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Abstract
Aims/hypothesis Although targeted in extrapancreatic tissues by several drugs used to treat type 2 diabetes, the role of AMP-
activated protein kinase (AMPK) in the control of insulin secretion is still debatable. Previous studies have used pharmacological
activators of limited selectivity and specificity, and none has examined in primary pancreatic beta cells the actions of the latest
generation of highly potent and specific activators that act via the allosteric drug and metabolite (ADaM) site.
Methods AMPK was activated acutely in islets isolated from C57BL6/J mice, and in an EndoC-βH3 cell line, using three
structurally distinct ADaM site activators (991, PF-06409577 and RA089), with varying selectivity for β1- vs β2-containing
complexes.Mouse lines expressing a gain-of-function mutation in the γ1 AMPK subunit (D316a) were generated to examine the
effects of chronic AMPK stimulation in the whole body, or selectively in the beta cell.
Results Acute (1.5 h) treatment of wild-type mouse islets with 991, PF-06409577 or RA089 robustly stimulated insulin secretion
at high glucose concentrations (p<0.01, p<0.05 and p<0.001, respectively), despite a lowering of glucose-induced intracellular
free Ca2+ dynamics in response to 991 (AUC, p<0.05) and to RA089 at the highest dose (25 μmol/l) at 5.59 min (p<0.05).
Although abolished in the absence of AMPK, the effects of 991 were observed in the absence of the upstream kinase, liver kinase
B1, further implicating ‘amplifying’ pathways. In marked contrast, chronic activation of AMPK, either globally or selectively in
the beta cell, achieved using a gain-of-function mutant, impaired insulin release in vivo (p<0.05 at 15 min following i.p. injection
of 3 mmol/l glucose) and in vitro (p<0.01 following incubation of islets with 17 mmol/l glucose), and lowered glucose tolerance
(p<0.001).
Conclusions/interpretation AMPK activation exerts complex, time-dependent effects on insulin secretion. These observations
should inform the design and future clinical use of AMPK modulators.
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Abbreviations
ACC Acetyl-CoA carboxylase
AdaM Allosteric drug and metabolite
AICAR 5-Aminoimidazole-4-carboxamide-1-β-D-

ribofuranoside
AMPK AMP-activated protein kinase
CaMKK2 Calcium/calmodulin-dependent protein kinase 2
GSIS Glucose-stimulated insulin secretion
IBMX Isobutyl methyl xanthine
LKB1 Liver kinase B1
mTORC1 Mammalian target of rapamycin
SKT11 Serine/threonine kinase 11
TIRF Total internal reflection fluorescence
ZMP 5-Aminoimidazole-4-carboxamide

ribonucleotide

Introduction

Improvement in glycaemic control is the key objective of type
2 diabetes management and can involve changes in insulin
secretion, insulin sensitivity, or both [1, 2]. AMP-activated
protein kinase (AMPK) has long been considered a useful
target for diabetes treatment, and activators, including metfor-
min, improve insulin sensitivity in extrapancreatic tissues [3,
4]. Importantly, AMPK activity is lowered in beta cells from
individuals with type 2 diabetes [5, 6], suggesting that an
increase in activity in these cells may be beneficial.
Nevertheless, controversy surrounds the effects of AMPK
activation on insulin secretion [7, 8]. Both positive [7, 9–11]
and negative [12, 13] effects on insulin secretion have been

observed with the AMPK agonist 5-aminoimidazole-4-
carboxamide-1-β-D-ribofuranoside (AICAR). However, it
has been reported that both metformin (inhibiting mitochon-
drial respiratory complex I) and AICAR (leading to intracel-
lular generation of 5-aminoimidazole-4-carboxamide ribonu-
cleotide [ZMP], an AMP mimetic) have numerous AMPK-
independent metabolic actions [14].

Recently, a series of potent and specific direct pan-AMPK
activators have been developed [4]. These bind to a novel
regulatory site that is separate from the canonical nucleotide
binding site in the γ subunit of AMPK. The allosteric drug
and metabolite (ADaM) binding site is formed at the interface
between the N-lobe of the α kinase domain and the carbohy-
drate binding module of the β subunit. Recent reports [15, 16]
indicate that these novel pan-AMPK activators improve
glucose tolerance and insulin sensitivity. One agent [15]
lowered insulin secretion in vivo, although whether this agent
exerted a direct impact on the beta cell is unclear.

AMPK is a heterotrimer comprising a catalytic subunit
(α1, α2), a scaffold subunit (β1, β2) and an allosteric adenyl-
ate nucleotide binding (γ1, γ2, γ3) subunit, encoded by
different genes expressing multiple tissue-specific AMPK
isoforms. At low energy, when the AMP/ATP ratio is high,
binding of AMP to the γ-regulatory domain facilitates phos-
phorylation of the α subunit at Thr-172 by an upstream
kinase, usually liver kinase B1 (LKB1; also known as
serine/threonine kinase 11 [SKT11]) or calcium/calmodulin-
dependent protein kinase 2 (CaMKK2) [8, 17]. This causes a
conformational change that releases an autoinhibitory domain
from an interaction with the hinge region in the catalytic
domain [18]. Activated AMPK then phosphorylates a range
of substrates associated with conserving ATP [19], including
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acetyl-CoA carboxylase (ACC) and the mammalian target of
rapamycin (mTORC1) subunit, Raptor. In beta cells, low
interprandial glucose concentrations represent a condition of
energy stress (since glucose transport and metabolism are
limiting), ATP levels are low [20] and AMPK is activated.
Elevated glucose concentrations cause a rapid and marked
lowering of the AMP/ATP ratio, and hence AMPK activity,
which we have speculated might provide an additional mech-
anism through which insulin secretion is stimulated at high
glucose [10, 12].

Studies of the longer-term effects of AMPK activation or
inactivation in the beta cell have also given conflicting results,
with impaired insulin secretion and glucose tolerance
observed after the inactivation of both catalytic subunits [21,
22] despite improved glucose-stimulated insulin secretion
(GSIS) in vitro [23]. These changes were also associated with
altered beta cell identity and gene expression [23, 24]. On the
other hand, overexpression of a constitutively active form of
AMPK, comprising a truncated α subunit mutated at the regu-
latory Thr172 residue, in insulinoma [25] and in beta cells
in vitro [26] or in vivo [22] also inhibited insulin secretion.
Overexpression of an activating form of the γ2 subunit
throughout the body [27] also impaired secretion. Each of
the above approaches to activating AMPK stably through
genetic means suffers from limitations, however, including
unphysiologically high levels of activation [22] or the absence
of targeting to the beta cell [24].

We have recently generated a new genetic mouse model of
AMPK activation in which Asp316 in the γ1 subunit is mutat-
ed to alanine (D316a), preventing dephosphorylation by
protein phosphatase 2C [28]. Using suitable Cre/loxP drivers,
mouse lines were generated in which AMPK was activated
selectively in liver [29], or in the whole body, muscle or
adipocytes [28]. Mice in which AMPK was activated system-
ically displayed lower body weight gain on high-fat diet and
an enhanced thermogenic programme in white adipose tissue.
This was associated with reduced circulating insulin levels on
a regular chow diet but glucose tolerance was normal,
suggesting improved insulin sensitivity.

Here, we sought first to examine the acute effects of recent-
ly developed pharmacological AMPK activators on insulin
secretion in primary mouse islets and human beta cells.
Next, we explored the impact of sustained AMPK activation
on insulin secretion and on in vivo glucose homeostasis by
generating a mouse line in which AMPK γ1 D316a was
expressed in all tissues or confined exclusively to the beta cell.

Methods

For detailed methods, please refer to the electronic supple-
mentary material (ESM) Methods.

Animals Wild-type C57BL6/J NCrl mice were purchased
from Charles River (UK, https://www.criver.com/
products-services/find-model/c57bl6-mouse?region=29).
Mice expressing the D316a-Tg γ1 transgene, on a
C57BL6/J NCrl background, were generated as described
previously [28, 29]. Mice bearing the transgene were
mated with C57BL6/J mice bearing Cre recombinase
expressed from the Ins1 locus [30], resulting in beta cell-
selective AMPK activation (D316a-Tg:ins1) mice. Control
(WT-Tg:Ins1) mice expressed the wild-type γ1 transgene
alongside the Ins1 Cre allele. For global AMPK activation,
mice were generated that expressed Cre recombinase under
the β-actin promoter and either wild-type γ1 (WT-Tg:
βact) or D316a-Tg γ1 transgene (D316a-Tg:βact) [28].
βLkb1KO on a mixed FVB/129S6 and C57BL/6 back-
ground obtained from the Mouse Models of Human
Cancer Consortium (now available from JAX labs at
https://www.jax.org/strain/014143) and backcrossed with
C57BL/6 mice four times, were generated as previously
described [23]. All in vivo procedures described were
performed at the Imperial College Central Biomedical
Service and approved by the College’s Animal Welfare
and Ethical Review Body according to the UK Home
Office Animals Scientific Procedures Act, 1986 (Project
License PA03F7F0F to IL).

In vivo metabolic assays Glucose tolerance tests (IPGTT)
were performed on 16 h-fasted mice (8 weeks old). GSIS
was assessed in vivo bymeasuring plasma insulin levels using
an ultra-sensitive mouse insulin ELISA kit (Crystal Chem,
Netherlands).

Pharmacological AMPK activation 991 was as described previ-
ously [31]. PF-06409577 was purchased from Sigma-Aldrich
(UK). RA089 was as described previously [32].

Pancreatic islet isolation In brief, pancreases were inflated
with a solution of collagenase from Clostridium histolyticum
(1 mg/ml; Nordmark, Germany). Isolated islets were cultured
for 24 h and allowed to recover overnight following washing
and purification.

Insulin secretion In brief, ten size-matched islets per condition
were incubated for 1 h in Krebs-HEPES-bicarbonate solution.
Following incubation for 30 min with either 3 mmol/l glucose
(low glucose), 17 mmol/glucose (high glucose) or 30 mmol/
KCl, secreted and total insulin were quantified using an HTRF
insulin kit (Cisbio, France).

Intracellular free calcium and cytosolic ATP/ADP imaging For
measurement of free cytosolic Ca2+, intact isolated islets were
incubated with Cal520 (Aatbio, USA). Islets were treated with
an adenovirus expressing Perceval [33] to measure changes in
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ATP/ADP [34]. Fluorescence was imaged using a Nipkow
spinning disk head (Yokogawa CSU-10; Yokogawa, UK) [35].

Western (immuno)blotting Antibodies were purchased
from Cell Signaling Technology, NEB, UK (phospho-
AMPKα T172 [no. 2535], total-AMPKα [no. 2603],

phospho-Raptor S792 [no. 2083], total Raptor [no.
2280], phospho-ACC Ser79 [no. 3661], GAPDH [no.
2118]) and Sigma-Aldrich, UK (α-tubulin [T5168])
and used at a dilution of 1:10000.
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Total internal reflection of fluorescence and spinning disc
confocal imaging Islets were dissociated and immunostained
for insulin. Imaging was performed as described previously
[36] using a Nikon Eclipse Ti microscope. Acquisitions were
performed using a 488 nm laser line, and images were
captured with an ORCA-Flash 4.0 camera (Hamamatsu,
Japan), both in total internal reflection fluorescence (TIRF)
mode and widefield mode. Metamorph software (Molecular
Devices, USA) was used for data capture and the laser angle
was selected for an imaged section thickness of 150–180 nm.

Cell line EndoC-βH3 For the insulin secretion assay,
EndoC-βH3 cells (Univercell [Human Cell Design], France)
were seeded onto extracellular matrix/fibronectin-coated 96-
well plates at 7 × 104 cells per well. Two days after seeding,
cells were incubated overnight in a glucose starving medium.
The next morning, EndoC-βH3 cells were then incubated in
the presence of low (0.5 mmol/l) or high glucose (15 mmol/l)
with other stimuli (isobutyl methyl xanthine [IBMX,
0.5 mmol/l], 991 [10 or 20 mmol/l] or RA089 [10 or
20 mmol/l]). After incubation for 1 h, insulin content was
measured using an insulin ultra-sensitive assay kit.

Mycoplasma screening of the EndoC-βH3 cells was carried
out using a MycoAllert Kit (catalogue no. LT07 318; Lonza,
Switzerland).

RNA isolation and quantitative PCR RNA was isolated from
pancreatic islets with TRIzol (Invitrogen, UK) following
manufacturer’s instructions. Following reverse transcription,
quantitative PCR (qPCR) was performed with Fast SYBR
Green Master Mix (Applied Biosystems, UK). The compara-

tive Ct method (2−ΔΔCt ) was used to calculate relative gene
expression levels using β-actin as an internal control. The
primers sequences are listed in ESM Table 1.

Statistical analysis Randomisation and blinding were not
carried out. GraphPad Prism 9.0 (www.graphpad.com) was
used for statistical analyses. Significance was evaluated by
unpaired Student’s t test or by one- or two-way ANOVA,
with multiple comparisons tests, as appropriate. A p values
of <0.05 was considered statistically significant. Data are
shown as mean ± SEM.

Results

Acute pharmacological AMPK activation stimulates insulin
secretion from isolated mouse islets and a human beta cell
lineWe first examined the effects of three chemically distinct
pharmacological agents, which activate AMPK through bind-
ing to the ADaM site, in islets from wild-type adult male
C57BL6/J mice. 991 significantly increased phosphorylation
of AMPKα at Thr172 at high glucose (Fig. 1a, b) whereas the
effects of PF-06409577 and RA-089 did not reach signifi-
cance (ESM Fig. 1).

Activator 991 enhanced insulin secretion in response to
high glucose in a dose–reponse manner, with significant
potentiation of secretion observed after incubation with
20 μmol/l 991 for 1.5 h (Fig. 1c); this was associated with
increased phosphorylation of AMPKα in wild-type isolated
mouse islets (Fig. 1a). No change in secretion was observed in
response to the activator at low glucose (3 mmol/l) nor in
presence of a depolarising concentration of KCl (Fig. 1c).
Treatment with PF-06409577 (selectively targeting β1)
provided similar results, with a significant increase in high
GSIS at the highest dose (25 μmol/l) (Fig. 1d).

Insulin secretion in response to high glucose was also
significantly increased from wild-type mouse islets exposed
to RA089 (targetingβ1 andβ2 subunits with similar efficacy)
at 5 or 25μmol/l (Fig. 1e). In contrast to 991 (targetingβ1 and
β2 subunits with higher selectivity towards β1 [37]) and PF-
06409577, RA089 (25 μmol/l) also potentiated insulin secre-
tion in response to depolarisation with KCl.

�Fig. 1 Small-compound-induced AMPK activation in wild-type male
mouse islets. (a) Phosphorylation of AMPKα at Thr172 in isolated
wild-type mouse islets incubated with the synthetic AMPK activator
991 (20 μmol/l) compared with control (vehicle, DMSO). Mouse islets
were incubated for 1.5 h with 991 and then for 30 min at 3 mmol/l (low)
or 17 mmol/l (high) glucose. (b) Representative images of
phosphorylation of AMPKα at Thr172, Raptor and ACC in isolated
wild-type mouse islets incubated with the synthetic AMPK activators
PF-06409577 (25 μmol/l), RA089 (25 μmol/l) and 991 (20 μmol/l)
compared with control (vehicle, DMSO). (c–e) Insulin secretion from
islets isolated from C57BL6/J wild-type mice, aged 10–12 weeks, fed a
regular chow diet. Secreted insulin was measured in response to various
concentrations of 991 (c), PF-06409577 (d) or RA089 (e). Islets were
incubated for 1 h at 3 mmol/l glucose, then islets were stimulated for
30 min with AMPK activator plus 3 mmol/l or 17 mmol/l glucose, or
AMPK activator plus KCl 30 mmol/l. *p<0.05, **p<0.01 and
***p<0.001 (two-way repeated measures ANOVA with Bonferroni’s
multiple comparisons test). (f, g) Intracellular free Ca2+ dynamics for
isolated islets incubated for 1 h with 991 (20 μmol/l). Following
incubation with the fluorogenic Ca2+ sensitive dye Cal520, isolated
islets were incubated with 991 at 3 mmol/l glucose, followed by 991 at
17 mmol/l glucose, and 991 plus KCl (30 mmol/l). Traces represent
normalised (to basal conditions during 991 plus 3 mmol/l glucose)
mean fluorescence intensity over time (f) (n = 3 independent
experiments, *p<0.05 and **p<0.01 [two-way repeated measures
ANOVA with Bonferroni’s multiple comparisons test]), with AUC for
calcium dynamics during stimulation with 17 mmol/l glucose shown in
(g) (*p<0.05 [Student’s t test]). (h) Ca2+ dynamics in isolated islets
incubated for 1 h with RA089 (at 5 or 25 μmol/l). n = 3 independent
experiments, *p<0.05 at 5.59 min RA089 25 μmol/l vs vehicle; ††p<0.01
RA089 5 μmol/l vs vehicle at 5.69 min (two-way ANOVA with
Bonferroni’s multiple comparisons test). (i) AUC from calcium
dynamics during stimulation with 17 mmol/l glucose. F/F0, mean
fluorescence intensity; 3G, 3 mmol/l glucose; 17G, 17 mmol/l glucose;
PF-577, PF-06409577; T, total; veh, vehicle
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Strikingly, in islets isolated from wild-type mice glucose-
induced increases in intracellular free Ca2+ were blocked by
991 (Fig. 1f, g), whereas the drug had no effect on the changes
in cytosolic ATP/ADP levels provoked by glucose (ESM Figs
2, 3). Similarly, although to a lesser extent, RA089 also
blunted glucose-induced increase in intracellular Ca2+ (Fig.
1h, i). The effects of 991 in mouse islets deleted for both

catalytic AMPK α1 and α2 subunits did not reach signifi-
cance (ESM Fig. 4).

We next explored whether the effects of pharmacological
AMPK activation on insulin secretion observed in murine
islets may also be apparent in human-derived EndoC-βH3
beta cells. Following incubation at a low glucose concentra-
tion (0.5 mmol/l), insulin release was significantly increased
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repeated measures ANOVA with Bonferroni’s multiple comparisons
test). (b) Fold change of insulin secretion vs release at 0.5 mmol/l glucose.
*p<0.05 (one-way ANOVAwith Tukey’s multiple comparisons test). (c)
Representative images of western blotting for phosphorylation of Raptor

and ACC in islets isolated from wild-type mice after incubation with
RA089 (10 and 20 μmol/l) and 991 (10 and 20 μmol/l) vs control (vehi-
cle, DMSO) at low (0.5 mmol/l) or high (15 mmol/l) glucose. (d, e)
Density quantifications are reported for phosphorylated ACC (d) and
phosphorylated Raptor (e) over tubulin. n = 3 independent experiments.
*p<0.05 for 991 vs vehicle at 15 mmol/l glucose; ***p<0.001 for RA089
vs vehicle at 15 mmol/l glucose; †p<0.05 for RA089 vs vehicle at
0.5 mmol/l glucose (one-way ANOVA with Tukey’s multiple compari-
sons test). 0.5G, 0.5 mmol/l glucose; Veh, vehicle
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independent experiments per
genotype, *p<0.05 (two-way
ANOVA with Tukey’s multiple
comparisons test). 3G, 3 mmol/l
glucose; 17G, 17 mmol/l glucose;
p, phosphorylated; T, total

a b

0.0

0.5

1.0

1.5

2.0

R
el

at
iv

e 
m

R
N

A
 e

xp
re

ss
io

n
(n

or
m

al
is

ed
 to

 β
-a

ct
in

)

**

WT-Tg:βact

D316a-Tg:βact c

0.0

0.5

1.0

1.5

2.0

In
su

lin
 s

ec
re

tio
n

(%
 to

ta
l i

ns
ul

in
)

*

WT-Tg:βact

D316a-Tg:βact 

Gcg Slc2a2 Ins1 Ins23G 17G KCl 3G 17G KCl
0.0

0.2

0.4

0.6

0.8

In
su

lin
 s

ec
re

tio
n

(%
 to

ta
l i

ns
ul

in
)

**

WT-Tg:βact

D316a-Tg:βact 

Fig. 4 Whole-body AMPK activation reduced GSIS in chow and high-
fat feeding. (a) Islets were isolated from mice expressing Cre
recombinase under the β-actin promoter and either wild-type γ1 (WT-
Tg:βact, n = 3 mice) orD316a-Tg γ1 transgene (D316a-Tg:βact, n = 4
mice), on chow diet, aged 35 weeks. Insulin secretion was measured
during 30 min incubation in 3 or 17 mmol/l glucose or 30 mmol/l KCl.
*p<0.05 (two-way ANOVA with Bonferroni’s multiple comparisons
test). (b) mRNA levels measured by RT-qPCR in isolated islets from

WT-Tg:βact mice (n = 3) orD316a-Tg:βact mice (n = 4) on chow diet,
aged 35 weeks. *p<0.05 (Student’s t test). (c) Insulin secretion was
measured during 30 min incubation in 3 or 17 mmol/l glucose or
30 mmol/l KCl. Islets were isolated from WT-Tg:βact mice (n = 3) or
D316a-Tg:βact mice (n = 4) mice on high-fat diet (45%, for 1 month),
aged 12–16 weeks. **p<0.01 (two-way ANOVA with Bonferroni’s
multiple comparisons test). 3G, 3 mmol/l glucose; 17G, 17 mmol/l
glucose
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in a similar manner by RA089 (10 and 20 μmol/l, Fig. 2a).
However, insulin secretion was not increased significantly in
991-treated EndoC-βH3 cells. We also found that enhanced
insulin secretion was associated with activation of AMPK
signalling, as demonstrated by increased phosphorylation of
ACC, although the changes observed for Raptor did not reach
significance (Fig. 2c–e). As expected, insulin secretion was
significantly potentiated by the cAMP phosphodiesterase
inhibitor IBMX at low and high glucose (Fig. 2a). Both 991
and RA089 further stimulated secretion (10 and 20 μmol/l).
However, when secretion was expressed as the fold change of
insulin release at high glucose vs low glucose, no changes
were observed between treatment by 991 and RA089 when
compared with vehicle treatment (Fig. 2b).

Deletion of the upstream kinase Lkb1 (also known as
Stk11) in beta cell-specific Lkb1 null (βLkb1KO) mice did
not block the effects of 991. Thus, GSIS was potentiated in
βLkb1KOmouse islets following treatment with 991 for 1.5 h
when reported as percentage of total insulin content (Fig. 3a).
Moreover, insulin secretion was significantly increased in
991-treated Lkb1 null islets compared with 991-treated control
mouse islets (mice lacking Cre expression). However, when
reported as the fold change from 3 mmol/l glucose, insulin
secretion from Lkb1 null islets was unchanged vs vehicle by
treatment with 991 (Fig. 3b).

We observed that during low glucose incubation, in islets
isolated from βLkb1KOmice, 991 induced a striking increase
in phosphorylation of Raptor, a downstream effector of
AMPK (Fig. 3d), although phospho-AMPK levels did not
change (Fig. 3c). The weaker phosphorylation of Raptor seen
in the absence of LKB1 was restored by 991 stimulation at
low glucose. 991 also potentiated phosphorylation of Raptor
in the presence of high glucose and this was associated with an
increase in GSIS (as observed in Fig. 3a).

Whole-body AMPK activation reduces insulin secretion
in vitro We next asked whether the acute effects of pharma-
cological AMPK activation described above may be reflected
by similar changes in vivo. Given the uncertainties around the
bioavailability and stability of AMPK activators in the circu-
lation after injection [4], we chose to use a recently established
genetic approach [29] to achieve long-term, stable activation
of AMPK either globally or selectively in the beta cell. This
involved overexpression of the AMPK γ1 subunits
harbouring a gain-of-function mutation (replacement of aspar-
tate 316 with alanine, Prkag1; D316a) [28, 29]. Islets isolated
from regular chow-fed mice expressing the mutant γ1 trans-
gene globally after removal of an upstream stop cassette using
a β-actin promoter-driven Cre recombinase (D316a-Tg:βact)
showed significantly reduced GSIS compared with WT-
Tg:βact islets from mice overexpressing the wild-type trans-
gene (Fig. 4a). No differences in insulin secretion were
observed between genotypes when islets were maintained at

low glucose (3 mmol/l) or depolarised with KCl. Islets isolat-
ed from D316a-Tg:βact mice displayed lowered levels of
expression of beta cell signature genes including Ins2 and
the GLUT gene Slc2a2 (Fig. 4b). Finally, after demonstrating
that changes in secretion were preserved during metabolic
stress, a selective lowering in GSIS was also observed in islets
from D316a-Tg:βact mice compared with WT-Tg:βact
control mice when both groups were maintained on a high-
fat diet (Fig. 4c).

Beta cell-specific AMPK activation impairs glucose tolerance
and reduces insulin secretion in vivo To determine whether
the reduced GSIS observed after global activation of AMPK
was the direct result of changes in beta cell function, we gener-
ated a beta cell-specific AMPK activation mouse line (see
Methods). As expected, islets from D316a-Tg:ins1 mutant
mice maintained on a regular chow diet displayed an increase
in AMPK signalling compared with islets from control (WT-
Tg:ins1) mice, as demonstrated by increased phosphorylation
of Raptor (Fig. 5a, b). This occurred in the absence of a clear
increase in AMPKα Thr-172 phosphorylation (Fig. 5c).

Following i.p. injection of glucose (1 g/kg), no differences
in glucose tolerance were observed when comparing 8-week-
oldD316a-Tg:ins1 and age-matchedWT-Tg:ins1 mice, either
female (Fig. 5d, e) or male (Fig. 5g, h). Nor were there differ-
ences in body weight (Fig. 5f, l). However, when examined

�Fig. 5 Beta cell-specific AMPK activation impairs high glucose-induced
insulin secretion and increases glucose levels. (a) Representative images
of western (immuno)blots from non-Tg WT mice expressing only Cre
recombinase at the Ins1 locus, WT-Tg:ins1 mice expressing Cre
recombinase and wild-type γ1 transgene, and D316a-Tg:ins1 mice
expressing Cre recombinase and D316a-Tg γ1 transgene, aged 10–
12 weeks, were maintained on regular chow diet. Protein lysates were
extracted from isolated islets cultured at 11 mmol/l glucose. (b, c)
Western blot quantification of phosphorylated Raptor at Ser792 relative
to total Raptor (b) and AMPKα phosphorylated at Thr172 relative to total
AMPKα (c) in isolated islets cultured at 11 mmol/l glucose from non-Tg
WT, WT-Tg:ins1 or D316a-Tg:ins1 mice on chow diet, aged 10–
12 weeks. n = 3 or 4 mice per genotype, *p<0.05 (one-way ANOVA
with Tukey’s multiple comparisons test). (d, e) Blood glucose
concentrations following IPGTT (i.p. administration of 1 g/kg glucose)
performed in 8-week-old female mice (n = 10 mice per genotype) (d),
with AUC shown in (e). (f) Body weight of female mice (n = 5 per
genotype). (g, h) Blood glucose concentrations following IPGTT (i.p.
administration of 1 g/kg glucose) performed in 8-week-old male mice
(n = 7 WT-Tg:ins1 or n = 5 D316a-Tg:ins1) (g), with AUC shown in
(h). (i) Body weight of male mice (n = 5 WT-Tg:ins1, n = 3 D316a-
Tg:ins1). (j) Blood glucose levels in male and female mice after 4 h
fasting and following an i.p. injection of 3 g/kg glucose; n = 8 mice
per genotype, ***p<0.001 (two-way ANOVA with Bonferroni’s
multiple comparisons test). (k, l) Plasma insulin levels from male and
female mice following an i.p. injection of 3 g/kg glucose (k), n = 8
mice per genotype, *p<0.05 (one-way ANOVA with Tukey’s multiple
comparisons test), and in vivo insulin secretion reported as fold change at
the 15 min time point over basal conditions (at 0 min) (l). p,
phosphorylated; T, total
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across the cohort of male and female mice, administration of a
higher dose of glucose (3 g/kg) revealed impaired tolerance,
with higher circulating glucose levels in D316a-Tg:ins1 mice
15 min after injection (Fig. 5j). At the same time point, circu-
lating insulin levels were significantly lower in D316a-
Tg:ins1 mice compared with WT-Tg:ins1 mice (Fig. 5k),
demonstrating impaired beta cell function in the former.

Isolated islets from mice with beta cell-specific AMPK activa-
tion display defective GSIS To investigate beta cell function in
the D316a-Tg:ins1 mouse line in more detail, we isolated
islets from male and female adult mice maintained on regular
chow diet. Insulin secretion following stimulation with high
glucose or KCl was drastically reduced in D316a-Tg:ins1
mouse islets compared with WT-Tg:ins1 mouse islets (Fig.
6a). However, when secretion was reported as a fold change
from basal (3 mmol/l) no differences were observed between
genotypes during stimulation of islets with high glucose
(GSIS) or KCl (Fig. 6b).

Paradoxically, these changes were associated with a strik-
ing augmentation of the glucose (17 mmol/l)-induced cytosol-
ic Ca2+ increases in D316a-Tg:ins1 vs WT:ins1 mouse islets,
but no differences in the response to KCl (Fig. 6c, d). No
differences in glucose-induced cytosolic ATP/ADP changes
were apparent between genotypes (Fig. 6e, f).

In an effort to reconcile these findings, we next explored
whether AMPK activation may reduce the number of secreto-
ry granules beneath the plasma membrane, and thus compete
for exocytosis in response to stimulation. Dispersed beta cells
fromWT-Tg:ins1 orD316a-Tg:ins1 mouse islets were immu-
nostained for insulin, and TIRF imaging [38] was performed
to determine insulin vesicle density immediately below (with-
in ~70 nm of) the plasma membrane under mildly stimulatory
conditions (11 mmol/l glucose). Insulin vesicle density was
significantly lower in cells from D316a-Tg:ins1 mice (0.135
± 0.014 vesicles/μm2; n = 110 cells) compared with WT-
Tg:ins1 cells (0.250 ± 0.018 vesicles/μm2; n = 78 cells)
(Fig. 6g). In contrast, the global level of fluorescence
measured in cells in confocal mode (and thus in an intracellu-
lar ‘slice’ of the cell) was higher for D316a-Tg:ins1 cells than
forWT-Tg:ins1 cells, indicating a higher total number of insu-
lin granules in the former (Fig. 6h).

Beta cell-selective AMPK activation had no effect on
the expression of a suite of beta cell signature genes, with
the exception of Nkx2.2 (also known as Nkx2-2), whose
levels were increased in D316a-Tg:ins1 vs WT-Tg:ins1
cells (Fig. 6i).

Discussion

The role of AMPK activation within the beta cell remained a
disputed area, despite its evident clinical importance in the

context of drugs that target this enzyme in type 2 diabetes
[7, 8]. In the present study, we adopted two complementary
approaches to address this question. First, we explored the
effects on insulin secretion in vitro of acutely activating
AMPK with a group of novel low-molecular-weight
compounds. Next, we activated the enzyme selectively, but
chronically, in the beta cell using a genetic approach involving
overexpression of AMPK γ1 subunits carrying a D316a
mutation [28]. Whereas acute pharmacological activation of
AMPK potentiated GSIS in rodent islets and a human beta cell
line, chronic AMPK activation lowered insulin secretion in
the longer term.

The three highly selective, but structurally distinct, small
compounds used here bind to the ADaM site between the α
and β subunits in the AMPK complex [39]. These drugs were
deployed in islets isolated from wild-type mice. In this prep-
aration, which comprises 60–70% beta cells [40], expression
ofβ1-containing complexes predominates over those contain-
ing β2 (71%: 21%) [41], consistent with fourfold higher
levels of Prkab1 vs Prkab2 mRNA in purified beta cells
[42]. The pharmacological activator 991 exhibits selectivity
towards AMPK complexes containing the β1 relative to the
β2 subunit in cell-free assay [37, 43]. Importantly, the effects

�Fig. 6 Beta cell-specific AMPK activation leads to impaired insulin
secretion and increased intracellular calcium in response to glucose. (a)
Islets were isolated from female and male mice aged 8–10 weeks. Insulin
secretion was measured after 30 min incubation with 3 or 17 mmol/l
glucose, or 30 mmol/l KCl; n = 6 WT-Tg:ins1 mice, n = 7 D316a-
Tg:ins1 mice, **p<0.01 and ***p<0.001 (two-way ANOVA with
Bonferroni’s multiple comparisons test). (b) Fold change of insulin
secretion stimulated by 17 mmol/l glucose or by KCl compared with
low (3 mmol/l) glucose. (c, d) Calcium dynamics from female and male
isolated islets, n = 7 per genotype. Following incubation with Cal520,
isolated islets were incubated in 3mmol/l glucose, followed by 17mmol/l
glucose and then KCl (30 mmol/l). Traces represent normalised (to basal
condition during 3 mmol/l glucose incubation) mean fluorescence
intensity (F/F0) over time (c), with AUC from calcium dynamics during
incubation at 17 mmol/l glucose shown in (d). *p<0.05 (Student’s t test).
(e, f) Cytosolic ATP/ADP ratio in isolated islets from WT-TG:ins1 mice
(n = 7) and D316a-Tg:ins1 mice (n = 8). Islets were infected with a
PercevalHR-expressing adenovirus to monitor changes in ATP/ADP
ratio in response to 17 mmol/l (17G) glucose compared with 3 mmol/l
(3G) glucose. Traces represent normalised (to basal 3 mmol/l glucose
incubation) mean fluorescence intensity over time (e), with AUC from
cytosolic ATP/ADP traces during incubation at 17mmol/l glucose shown
in (f). (g, h) Dissociated mouse islets cells were fixed, immunostained for
insulin and imaged both in confocal and TIRF mode. Cell membranes
were imaged in TIRFmode and insulin vesicle density was determined by
counting vesicles at the membrane for each individual cell and dividing
by cell surface (WT-Tg:ins1, n = 2 mice, 78 cells;D316a-Tg:ins1, n = 3
mice, 110 cells) (g). ***p<0.001 (Student’s t test). Mean fluorescence
intensity was measured for individual cells on images acquired in
spinning disk mode (WT-Tg:ins1, n = 2 mice, 80 cells; D316a-
Tg:ins1, n = 3 mice, 205 cells) (h). ***p<0.001 (Student’s t test). (i)
mRNA expression levels measured byRT-qPCR from isolated islets, n =
5 mice per genotype, *p<0.05 (Student’s t test). F/F0, mean fluorescence
intensity
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of this molecule are unlikely to be due to changes in gene
expression, given the short duration of treatment, nor were
they associated with detectable changes in cell viability
(results not shown).

In the present studies, 991, and compounds PF-06409577
[44, 45] and RA089 (also named compound 1), which are
more widely available for oral administration [32], increased
GSIS in wild-type mouse islets in a dose-dependent manner.
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In previous studies, PF-06409577, which also chiefly acti-
vates trimers containing β1 subunits, lowered hepatic and
systemic lipid and cholesterol levels in vivo [44, 46].
However, oral administration of PF-06409577 for a more
extended period (60 days) had no effect on glucose or insulin
levels in obese ZSF1 rats or wild-type mice [44, 45].

We note that RA089 activates AMPK heterotrimers contain-
ing the β2 subunit with high potency and selectivity [32].
Moreover, treatment of human EndoC-βH3 cells with RA089
increased insulin release during incubation at low, but more
strikingly at high, glucose concentrations. Schmoll et al [32]
showed that long-term treatment of mice with RA089 led to
improvements in hepatic steatosis and fibrosis, reduced the onset
of hepatocellular carcinoma in a non-alcoholic fatty liver disease
model and improved glucose tolerance. These effects were
ascribed primarily to stimulation of AMPK in skeletal muscle,
and the actions of the drug on insulin secretionwere not assessed.

An important finding of the present study is that acute
AMPK activation achieved using 991 or RA089 was associ-
ated with unchanged intracellular ATP levels but lowered
intracellular Ca2+ dynamics. These observations argue for
the potentiation of insulin secretion by these drugs via ‘ampli-
fying’ pathways [47–49]. However, the molecular targets
through which activated AMPK acts acutely on insulin secre-
tion remain undefined. We note that a toxic effect of the acti-
vators seems unlikely since no such effect has been reported in
previous studies in other cell types at the concentrations used
here. Furthermore, enhanced insulin secretion was usually
observed at high glucose concentrations only, demonstrating
a requirement for the enhancement of glucose-activated
signalling pathway(s).

We have previously reported the involvement of the above
amplifying pathways after the deletion of Lkb1 [50]. At low
energy levels, AMP binding enables AMPK phosphorylation
by LKB1 linked with low insulin release, while in the absence
of LKB1 GSIS is enhanced [23, 51]. However, we found that
direct activation of AMPK by 991, and the associated increase
in insulin secretion, was still observed in Lkb1 null islets,
implicating roles for distinct upstream kinases such as
CaMKK2 [52].

Twelve distinct AMPK complexes, based on different ratios
of the distinct isoforms of the three subunits, are expressed
differentially in metabolic tissues. Therapeutic strategies to regu-
late blood glucose levels and increase insulin sensitivity have
therefore focused on the development of pan-activators,
although important differences exist in the ability of these to
regulate the different complexes. The pan-AMPK activator
MK-8722, structurally related to 991 [15], improved blood
glucose levels in mice but promoted cardiac hypertrophy and
glycogen accumulation. Cokorinos et al [16] reported that PF-
739, which is also a pan-AMPK activator, was effective in
lowering plasma glucose levels, whereas PF-259, which is selec-
tive for β1 complexes, was ineffective, indicating a requirement

for the activation of β2-containing complexes enriched in skel-
etal muscle. Other observations suggest that there may be
distinct and non-overlapping roles for each complex in beta cells,
in line with differences in subcellular localisation [25]. Scott et al
[41] demonstrated that inhibition using MT47-100, an activator
of β1-containing complexes but an inhibitor of β2 complexes,
potentiated insulin secretion through β2-dependent mecha-
nisms. These authors suggested that inhibition of β2-
containing complexes may predominate in beta cells over the
effects of activating β1-complexes. Although these earlier find-
ings [25, 41] led us to suspect that activation of β1-containing
complexes may stimulate insulin secretion whereas activation of
β2 complexes leads to inhibition, no direct evidence was obtain-
ed in the present studies to support this view. Nevertheless, and
uniquely amongst the three activators trialled, RA089 (which
activates β1 and β2 complexes with similar efficacy) also
strongly potentiated KCl-induced secretion, suggesting a role
for β2-containing complexes in modulating insulin secretion
downstream of Ca2+ increases.

Extending the earlier studies of Pollard et al [28], we
demonstrate here that GSIS is also reduced in islets frommice
globally activated for AMPK by expression of the γ1 D316a
mutant and this is observed after feeding with either a chow or
a high-fat diet. These changes were associated with decreased
expression of genes involved in beta cell function (Ins2 and
Glut2/Slc2a2). Reduced insulin secretion was also observed in
a previous study of chronic AMPK activation throughout the
body induced by mutating Arg-302 in the γ2 subunit to gluta-
mine (R302Q) [24]. However, this global increase in AMPK
activity was linked to obesity and hyperphagia driven by
defects in the hypothalamus, therefore conclusions on the
impact of AMPK in the beta cell could not be reached.

Here, we used the D316a mutant mouse line and targeted
beta cells with greater selectivity by driving Cre expression
from the Ins1 locus [30]. D316a-Tg:ins1 mice showed
impaired glucose tolerance at a high dose of glucose without
any changes in body weight. These effects were not observed
at a lower concentration of glucose (3 vs 1 g/kg), suggesting a
glucose-dependent effect. Importantly, circulating insulin
levels after glucose challenge were lowered in this model vs
control mice, demonstrating a beta cell deficiency.

When beta cell function was explored ex vivo in islets
isolated fromD316a-Tg:Ins1 mice, we found a striking reduc-
tion in GSIS and decreased insulin vesicle exocytosis, while
intracellular Ca2+ dynamics were potentiated. Although we
did not explore beta cell mass, we found that insulin content,
as explored by immunofluorescence imaging of single beta
cells, was increased. This finding was unexpected given that
AMPK activation is usually associated with the inhibition of
protein synthesis as a result of lowered mTORC1 activity
[53]. On the other hand, no changes in expression levels of
Ins1 or Ins2 mRNA were observed, suggesting that chronic
AMPK activation in the beta cell triggers defects in insulin
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secretion via alterations in vesicle trafficking and exocytosis
rather than altered insulin biosynthesis. These deleterious
changes, only observed after chronic activation of the enzyme,
thus seem likely to predominate over the effects of acute acti-
vation and the stimulation of ‘amplifying’ pathways as
observed in response to pharmacological AMPK activators.
Importantly, we found no evidence in D316a-Tg:ins1 mouse
islets for a loss of beta cell identity, which might have been
responsible for the lowered insulin secretion. Thus, no chang-
es in the expression of the key beta cell transcription factors,
including Pdx1, Nkx6.1 (also known as Nkx6.1) and MafA
(also known as Mafa) were observed, while expression of
Nkx2.2 was increased.

In summary, activation of AMPK in the beta cell exerts
time- and glucose-dependent effects on insulin secretion.
The reduced GSIS observed after activating AMPK chroni-
cally might serve to preserve beta cell function at the same
time as changes in adipose tissue increase energy expenditure.
Although further studies are needed to explore the mecha-
nisms acting downstream of AMPK in the beta cell, our find-
ings suggest that enhanced ‘amplifying’ pathways act to
increase secretion acutely, while impaired secretory granule
trafficking to the plasma membrane lowers insulin secretion in
the long term. These observations should help to inform the
design and clinical use of AMPK activators in the future.
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