure 4. Transformation between ORN and PN firing rates for various values of firing threshold. LN inputs were set to 0 (K~0). a was
set to {38. The PN firing threshold, hth , is 0 (solid line), 0.02 (dashed line), or 0.04 (dot-dashed line). Panel B is an expanded view of panel A.
doi:10.1371/journal.pone.0010644.g004
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by the size of the neural population. When we computed the mutual

information using Eqs. 7–9, we set NPN to 1 and Ng to 8.

When we considered a larger number of neurons (NPN~3,

Ng~24), we estimated the mutual information by using the

decoding approach [33]. In this approach, we trained support

vector machine (SVM) classifiers and evaluated their performance.

Decoding performance is usually quantified by the correct

classification rate, which is the average of the diagonal elements

in the confusion matrix. Whereas the classification rate deals with

only the most likely stimulus predicted by the decoders given a

particular neural response, the mutual information quantifies the

overall knowledge about the presented stimulus, such as which

stimulus is unlikely given a particular neural response. To link the

information theoretic and decoding approaches, we must take into

account the off-diagonal elements of the confusion matrix. We can

estimate mutual information from the confusion matrix after

decoding using the following equation [33,34].

I(sp; s)~{
X

sp P(sp) log2 P(sp)z
X

sp

X
s
P(s)P(spDs) log2 P(spDs),

ð10Þ

where sp denotes the stimulus prediction of SVM classifiers for

stimulus s when the PN responses y are given. Note that

I(y; s)§I(sp; s) always holds from the data processing theorem

[1]. Although the decoding approach underestimates the amount

of information that neural responses carry, it can deal with much

larger neural populations than methods that calculate the exact

amount of mutual information. We used the information theoretic

and decoding approaches in a complimentary manner to evaluate

odor discriminability from neural responses.

A Library for Support Vector Machines (LIBSVM) was used to

implement the SVM classifiers [35]. We used the one-against-one

method for multiclass SVMs [36]. For K classes, this method

constructs K(K{1)=2 different 2-class SVM classifiers for all

possible pairs of classes. Test points are then classified according to

a majority vote of these K(K{1)=2 SVM classifiers as to which

class is more likely. We chose a linear kernel because it gave the

best classification performance and the closest estimate to the exact

mutual information.

Results

Information theoretic approach
First, we computed the mutual information between odor

stimuli and PN responses while systematically varying the

intraglomerular transformation parameter a and LN input

strength K (see Eqs. 5 and 6). Although the actual average

numbers of ORNs, NORN , and PNs, NPN , within a single

glomerulus in the Drosophila antennal lobe are said to be 40 and 3,

respectively [23–26], we set NORN to 40 and NPN to 1 considering

the cost of the mutual information computation. For the same

reason, we reduced the number of glomeruli Ng to 8 although data

on ORN responses are available for 24 glomeruli (Fig. 2 (A)). We

divided this data set into three non-overlapping groups consisting

Figure 5. Contour plot of the mutual information when the intraglomerular transformation shape a and LN input strength K were
varied. Colors show the value of the mutual information. Different sets of glomeruli were used in panels (A), (B), and (C). Peak e (K~0:75, a~42),
peak i (K~{0:26, a~{30) and point n (K~0, a~{14) are the points where the mutual information was maximized under the conditions where
Kw0, Kv0, and K~0 respectively.
doi:10.1371/journal.pone.0010644.g005
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of eight glomeruli each and then computed the mutual

information in these three groups. The number of LNs was set

to 10. Later, we estimate the mutual information without reducing

the number of neurons and using the entire data set at once (see

‘Decoding approach’).

Contour plots of the mutual information in a two-dimensional

parameter space where the vertical axis is a and the horizontal axis

is K are shown in Figs. 5 (A)(B)(C). Although the plots are for

computations on different sets of glomeruli, the results are

qualitatively similar. Therefore, we focus on the results shown in

Fig. 5 (A), where two peaks are prominent in this graphical

representation of the mutual information. At the lower left peak

(denoted peak i), Ii~2:0, K~{0:26, and a~{30, while at the

upper right peak (denoted peak e), Ie~1:8, K~0:75, and a~42.

At peak i, the intraglomerular transformation is concave (dot-

dashed line in Fig. 3) and the LN input is inhibitory. This

combination of K and a is consistent with previous experimental

results for the Drosophila olfactory system [13,31]. In contrast, at

peak e, the intraglomerular transformation is convex (dashed line

in Fig. 3) and the LN input is excitatory. There is less mutual

information at peak e than at peak i, so the mutual information is

maximized at peak i.

The solid line in Fig. 6 shows the relationship between ORN

and PN responses at peak i, and the dashed line shows the same

relationship with the LN input removed. The nonlinear transfor-

mation shapes represented by the solid and dashed lines in Fig. 6

are similar to those observed in previous experiments [3,13]. Olsen

and Wilson [13] demonstrated the relationship between ORN and

PN responses before and after removal of the lateral input, and

these responses correspond to the solid line (before) and dashed

line (after) in Fig. 6. This similarity in the nonlinear transformation

suggests that from the viewpoint of information preservation,

ORN activity is transformed in an almost optimal manner into PN

activity in the Drosophila antennal lobe.

How the LN input affects the PN responses can be visualized by

comparing the PN response histogram at peak i with that at point

n, where mutual information is maximized under the condition of

no LN input (K~0) (Fig. 5 (A)). PN response histograms at peak i

and point n are shown in Figs. 7 (A) and (B), respectively. As a

consequence of the intraglomerular transformation, these histo-

grams are flatter than the ORN response histogram (Fig. 2 (B)).

However, by comparing these histograms, we can see that PN

odor responses are slightly clustered around the weak end of the

PNs’ dynamic range at peak i. This is because only the

intraglomerular transformation has an effect at point n, while

the LN input has an additional effect at peak i. The PN response

histogram shown in a previous experiment has similar character-

istics to the histogram at peak i [3]. When mutual information at

peak i is compared with that at point n, the value at peak i is larger

than that at point n, IiwIn (Ii~2:0, In~1:7). These results suggest

that not only the intraglomerular transformation but also the LN

input contribute to increase mutual information in the olfactory

system as it did in our network model.

Mechanisms underlying the enhancement of mutual
information

Next, we examined how the intraglomerular transformation and

the interglomerular interaction contribute to increase mutual

information. Mutual information I is the difference between

entropy H and noise entropy Hn (Eq. 7). Entropy measures the

variability of neural responses to different odors and is related to

the degree of flatness in the histogram of the neural response

magnitudes [3,37]. Noise entropy measures the average variability

of neural responses to a particular odor. For a large amount of

Figure 6. Relationship between ORN and PN responses at peak
i. Dots show all types of ORN responses to all odors at peak i in Fig. 5
(A). The solid line is an exponential fit of the dots (y~fmaxzAekx). The
dashed line shows the same relationship except with LN input set to 0
(K~0).
doi:10.1371/journal.pone.0010644.g006

Figure 7. Histogram of PN responses. (A) Histogram of PN response magnitudes at peak i in Fig. 5 (A). (B) Histogram of PN response magnitudes
at point n in Fig. 5 (A).
doi:10.1371/journal.pone.0010644.g007
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mutual information to be obtained, entropy should be large and

noise entropy should be small.

We examined how mutual information, entropy, and noise

entropy changed when a or K was changed around peak i in Fig. 5

(A). We found that both entropy and noise entropy increased as

the intraglomerular transformation shape was changed from linear

(a~0) to concave (av0) (Fig. 8 (A)). Mutual information increased

because entropy increased more rapidly than noise entropy. This

result indicates that the concave intraglomerular transformation

increases mutual information by increasing the variability of

neural responses to different odors. In contrast, both entropy and

noise entropy decreased as the strength of inhibitory LN input

increased (Fig. 8 (B)). Mutual information increased because noise

entropy decreased more than entropy. This result indicates that

the inhibitory LN input increases mutual information by

decreasing the noise of neural responses.

When a or K was changed around peak e, the behavior of the

entropy and noise entropy was opposite to that around peak i. The

convex intraglomerular transformation increased mutual informa-

tion by decreasing noise entropy, and the excitatory LN input

Figure 8. Dependence of the mutual information, entropy, and noise entropy on a and K . Solid lines represent the mutual information,
dashed lines represent entropy, and dot-dashed lines show noise entropy. (A) K was set to the value at peak i in Fig. 5 (A) (K~{0:26). (B) a was set to the
value at peak i in Fig. 5 (A) (a~{30). (C) K was set to the value at peak e in Fig. 5 (A) (K~0:75). (D) a was set to the value at peak e in Fig. 5 (A) (a~42).
doi:10.1371/journal.pone.0010644.g008

Maximum Information Transfer
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increased mutual information by increasing the entropy (Fig. 8

(C)(D)).

Decoding approach
In the previous section, we used the subdivided data sets

obtained from the data set in Fig. 2 (A). In this section, we describe

the use of the whole data set containing ORN responses to 110

odors in 24 glomeruli. We also set the numbers of ORNs and PNs

within a single glomerulus to 40 and 3, respectively, to match the

actual average numbers of neurons in the Drosophila antennal lobe.

The number of LNs was set to 10, as in the previous section. To

assess a large number of neurons, we estimated mutual

information using the decoding approach [33] rather than

computing it exactly. To estimate mutual information in Eq. 10,

we ran simulations of the olfactory network described in the

previous section. We then trained linear SVM classifiers by using

the simulation data set and tested their performance. Finally, we

estimated mutual information from the performance of the linear

SVM classifiers (see ‘Methods’ for details).

First, we examined how well the mutual information estimated

from the decoding approach matched the actual mutual

information. We performed this comparison using the subdivided

data set presented in Fig. 5 (A). Figures 9 (A) and (B) show the

exact and estimated mutual information when K was changed

around peaks i and e, respectively. Although the estimated mutual

information converged to a level that underestimates the real

mutual information, we were able to estimate with relatively high

accuracy the positions of both peaks (Fig. 9). Therefore, with

regard to the positions of and relationship between the peaks, the

mutual information estimated from the SVM classifiers provides a

reliable answer. We subsequently set the number of trainings and

test data to 200 each. With this approach, we next estimated

mutual information using the entire data set.

A contour plot of the estimated mutual information is shown in

Fig. 10 (A). As in Fig. 5 (A) there are two peaks. At peak i, Ii~5:4,

K~{0:27, and a~{38; at peak e, Ie~4:0, K~0:3, and a~10.

We increased the number of glomeruli, so these mutual

information estimates are larger than those obtained in the

previous section. There was significantly more mutual information

at peak i than at peak e. Figures 10 (B) and (C) show the

relationship between ORN and PN responses and the histogram of

PN response magnitudes at peak i, respectively. The results in

these figures qualitatively match the results obtained in previous

physiological experiments [3,13], further suggesting that the

principle of maximum information preservation is used in the

Drosophila antennal lobe.

To compare the coding efficiency in PNs with that in ORNs, we

compared the mutual information of ORNs with that of PNs when

the mutual information was maximized (at peak i). The estimated

mutual information contained in all ORNs and in all PNs were

IORN~6:8 and IPN~5:4; therefore, IORN was larger than IPN ,

which is consistent with the data processing theorem [1]. When we

computed the mutual information using the same numbers of

ORNs and PNs, however, the estimated ORN mutual information

became 4:6, which is markedly smaller than IPN . This demon-

strates that PNs encode odor information more efficiently than

ORNs at peak i. This is consistent with the experimental results of

Bhandawat et al. [3].

Adaptive gain control
As described in the ‘Methods’ section, the strength of the

inhibitory lateral input is positively correlated with the total ORN

activity evoked by each odor [13]. This lateral inhibition is

considered to mediate gain control in the olfactory circuit. In this

section, we discuss how the adaptive gain control promotes a more

efficient neural code for odors by considering the discrimination of

pairs of odors.

Table 1 shows how the inhibitory LN input changed the

performance of binary SVM classifiers, the distance of mean

responses, and the mean variance of responses for all possible pairs

of odors. a and K are values at peak i. The distance of the mean

responses to two odors is the distance between two vectors of the

mean number of spikes emitted by PNs within Dt~10 ms. The

mean variance of PN responses to an odor is the mean of the

Figure 9. Comparison of actual and estimated mutual information. The solid line represents the actual mutual information. Dashed, dot-
dashed, and dotted lines represent the estimated mutual information when the number of trainings and test data was 50, 100, and 200, respectively.
(A) a was set to the value at peak i in Fig. 5 (A) (a~{30). (B) a was set to the value at peak e in Fig. 5 (A) (a~42).
doi:10.1371/journal.pone.0010644.g009
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distance between the trial-averaged PN response vector and the

individual PN response vectors in all the trials. The number of

trials was 1000. To enable the responses to different odors to be

separated, the distance of mean responses should be large and the

mean variance of responses should be low. As can be seen in

Table 1, inhibition basically decreases the neural variability for all

PN responses.

We found that the correct classification rate was increased for

75% of pairs of odors by inhibitory LN input (Table 1). In 76% of

cases within this category, the distance of mean responses was

increased while the mean variance of responses was decreased,

which are both beneficial for odor discrimination. These odor pairs

evoked strong responses in ORNs. Since the inhibitory inputs were

strong when the total ORN activity was high, these responses were

strongly inhibiting. We visualized how the strong inhibitory LN

input separated PN responses to odor pairs of this type by using

principal component analysis. In Fig. 11 (A), where there is no

inhibition (K~0), two clusters corresponding to the PN responses to

two odor stimuli are concentrated near the point (large circle) where

the firing rates of all PNs are maximum. This shows that many PNs

received a strong input from ORNs when these two odors were

presented. In this case, the distance between mean responses to two

Figure 10. Results of the decoding approach: they are qualitatively the same as those of the information theoretic approach. (A)
Contour plot of estimated mutual information when the intraglomerular transformation shape a and LN input strength K were varied. Colors show
the value of the estimated mutual information. All glomeruli shown in Fig. 2 (A) were used. (B) Relationship between ORN and PN responses at peak i
in panel (A). Dots represent all types of ORN responses to all odors. The solid line is an exponential fit of the dots (y~fmaxzAekx). The dashed line
represents the same relationship except with LN input set to 0 (K~0). (C) Histogram of PN response magnitudes at peak i in panel (A).
doi:10.1371/journal.pone.0010644.g010
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odors was small because of the saturation of responses caused by the

concave intraglomerular transformation. When inhibition was

induced, the two clusters separated and moved toward a point

(large cross) where all PNs were silent (Fig. 11 (B)).

In the other pairs for which the correct classification rate was

increased, the distance between mean responses was decreased.

However, the correct classification rate was increased since the

variability of neural responses was also decreased. The PN

responses of pairs of these types are shown in Figs. 11 (C)(D). In

these pairs, PN firing rates were relatively low, which means that

the inhibition was not strong. In Fig. 11 (D), the distance between

the center points of clusters is decreased as well as variability of

neural responses compared with Fig. 11 (C). However, the amount

of the increase in the correct classification rate is relatively small.

In 21% of pairs, the correct classification rate was decreased due

to the decrease in the distance between mean responses. For these

pairs, the inhibitory input was small because PN firing rates were

relatively low. The amount of the decrease in the correct

classification was also relatively small. In 2% of the odors, the

correct classification rate did not change. In these pairs, the correct

classification was 100% with or without inhibition.

Taken together, these results indicate that an inhibitory LN input

enhances odor discriminability mainly by separating the responses

of PNs that receive a strong ORN input. Without lateral input, these

PN responses saturated because of the concave intraglomerular

transformation. For odors where the total ORN activity was

relatively small, inhibitory LN input did not affect odor separability

much because the amount of inhibition was not high. In this case,

the separability of odors was increased for some of pairs (18%) and

decreased for some of pairs (21%). On the whole, adaptively

changing the inhibitory LN input helps odor discrimination.

Effect of static firing threshold on mutual information
In the previous sections, we assumed that the PN firing threshold

hth was fixed at 0, reflecting the experimental observation [13] that

the slope of a firing rate transformation curve was very steep even

when the ORN firing rate was close to 0. In this section, we report on

varying hth and investigating the effects of raising the firing threshold.

First, we examined how increasing hth affected the mutual

information when a was fixed. The mutual information was estimated

by using the decoding approach, as in the previous section. The

estimated mutual information when a~{38 is shown in Fig. 12.

The mutual information was maximized when hth~0:04. Thus,

raising the PN firing threshold can increase the mutual information

like increasing the strength of adaptive inhibitory inputs can.

The contour plot of the estimated mutual information when

hth~0:04 is shown in Fig. 13(C). In this case, the mutual

information was maximized when K was nearly 0, and the

beneficial effect of LN input on the mutual information was

significantly diminished. This is because the PN firing rates were

already fairly suppressed by the firing threshold. When hth was

smaller than the optimized value (hth~0:04), the mutual

information was maximized in a region where inhibitory gain

control worked. For instance, when hth~0:02 (Fig. 13(B)), we can

see an i peak, as in the case of hth~0 (Fig. 13(A)).

The firing transformation between ORNs and PNs when

hth~0:04 and a~{38 is shown in Fig. 4. There, the slope at the

origin is nearly 0, which is inconsistent with the experimental data

[13]. We therefore could conclude that the PN firing threshold in

the actual olfactory system is smaller than this optimized value and

that an adaptive inhibitory input can promote efficient neural

coding of odors (see ‘Discussion’).

Discussion

Maximum information preservation in the Drosophila
antennal lobe

In this study, we investigated whether information related to

odor stimuli is maximally preserved in the Drosophila antennal lobe.

Taking account of approximately half of all the neurons engaged

in olfactory processing (24 out of a total of approx. 50 glomeruli)

and ORN responses to 110 odorants, we computed the mutual

information between odor stimuli and PN responses in an

antennal lobe model. Our network model is simple but

incorporates the essential architecture and connectivity of the

antennal lobe. We found that mutual information was maximized

when the intraglomerular transformation was concave (Fig. 3) and

the LN input was inhibitory, which is consistent with previous

experimental results [13,31]. Furthermore, the shape of the

resultant nonlinear transformation between ORN and PN

responses is similar to that observed experimentally [3,13]. This

indicates that the principle of maximum information preservation

is used in the Drosophila primary olfactory center.

Neural mechanisms underlying maximum information
preservation

We also examined how the intraglomerular transformation and

inhibitory LN input contribute to increase the mutual information.

In ORNs, odor responses are clustered at the weak end of their

dynamic range. The concave intraglomerular transformation

Table 1. Effects of inhibitory LN input on odor pair discrimination.

Ratio(%)

Averaged firing
rate without
inhibition (Hz)

Averaged
firing rate with
inhibition (Hz)

Difference
of averaged
firing rate (Hz)

Difference
of correct
rate (%)

Difference
of variance
(Hz)

Difference
of distance
(Hz)

Correct rate
increase

Distance increases and
variance decreases

57 146 89 {58 5.00 {12 67

Distance decreases and
variance decreases

18 127 79 {48 0.82 {104 {21

Correct rate
decreases

Distance increases and
variance decreases

2 130 80 {50 {0:60 {110 15

Distance decreases and
variance decreases

21 121 77 {44 {1:27 {98 {43

Correct rate
does not change

2 123 78 {46 0 {102 {26

doi:10.1371/journal.pone.0010644.t001
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increases mutual information by equally distributing PN response

magnitudes in their dynamic range. In terms of entropy and noise

entropy, the concave intraglomerular transformation increases

mutual information by increasing entropy more than noise

entropy (Fig. 8 (A)).

Inhibitory LN input has two beneficial effects. The first is to

decrease the neural variability of PN responses evoked by a given

odor, as shown in Table 1. The second is to separate saturated PN

responses by inhibiting them (Figs. 11 (A)(B)). Importantly, the

inhibitory LN input is adaptive, i.e., the inhibitory input strength

depends on the overall ORN activity [13]. This adaptive gain

control mechanism enables the actual olfactory system to deal with

odors with a wide range of magnitudes. Raising the PN firing

threshold, which can be considered as static inhibition, can increase

the mutual information like adaptive inhibitory LN input can

(Fig. 12). However, raising the firing thresholds has the disadvantage

that it equally inhibits PN responses regardless of the magnitude of

ORN responses whereas adaptive inhibition does not inhibit weak

PN responses much when the total ORN activity is low. This will

prevent the brain from recognizing low-concentration odors.

Figure 11. Visualization of the effects of an inhibitory LN input that separates one response from another. Two different inhibition
mechanisms that distinguish odors as represented in panels (A)(B) and in panels (C)(D). Circles and crosses are simulated data for PN responses to two
different odor pairs obtained from our network model. Responses of 24 PN types to the odors are projected onto a space defined by the first two
principal components. Solid lines show the decision boundaries of SVM classifiers learned from training data. Test data are plotted. Large crosses at
the bottom of the figures represent the points where all PNs were silent. Large circles at the top represent the points where all PNs were firing. a was
set to the value at peak i in Fig. 10 (A) (a~{38). In panels (A) and (C), there was is no LN input (K~0). In panels (B) and (D), K was set to the value at
peak i in Fig. 10 (A) (K~{0:27).
doi:10.1371/journal.pone.0010644.g011
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Because the olfactory system has to deal with a wide variety of odors,

we infer that the firing threshold of a real PN is low and that

adaptive gain control mechanisms, rather than a static threshold,

are used. In fact, we found that the firing rate transformation

between ORNs and PNs when the PN firing threshold was high did

not resemble the actually observed one (Fig. 4).

Two possible mechanisms promoting odor
discrimination

We computed the mutual information between stimuli and PN

responses by systematically changing the parameters of intraglo-

merular transformation and LN input strength. We found two

peaks in the graphical representation of the mutual information

(Fig. 5 (A)). At one of them (peak i), the intraglomerular

transformation is concave (dot-dashed line in Fig. 3) and LN

input is inhibitory, which is consistent with the experimental

results. At the other (peak e), the intraglomerular transformation is

convex (dashed line in Fig. 3) and the LN input is excitatory.

Although both of these neural mechanisms promote odor

discrimination, the combination at peak i is used in the Drosophila

olfactory circuit. One reason for the use of this combination is

demonstrated by our finding that the peak value of mutual

information at peak i is higher than that at peak e. Another reason

is that excitatory LNs cannot perform adaptive gain control. If the

net LN input is excitatory, the olfactory system cannot

discriminate between odors over a wide range of concentrations

or odor mixtures. For these reasons, the combination of concave

intraglomerular transformation and inhibitory LN input can be

considered the most appropriate in the olfactory circuit.

Robustness against change in nonlinear firing rate
transformation shape

In Fig. 8 (A), which shows the dependence of mutual

information on the intraglomerular transformation shape, we

can see two significant features. One is that the mutual

information decreases rapidly as parameter a increases and

approaches the region where the transformation function is

convex (aw{5). The other is that the mutual information

changes little in the wide region where the transformation function

is concave (av{5). These features indicate that the Drosophila

olfactory system is robust against changes in the shape of the

intraglomerular firing transformation for odor discrimination

provided that the transformation is concave.

Bhandawat et al. [3] examined the shapes of the nonlinear

transformation between ORN and PN firing rates in seven different

glomeruli and observed two features similar to those observed in our

network model. First, the shape was concave in every glomerulus.

Second, these shapes showed some degree of variation. From the

viewpoint of odor discrimination, our results provide explanations

as to why the shape of the nonlinear transformation between ORN

and PN responses should be concave in every glomerulus and why

the nonlinear transformation shapes could differ from glomerulus to

glomerulus as long as they are concave.

Approaches for understanding neural mechanisms
We demonstrated that the optimum nonlinear firing rate

transformation between ORNs and PNs obtained by maximizing

mutual information is similar to that observed in previous

experiments (Figs. 6 and 10 (B)). Similarly, in many previous

Figure 12. Dependence of the mutual information on the PN
firing threshold. The intraglomerular transformation shape a was
fixed at {38.
doi:10.1371/journal.pone.0010644.g012

Figure 13. Contour plot of estimated mutual information when the firing threshold was changed. The intraglomerular transformation
shape a and LN input strength K were varied. (A) hth~0. (B) hth~0:02. (C) hth~0:04.
doi:10.1371/journal.pone.0010644.g013
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studies, it has been reported that optimum neural representations

of sensory stimuli, which are predicted theoretically, resemble the

actual response properties of early sensory neurons [38–42]. In this

study, however, we investigated not only the optimum information

transmission from the viewpoint of information maximization, but

also the mechanisms of information maximization in the neural

circuit, which had not previously been rigorously theoretically

investigated.

We studied them by taking a different approach from previous

studies to obtain optimum information transmission. First, we used

actual physiological data as input stimuli. Second, we constructed

an experimentally grounded network model of the Drosophila

olfactory circuit and computed the mutual information between

stimuli and PN responses in that network model. Third, by

systematically changing the network’s parameters, we searched for

the neural mechanism that maximized the mutual information.

This approach was possible owing to the characteristic advantages

in the Drosophila olfactory circuit, namely a simple glomerular

structure, a relatively small number of neurons engaged in sensory

processing, and well studied response properties and connectivity

of those neurons. By using this approach, we showed that the

neural mechanisms underlying information maximization are

consistent with previous experimental results. That is, when

mutual information is maximized in the network model, the shape

of the intraglomerular function is concave and the net LN input is

inhibitory.

For the sake of simplicity, we used a simple neuron model and

did not implement realistic LN inputs [12–16] or synaptic

depression and refractory periods, which are thought to be the

main origins of the concave firing rate transformation within

glomeruli [3,31]. In the future, realistic implementation of synaptic

depression and LN interactions should give us a more detailed

understanding of the nature of maximum information preservation

in actual biological systems. This should also enable us to compare

theoretical and experimental results in a more quantitative

manner. It will be interesting to further investigate how maximum

information preservation is implemented in the olfactory circuit in

light of the basic findings obtained from this study.
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