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Therapeutic inhibition of TRF1 impairs the growth
of p53-deficient K-RasG12V-induced lung cancer by
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Abstract

Telomeres are considered anti-cancer targets, as telomere mainte-
nance above a minimum length is necessary for cancer growth.
Telomerase abrogation in cancer-prone mouse models, however,
only decreased tumor growth after several mouse generations
when telomeres reach a critically short length, and this effect was
lost upon p53 mutation. Here, we address whether induction of
telomere uncapping by inhibition of the TRF1 shelterin protein can
effectively block cancer growth independently of telomere length.
We show that genetic Trf1 ablation impairs the growth of p53-null
K-RasG12V-induced lung carcinomas and increases mouse survival
independently of telomere length. This is accompanied by induc-
tion of telomeric DNA damage, apoptosis, decreased proliferation,
and G2 arrest. Long-term whole-body Trf1 deletion in adult mice
did not impact on mouse survival and viability, although some
mice showed a moderately decreased cellularity in bone marrow
and blood. Importantly, inhibition of TRF1 binding to telomeres by
small molecules blocks the growth of already established lung
carcinomas without affecting mouse survival or tissue function.
Thus, induction of acute telomere uncapping emerges as a poten-
tial new therapeutic target for lung cancer.
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Introduction

Lung cancer is the leading cause of cancer-related deaths worldwide

(Siegel et al, 2012). Adenocarcinoma, a subtype of non-small-cell

lung cancer (NSCLC), is the single most common form of lung

cancer, comprising 29% of cases (Herbst et al, 2008). The overall

5-year survival rate is of only 15%, due to the long-term ineffective-

ness of current therapies and late stage at time of diagnosis (Siegel

et al, 2012).

Activating mutations in the K-Ras proto-oncogene are found in

30% of human NSCLC (Rodenhuis et al, 1988). Mutations in the

p53 tumor suppressor gene are also common in NSCLC, affecting

50% of the cases (Chiba et al, 1990). Several lung cancer mouse

models have been generated that recapitulate human NSCLC by

using K-Ras-mutated alleles (Johnson et al, 2001; Guerra et al,

2003). In particular, the lox-stop-lox-K-RasG12V knock-in mouse

model, in which endogenous expression of the K-RasG12V oncogene

is induced upon Cre recombinase expression, has allowed the study

of early stages of lung tumorigenesis (Guerra et al, 2003). Combina-

tion of K-RasG12D expression with p53 deficiency recapitulates late-

stage lung cancers, including occurrence of invasion, stromal

desmoplasia, and metastasis (Jackson et al, 2005). The lox-stop-lox-

K-RasG12V mouse model has been instrumental to test novel thera-

peutic strategies against lung cancer, such as c-Raf, Cdk4, EGF

receptor, and Notch (Puyol et al, 2010; Blasco et al, 2011; Maraver

et al, 2012). However, to date all therapeutic targets tested have

failed to impair the growth of K-RasG12D-induced lung tumors in the

context of p53 deficiency (Navas et al, 2012).

Telomeres are specialized heterochromatin structures at the

ends of chromosomes composed of tandem TTA (Perera et al,

2008) GGG repeats bound by a protein complex, known as

shelterin, that protects chromosome ends from degradation and
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DNA repair activities (Blasco, 2007; Palm & de Lange, 2008).

The shelterin complex is composed of six core proteins,

including the telomeric repeat binding factor 1 or TRF1 (de

Lange, 2005).

During each cell division cycle, telomeres shorten owing to the

incomplete replication of chromosome ends by conventional DNA

polymerases, the so-called end-replication problem (Watson, 1972;

Olovnikov, 1973). Telomerase can elongate telomeres de novo, thus

compensating for telomere shortening in those cells where it is

expressed, such as pluripotent and adult stem cells, as well as the

majority of late-stage human cancers (Shay & Bacchetti, 1997; Deng

& Chang, 2007; Shay & Wright, 2010). Telomerase is composed of a

catalytic subunit or TERT and of an RNA component or Terc which

is used as template for the de novo synthesis of telomeric repeats

(Greider & Blackburn, 1985).

Telomeres are usually shorter in tumor cells compared to the

healthy surrounding tissue (de Lange et al, 1990; Shay & Wright,

2010). To maintain a minimum functional telomere length, 80–90%

of human tumors reactivate telomerase (Kim et al, 1994; Shay &

Bacchetti, 1997; Joseph et al, 2010), and the remaining activate an

alternative mechanism to maintain telomeres, known as ALT, based

on recombination between telomeric sequences (Bryan et al, 1997).

Supporting a role of telomerase deregulation in human cancer,

single nucleotide polymorphisms in the locus of human hTERT are

associated with various malignancies, including glioma, lung

cancer, urinary bladder cancer, melanoma, and breast cancer,

among others (McKay et al, 2008; Wang et al, 2008; Rafnar et al,

2009; Shete et al, 2009; Petersen et al, 2010; Melin et al, 2012;

Mocellin et al, 2012; Bojesen et al, 2013; Garcia-Closas et al, 2013;

Horn et al, 2013; Huang et al, 2013). These findings lead to the

development of telomerase-based therapeutic strategies for cancer

treatment, some of which are currently tested in clinical trials (Buse-

man et al, 2012).

Telomerase abrogation in the context of mouse models, however,

has only shown anti-tumorigenic activity after several mouse gener-

ations of telomerase-deficient Terc�/� mice, when telomeres reach a

critically short length, and this anti-tumorigenic effect is abrogated

in the absence of p53 (Chin et al, 1999; Greenberg et al, 1999).

Similarly, in the context of the K-RasG12V lung carcinogenesis mouse

model, telomerase deficiency decreased tumor growth only after five

mouse generations, and this effect was lost upon p53 abrogation

(Perera et al, 2008).

To circumvent these potential shortcomings of telomerase inhibi-

tion, here we set out to address the therapeutic effect of acute

telomere uncapping owing to Trf1 abrogation (Martinez et al, 2009)

in the K-RasG12V lung cancer model (Guerra et al, 2003). TRF1 is an

essential component of shelterin and, in addition, it is enriched in

adult stem cells and pluripotent stem cells, suggesting that its inhibi-

tion may also target cancer stem cells (Boue et al, 2010; Schneider

et al, 2013). In this regard, we have previously shown that TRF1

deletion in stratified epithelia could promote cancer development

when in a p53-deficient background (Martinez et al, 2009).

However, in contrast to POT1, another shelterin component, TRF1,

has not been found mutated in human cancer (Ramsay et al, 2013;

Robles-Espinoza et al, 2014; Shi et al, 2014; Bainbridge et al, 2015).

Indeed, TRF1 has been reported to be overexpressed in several

tumor types (Matsutani et al, 2001; Ohyashiki et al, 2001; Fujimoto

et al, 2003; Oh et al, 2005; Bellon et al, 2006). Thus, here we set

out to address whether Trf1 deletion in the context of oncogenic

K-Ras-induced lung cancer mouse model would act as a tumor

suppressor or as an oncogene.

We found that Trf1 genetic ablation effectively reduces the size

and malignancy of p53-null K-RasG12V lung carcinomas and

increases mouse survival. This tumor-suppressive effect of Trf1

deficiency occurs already at the first mouse generation and is inde-

pendent of telomere length. Furthermore, long-term conditional

whole-body Trf1 deletion in adult mice does not affect mouse

viability and survival. Moreover, we show that chemical inhibition

of TRF1 can be achieved in vivo by using small molecules, which

effectively impair the growth of already established lung adenocarci-

nomas without affecting mouse and tissue viability. Thus, acute

telomere uncapping owing to TRF1 inhibition represents a novel

potent therapeutic strategy for K-Ras-induced lung cancer.

Results

Trf1 deficiency impairs immortalization of MEFs expressing the
K-RasG12V oncogene even in a p53-deficient background

To assess the effect of Trf1 abrogation in the context of lung cancer

induced by expression of the K-RasG12V oncogene, we crossed

K-Ras+/LSLG12Vgeo mice (designated from now on as K-Ras+/G12V)

(Guerra et al, 2003) to a strain carrying a floxable allele of Trf1

(Trf1lox/lox) either wild-type or deficient for p53 (p53�/�) (Martinez

et al, 2009) (Fig. 1A). First, we isolated primary (passage 2) mouse

embryonic fibroblasts (MEFs) and transduced them with a retrovi-

rus encoding the Cre recombinase (pBabe-Cre). This allowed the

expression of the resident K-RasG12V oncoprotein simultaneously

with the deletion of exon 1 of the Trf1lox allele (Fig 1A). A p53-null

background was used to allow for the growth of Trf1-deleted cells,

which otherwise show severe proliferative defects (Supplementary

Fig S1A) (Martinez et al, 2009; Thanasoula et al, 2010). While

Trf1+/+ K-Ras+/G12V p53�/� MEFs showed a 16-fold increase in cell

number at day 7 post-plating, Trf1D/D K-Ras+/G12V p53�/� MEFs

only increased their population by fourfold in the same time

(Supplementary Fig S1A), indicating a severe growth impairment of

Trf1-deficient K-RasG12V-expressing cells compared to the Trf1+/+

K-Ras+/G12V p53�/� controls.

To address how Trf1 ablation impairs the growth of K-RasG12V-

expressing MEFs, we first analyzed cellular senescence by the

b-galactosidase senescence-associated activity. Trf1D/D K-Ras+/G12V

p53+/+ MEFs presented 1.9-fold higher percentage of senescent cells

7 days post-plating compared to Trf1+/+ K-Ras+/G12V p53+/+ MEFs

(Supplementary Fig S1B) (Martinez et al, 2009). Of note, p53

deficiency did not abolish Trf1 deficiency-mediated senescence.

Indeed, Trf1D/D K-Ras+/G12V p53�/� MEFs showed a 21-fold higher

percentage of senescent cells compared to Trf1+/+ K-Ras+/G12V

p53�/� MEFs 7 days post-plating (Supplementary Fig S1B), most

likely reflecting an additive effect of K-Ras oncogene-induced

senescence and Trf1 deficiency-induced senescence (Serrano et al,

1997; Martinez et al, 2009). No significant differences in apoptosis

were detected between genotypes by caspase-3 activation (Supple-

mentary Fig S1C). Thus, Trf1 abrogation in MEFs expressing mutant

K-Ras leads to higher numbers of senescent cells even in the absence

of p53.
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Next, we addressed the effect of Trf1 abrogation in immortaliza-

tion of MEFs. To this end, we performed a colony formation assay,

which reflects on the clonogenic capacity of individual cells.

p53-proficient MEFs did not form any colonies in agreement with

the fact that p53 wild-type MEFs do not spontaneously immortalize

(Supplementary Fig S1D and E) (Harvey & Levine, 1991; Parrinello

A

B

C D

E

Figure 1. Efficient oncogenic K-RasG12V expression and Trf1 depletion in lung lesions.

A Genetic model. Trf1lox and K-RasLSLGV12 alleles are depicted before and after Cre-mediated excision.
B In vivo imaging schedule. Eight- to ten-week-old mice were intratracheally infected with adeno-Cre, mice were analyzed every 2 weeks by computerized tomography

(CT), and 22 weeks post-infection, a positron emission tomography (PET) was performed. Mice were sacrificed 24 weeks post-infection for further histological
analysis.

C TRF1 immunofluorescence of the lungs. Notice the absence and presence of TRF1 signal in the carcinomas and surrounding healthy tissue of Trf1D/D mice,
respectively.

D Analysis of Trf1 excision by PCR. Notice the completed excision in carcinomas of Trf1lox/lox lungs.
E Detection of b-galactosidase activity in the lungs as a surrogate marker of oncogenic K-RasG12V expression.
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et al, 2003). In contrast, p53-deficient MEFs were able to form

immortalized colonies, although Trf1D/D K-Ras+/G12V p53�/� MEFs

formed fewer and smaller colonies than Trf1+/+ K-Ras+/G12V p53�/�

MEFs. In summary, Trf1 deficiency limits both proliferation and

cellular immortalization of K-Ras-expressing cells in vitro even in

the absence of p53.

Trf1 deficiency impairs K-RasG12V-mediated lung cancer and
increases mouse survival even in the absence of p53

We next set out to determine the impact of Trf1 deficiency in vivo in

the K-Ras-induced lung carcinogenesis model. To this end, 8-week-

old Trf1lox/lox K-Ras+/G12V p53+/+ and Trf1lox/lox K-Ras+/G12V p53�/�

mice, as well as their respective Trf1 wild-type controls, were

infected by intratracheal instillation with replication-defective

adenoviruses encoding the Cre recombinase (adeno-Cre) (Materials

and Methods). This strategy allowed the expression of the resident

K-RasG12V oncoprotein simultaneously with the ablation of the

Trf1lox allele in the infected lung cells (Fig 1A). Nine weeks after

viral inoculation, tumor growth was measured by using computed

tomography (CT) every second week until 24th week post-infection

when the experiment was concluded. At 22 weeks post-infection,

positron emission tomography (PET) was performed to monitor

tumor malignancy (Fig 1B). At 24th week post-infection, the animals

were sacrificed to carry a full histopathological analysis of the lungs,

and to confirm K-RasG12V expression and Trf1 deletion in the

lesions (Fig 1B). Trf1 deletion was monitored in all tumors by

TRF1 immunofluorescence and by PCR (Fig 1C and D). K-RasG12V

expression in tumors was confirmed by detecting the expression of

its beta-galactosidase (b-geo) reporter (Fig 1E).

In vivo tumor follow-up by CT scan showed that in a p53-

proficient background, Trf1-deleted mice showed a delayed onset of

the first CT scan-detectable lesions from 9 weeks in Trf1 wild-type

lungs to 12 weeks in the Trf1-deleted ones (Fig 2A). However, after

this initial lag, both genotypes showed a similar growth of the

tumor lesions by CT scan (Fig 2A). Post-mortem lung analysis

revealed that the number of tumors per mouse was higher in Trf1

wild-type than in Trf1lox/lox mice although tumors were histologi-

cally identical (Fig 2B). Importantly, immunofluorescence analysis

of Trf1 expression showed that all tumors in Trf1-deleted lungs

were escapers and had normal Trf1 expression (Fig 2C). Thus, Trf1

is essential for K-RasG12V-induced lung tumor development in a p53-

proficient background as no tumors lacking Trf1 expression were

found (Fig 2C).

Next, we studied the impact of Trf1 deletion in K-RasG12V-

induced lung tumors in a p53-deficient background, a situation

that resembles many human lung tumors. CT analysis revealed

that Trf1D/D K-Ras+/G12V p53�/� tumors grew markedly slower and

reached a smaller size at their end point than Trf1+/+ K-Ras+/G12V

p53�/� tumors (Fig 2D and E). PET analysis at 22 weeks post-

infection revealed that Trf1D/D K-Ras+/G12V p53�/� tumors showed

less metabolic activity than Trf1+/+ K-Ras+/G12V p53�/� tumors

indicating a lower grade of malignancy (Fig 2F and G). Notably, in

agreement with the lower malignancy, Trf1lox/lox K-Ras+/G12V

p53�/� mouse survival was significantly higher than that of Trf1+/+

K-Ras+/G12V p53�/� mice (Fig 2H). Of note, in this setting only 5%

of the Trf1lox/lox p53�/� tumors were found to be escapers

(Fig 2C).

By blind histopathological analysis of the lungs, we confirmed

that Trf1D/D K-Ras+/G12V p53�/� lungs developed less carcinomas

than Trf1+/+ K-Ras+/G12V p53�/� lungs (Supplementary Fig S2A–C).

In addition, the malignant lesions in Trf1D/D K-Ras+/G12V p53�/�

lungs were smaller compared to Trf1+/+ K-Ras+/G12V p53�/� lungs

(Supplementary Fig. S2A–C). In summary, Trf1 deletion effectively

impairs progression to full-blown carcinomas even in the absence of

p53.

Trf1 abrogation induces telomeric DNA damage and apoptosis in
p53-deficient lung carcinomas

Previous reports have shown that abrogation of Trf1 in different cell

types causes a persistent DNA damage response at chromosome

ends, which leads to decreased cell viability (Martinez et al, 2009;

Sfeir et al, 2009; Beier et al, 2012; Schneider et al, 2013). To

address whether the decreased growth and lower malignancy of

Trf1-deficient lung tumors were associated with increased DNA

damage in the lesions, we quantified cH2AX DNA damage foci and

their colocalization to telomeres (the so-called telomere-induced foci

or TIFs) in lung carcinoma sections. The percentage of cH2AX-posi-
tive cells was significantly higher in Trf1D/D K-Ras+/G12V p53�/�

carcinomas compared to Trf1+/+ K-Ras+/G12V p53�/� carcinomas

(Fig 3A). Furthermore, co-immunofluorescence staining of cH2AX
foci with RAP1, another shelterin component localized at telomeres,

showed increased number of DNA damage foci at telomeres in

Trf1D/D K-Ras+/G12V p53�/� than in Trf1+/+ K-Ras+/G12V p53�/�

carcinomas (Fig 3B).

To address the cellular effects of increased telomere damage in

lung carcinomas, we first determined the percentage of apoptotic

cells in lung carcinoma lesions. The percentage of carcinoma cells

that were positive for the apoptotic marker active caspase-3 (AC3)

was higher in Trf1D/D K-Ras+/G12V p53�/� carcinomas compared to

Trf1+/+ K-Ras+/G12V p53�/� carcinomas (Fig 3C). Thus, Trf1 dele-

tion in lung carcinomas leads to increased telomeric damage and

subsequent induction of apoptosis.

Trf1 deficiency leads lower proliferation and increased G2 arrest
and mitotic defects in p53-deficient lung carcinomas

To determine whether Trf1 deletion in the context of K-RasG12V-

induced lung cancer also leads to proliferation defects, we

performed Ki67 immunohistochemistry directly on lung carcinoma

sections. We observed a lower proliferation index (Ki67-positive

cells) in Trf1D/D K-Ras+/G12V p53�/� carcinomas compared to Trf1+/+

K-Ras+/G12V p53�/� carcinomas (Fig 4A). To determine the cell

cycle phase where Trf1-deleted cells showed defects, we analyzed

the staining pattern of phospho-histone H3 (Ser10). A pH3 pan-

nuclear staining is a distinctive feature of mitotic cells, whereas pH3

foci are characteristic of G2 cells (Hendzel et al, 1991). We found

that the percentage of cells positive for G2-distinctive pH3 foci

pattern was significantly increased in Trf1D/D K-Ras+/G12V p53�/�

carcinoma lesions compared to Trf1+/+ K-Ras+/G12V p53�/� lesions

(Fig 4B), suggestive of increased G2 arrest.

Persistent telomere damage can result in bypass of mitosis lead-

ing to endoreduplication and tetraploidy (Davoli et al, 2010). In line

with this, Trf1D/D K-Ras+/G12V p53�/� carcinomas presented an

increased number of giant nuclei indicative of endoreduplication, as
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Figure 2. Trf1 deficiency impairs K-Ras-mediated lung cancer development.

A Tumor growth curve of Trf1+/+ K-Ras+/G12V p53+/+ and Trf1D/D K-Ras+/G12V p53+/+ measured by computed tomography (CT).
B Quantification of the number and size of Trf1+/+ K-Ras+/G12V p53+/+ and Trf1D/D K-Ras+/G12V p53+/+ carcinomas at death point.
C Percentage of tumors that have deleted Trf1 quantified by TRF1 immunofluorescence after mice had been sacrificed. Post-mortem analysis of Trf1 deletion in each

tumor revealed that none of the Trf1lox/lox K-Ras+/G12V p53+/+ ones had excised Trf1.
D Tumor growth curve and tumor growth slope of Trf1+/+ K-Ras+/G12V p53�/� and Trf1D/D K-Ras+/G12V p53�/� measured by CT.
E Tumor maximal section of Trf1+/+ K-Ras+/G12V p53�/� and Trf1D/D K-Ras+/G12V p53�/� lungs measured by histological analysis before death point by CT.
F Maximum 18F-FDG-glucose uptake by Trf1+/+ K-Ras+/G12V p53�/� and Trf1D/D K-Ras+/G12V p53�/� tumors 22 weeks after infection by positron emission tomography

(PET).
G Representative PET-CT image of Trf1+/+ K-Ras+/G12V p53�/� and Trf1D/D K-Ras+/G12V p53�/� lungs.
H Survival curve of Trf1+/+ K-Ras+/G12V p53�/� and Trf1D/D K-Ras+/G12V p53�/� mice.

Data information: Error bars represent standard error. t-test, chi-squared (B) test, or log-rank (Mantel–Cox; H) test was used to assess statistical significance. The number
of mice and the number of tumors are indicated in each case.
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Figure 3. Trf1-deficient carcinomas present high amount of telomeric DNA damage and apoptosis.

A Percentage of cells showing cH2AX foci in carcinomas of the indicated genotypes (left panel). Representative images of cH2AX immunohistochemistry (right panel).
B Percentage of cells showing 3 or more cH2AX and RAP1 colocalizing foci (TIFs) (left panel). Representative images of cH2AX and RAP1 double immunofluorescence

(right panel). Yellow arrowheads: colocalization of cH2AX and RAP1.
C Percentage of active caspase-3 (AC3)-positive cells (left panel). Representative images of AC3 immunohistochemistry (right panel).

Data information: Error bars represent standard error. The number of mice and carcinomas analyzed per genotype is indicated. t-test was used to assess statistical
significance.
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well as increased anaphase bridges, compared to Trf1+/+ K-Ras+/G12V

p53�/� carcinomas (Fig 4C–E). Similarly, Trf1D/D K-Ras+/G12V

p53�/� carcinomas presented cells showing bizarre multilobulated

nuclei and multipolar mitosis, which were not present in Trf1+/+

K-Ras+/G12V p53�/� carcinomas (Fig 4E). This type of aberrant

nuclei have been previously related to mitotic catastrophes

A

C D E

B

Figure 4. Trf1 deficiency leads to G2 arrest and mitotic defects.

A Percentage of Ki67-positive cells in the carcinomas of the indicated genotypes (left panel). Representative images of Ki67 immunohistochemistry (right panel).
B Percentage of pH3-positive cells in the carcinomas of the indicated genotypes (left panel). Representative images of pH3 immunohistochemistry (right panel).

Red arrowheads: pH3-positive cells.
C Percentage of giant nuclei in the carcinomas of the indicated genotype.
D Percentage of anaphase bridges out of total anaphases in the carcinomas of the indicated genotypes.
E Representative images of giant nuclei, multilobulated nuclei, anaphase bridges, and multipolar mitoses. Red arrowheads indicate the corresponding mitotic

aberrations indicated in the image.

Data information: Error bars represent standard error. The number of mice and carcinomas analyzed per genotype is indicated. t-test was used to assess statistical
significance.
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(Vakifahmetoglu et al, 2008). These observations suggest that lung

carcinoma cells require TRF1 for proper completion of mitosis and

that Trf1 deletion leads to severe mitotic defects.

Trf1 downregulation in mouse cell lines derived from K-RasG12V

p53-deficient lung carcinomas as well as in human lung
cancer cell lines impairs cancer growth and metastasis in
xenograft models

To validate these results using an independent strategy to inhibit

TRF1, as well as to assess the effect of TRF1 abrogation in already

established K-Ras-induced lung tumors, we downregulated Trf1

expression by using shRNA technology in three K-RasD/G12Vgeo

p53�/� mouse cancer cell lines derived from three independent

mouse lung carcinoma lesions and assessed the effects on tumor

growth using two independent allograft experiments. First, to

address the effect of TRF1 inhibition in tumor growth in vivo,

we subcutaneously injected 50,000 lung carcinoma cells into

immunodeficient mice and followed tumor onset and growth. Trf1

downregulation resulted in a marked delay in tumor onset as well

as in a significantly decreased tumor growth (Fig 5A–D).

Three weeks after injection, mice were sacrificed and the tumors

were histologically analyzed. We confirmed that Trf1 downregula-

tion was maintained during in vivo tumor development (Fig 5E).

Trf1-downregulated tumors showed decreased proliferation and

increased DNA damage as well as increased apoptosis compared to

controls (Fig 5F–H). Again, Trf1-downregulated tumors presented a

high proportion of aberrant nuclei and anaphase bridges (Fig 5I).

Next, to study the effect of TRF1 inhibition in the metastatic poten-

tial of established lung cancer cells induced by K-Ras expression,

we intravenously injected 150,000 K-RasD/LG12Vgeo p53�/� lung cells

into immunodeficient mice. Tail vein injection of tumor cells

results in lung metastasis (Elkin & Vlodavsky, 2001). Three weeks

after injection, the mice were sacrificed and lungs were subjected

to full histopathology analysis. Again, we confirmed that Trf1

downregulation was maintained in the generated lung metastasis

(Fig 5J). Importantly, Trf1 downregulation resulted in smaller lung

metastasis (Fig 5K and I), coincidental with increased DNA

damage, decreased proliferation, and increased apoptosis compared

to the controls (Fig 5M–O). These results indicate that even a

partial decrease in TRF1 levels of approximately 50% in tumors

very significantly impairs lung tumor growth and lung metastasis,

arguing that putative small molecule inhibitors of TRF1 could be

effective.

Next, we tested whether TRF1 depletion had similar effects on

human lung cancer cell lines. To this end, we downregulated Trf1

levels by using shRNAs in a K-Ras-mutated human lung carcinoma

cell line, the A549 (ATCC n�; CCL-185), a human lung cancer cell

line harboring wild-type p53 (Fig 5P). We then injected subcutane-

ously in immunodeficient mice 150,000 cells either infected with

sh-scrambled or Trf1-shRNA and followed tumor development.

TRF1 downregulation resulted in a markedly delayed tumor onset

and growth. Indeed, control cells started to develop tumors 11 days

after injection, while the latency of TRF1-depleted cells was of

17 days. Moreover, after 24 days of follow-up, only two out of eight

injections with TRF1-downregulated cells were able to generate

tumors whose growth were significantly impaired as compared to

control cells (Fig 5Q and Supplementary Fig S3). Thus, TRF1

downregulation blocks the growth of cell lines derived from already

formed lung mouse tumors and has proven efficacy in one human

cancer cell line.

Trf1 deficiency impairs lung carcinomas independently of
telomere length

To demonstrate that the increased apoptosis and proliferation

defects observed in Trf1-deleted lung carcinomas were not due

to shorter telomeres compared to the TRF1-proficient tumors, we

determined telomere length by telomere quantitative FISH

directly on lung carcinoma sections. Indeed, telomeres were

longer in the Trf1D/D K-Ras+/G12V p53�/� carcinomas compared

to Trf1+/+ K-Ras+/G12V p53�/� carcinomas (Supplementary Fig

S4A–C). As telomere length reflects the proliferative history of a

given tissue, the observation that Trf1+/+ K-Ras+/G12V p53�/�

carcinomas present shorter telomeres than TRF1-deficient ones is

likely to reflect the lower proliferation rate of TRF1-deficient

tumors.

Whole-body Trf1 depletion allows normal mouse survival and
normal tissue function

A prerequisite that must be fulfilled by any potential anti-cancer

target is that its systemic inhibition in healthy tissues does not

compromise organism viability. It has been shown that Trf1 deletion

is deleterious at early points of development (Karlseder et al, 2003;

Martinez et al, 2009). In addition, acute TRF1 removal from bone

marrow in 8-week-old mice leads to bone marrow failure (Beier

et al, 2012). To validate TRF1 as a therapeutic drug target in lung

cancer treatment, we set out to analyze the effects of whole-body

TRF1 depletion in the context of adult mice and its impact on long-

term mouse viability. To this end, we first generated a new mouse

model, Trf1lox/lox hUBC-CreERT2 mice, in which the expression of

CreERT2 is transcriptionally controlled by the ubiquitously and

constitutively regulated ubiquitin promoter (Ruzankina et al, 2007;

Martinez et al, 2009) (Fig 6A). Then, twelve-week-old Trf1+/+ hUBC-

CreERT2 and Trf1lox/lox hUBC-CreERT2 mice were subjected to a

tamoxifen-containing diet for 7 weeks in order to induce Trf1 dele-

tion. After this period of time, a total of eight mice of each genotype

were sacrificed to analyze the extent of Trf1 deletion in a panel of

different tissues as well as to perform full histopathological analysis.

qPCR analysis showed that Trf1 had been successfully deleted from

heart, intestine, lung, skin, blood, liver, kidney, bone marrow, brain,

and stomach (Fig 6B). TRF1 immunofluorescence in skin and small

intestine sections confirmed partial depletion of TRF1 protein in

these tissues (Fig 6C). Despite successful TRF1 depletion after

7 weeks in a tamoxifen-containing diet, neither Trf1+/+ nor Trf1D/D

showed signs of viability loss or decreased survival (Fig 6D). Histo-

pathological analysis of the tissues revealed that the Trf1D/D hUBC-

CreERT2 mice showed alterations in rapidly proliferating tissues

consistent with the stem cell compartment being affected (Fig 6E).

TRF1-depleted basal skin, intestinal crypts, and bone marrow

progenitors presented anisocytosis (Supplementary Figs S5 and S6).

Trf1-deficient basal skin displayed areas with low cellularity and

follicular cysts (Fig 6E and Supplementary Fig S5A). Trf1D/D intesti-

nal crypts showed an increased number of mitosis, but the microvilli

length was normal (Fig 6E and Supplementary Fig S5B). Trf1D/D
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bone marrow presented megakaryocytes with reduced cytoplasm

(Fig 6E and Supplementary Fig S6A). Blood counts showed a small

decrease in the number of platelets and lymphocytes (Fig 6F). Of

note, only one Trf1D/D hUBC-CreERT2 mouse showed a moderate

bone marrow aplasia (Fig 6E and Supplementary Fig S6A). Of note,

6 months on tamoxifen diet did not further decrease Trf1 expression

as compared to the levels observed after 7 weeks and did not aggra-

vate neither pathologies nor mouse viability (Fig 6G and data not

shown). Importantly, tamoxifen retrieval from the diet resulted in a

rescue of pathologies as well as in a recovery of Trf1 expression

levels (Fig 6E–G). Indeed, after 3 weeks, placing the mice on stan-

dard diet Trf1 levels in blood, intestine, skin, and bone marrow

increased 20-, 10-, 30- and 200-fold, respectively, compared to the

levels observed in mice on tamoxifen diet. However, recovery of

Trf1 expression did not reach wild-type levels (Fig 6G). After

3 weeks and 4 months on standard diet, platelet blood counts were

also recovered to wild-type levels (Fig 6F). Thus, a partial ubiquitous

TRF1 downregulation, although resulting in decreased cellularity in

some highly proliferative compartments, such as the bone marrow

and the blood, is compatible with mouse viability.

Identification of chemical compounds that disrupt TRF1 binding
to telomeres

We next set out to identify chemicals that disrupt TRF1 binding to

telomeres. To do so, we designed a cell-based system for high-

throughput screening. Induced pluripotent stem (iPS) cells derived

from eGFP-TRF1 knock-in (KI) mouse embryo fibroblasts (MEFs)

were used (Schneider et al, 2013). The eGFP-TRF1 protein forms

fluorescence foci localizing at the telomere that strongly decrease in

intensity in control cells expressing a sh-Trf1 or in cells heterozy-

gous for eGFP-TRF1 expression (eGFP-Trf1+/KI) showing that this

cellular system is an excellent tool to track TRF1 and telomeres

in vivo (Supplementary Fig S7A). Homozygous version (eGFP-

Trf1KI/KI)—with strong foci intensity—, heterozygous version

(eGFP-Trf1+/KI) and knockdown for TRF1 (sh-Trf1)—with low foci

intensity—were used to validate this system (Supplementary Fig

S7B). The Z’-factor coefficient, a statistical parameter that in addi-

tion to considering the window in the assay also considers the vari-

ance around both the high and low signals in the assay, is

commonly used to assess the robustness of high-throughput

screening (HTS) assays. The Z’-factor was calculated as follows:

Z’-factor = 1 � 3 × (sp + sn)/|mp � mn|, where m: mean fluores-

cence intensity and s: standard deviation; n: negative control

(sh-Trf1 or eGFP-Trf1+/KI heterozygous, minimum signal) and p:

positive control (homozygous eGFP-Trf1KI/KI, maximum signal). A

Z’-factor value of 0.75, when comparing homozygous (homo) vs.

heterozygous (het) or 0.86 comparing homo vs. sh-Trf1, confirmed

the feasibility of this screening system (Supplementary Fig 7C). We

carried out a screening campaign using a small collection of 640

compounds selected as representative of the ETP-CNIO library

(Materials and Methods). Screening was performed at 8 h and at

12.5 lM final concentration on eGFP-Trf1KI/KI cells. Foci distribution

of the homozygous eGFP-Trf1KI/KI (control) or sh-Trf1, were taken

as internal controls. Compounds decreasing percentage of high-

intensity foci above 25% of the control were selected as “hit” candi-

dates, for further validations. In addition, the number of nuclei was

counted. Compounds significantly affecting cell viability were not

considered as positive “hits”.

The screening retrieved a number of positive hits belonging to

different chemical classes. The identified hits were newly resyn-

thesized and tested confirming the observed activity. The search

for analogues within the ETP-CNIO library and their screening

identified additional active compounds. Among the different hits,

two of them were selected for further biological investigation

attending to their primary activity as “TRF1 inhibitors” and addi-

tionally to their potential to be used as tool compounds for

in vivo validation experiments. The selected hits ETP-47228 and

ETP-47037 are included as examples in CNIO international patent

applications WO2010119264 and WO2011089400, respectively.

The general structures of both compounds are depicted in

Supplementary Fig S8A.

We next validated our hits by measuring eGFP-TRF1 fluorescence

intensity in e-GFP-Trf1KI/KI iPS cells after treatment with DMSO, ETP-

47228, or ETP-47037 for 8 h at 10 lM. iPS cells transduced with a

sh-Trf1 were used as a positive control. Both ETP-47228 and

ETP-47037 induced a decrease of 31.33 and 27.32%, respectively, of

e-GFP-TRF1 levels, as compared to a 57% decrease observed in cells

treated with sh-Trf1 (Supplementary Fig S7D).

To address whether these compounds also decrease endogenous

TRF1 levels, we treated wild-type iPS cells (eGFP-Trf1KI/KI)

with 10 lM ETP-47228 for 8 h and quantified TRF1 levels by

Figure 5. Trf1 downregulation in K-RasG12V-transformed lung cells leads to a decreased tumor growth and decreased metastatic potential in allograft and
xenograft models.

A–C The latency (A), volume (B), and weight (C) of subcutaneous tumors generated by control and Trf1-downregulated K-RasG12V-transformed lung cells in athymic
mice.

D Representative images of the subcutaneous tumors.
E Trf1 expression levels measured by qPCR in the injected cell line and in the generated subcutaneous tumors.
F–H Number of Ki67-positive (F), number of cH2AX-positive (G), and number of active caspase-3-positive (H) cells per field in the subcutaneous tumors.
I Representative images of aberrant giant nuclei and anaphase bridges in the Trf1-downregulated subcutaneous tumors compared to the normal nuclei of control

tumors.
J TRF1 immunofluorescence shows the downregulation of Trf1 in lung tumors of the mice intravenously injected with control and Trf1-downregulated cells.
K Tumor area measured in the lungs of the mice intravenously injected with control and Trf1-downregulated cells.
L Representative images of the lungs colonized by control and Trf1-downregulated cells, respectively.
M–O Number of Ki67-positive (M), number of cH2AX-positive (N), and number of active caspase-3-positive (O) cells per field in the lung tumors.
P Trf1 expression levels measured by qPCR in the A549 cell line infected either with sh-scrambled or sh-Trf1.
Q Growth of A549-derived tumors.

Data information: Error bars represent standard error. The number of mice and tumors analyzed per condition is indicated. t-test was used to assess statistical
significance.
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immunofluorescence. Cells treated with ETP-47228 contained 25%

lower levels of TRF1 signal as compared to control cells treated with

DMSO (Supplementary Fig S9A). Interestingly, neither the Trf1

transcriptional levels nor the total TRF1 protein levels were affected

by ETP-47228 or ETP-47037 (Supplementary Fig S9B). In analogy to

Trf1 genetic ablation, chemical inhibition of TRF1 foci intensity was

accompanied by increased cH2AX DNA damage foci and increased

telomeric DNA damage foci (TIFs), together with impairment of

cellular proliferation with increasing ETP-47228 concentrations

(Supplementary Fig S9C–E).

Effective chemical Trf1 inhibition in lung adenocarcinoma-
derived cells

Next, we treated lung mouse adenocarcinoma cell lines with 10 lM
of both ETP-47228 and ETP-47037 for 24 and 48 h and quantified

TRF1 levels compared to DMSO-treated cells. Again, treatment of

lung cancer cells with both ETP-47228 and ETP-47037 resulted in

decreased TRF1 foci levels, increased cH2AX foci, as well as induc-

tion of TIFs (Fig 7A–C). Similarly, both compounds affected prolifer-

ation from concentrations of approximately 5 lM (Fig 7D).

Next, we generated allograft mouse models with lung cancer

cells pretreated with either DMSO, ETP-47228, or ETP-47037 and

followed tumor onset and growth during 12 days. Treatment with

both compounds significantly impaired initial tumor development in

allograft models (Fig 7E).

In vivo treatment with ETP-47037 disrupts TRF1 and effectively
impairs lung carcinoma progression

Next, we addressed whether TRF1 chemical inhibitors administered

in vivo could inhibit the growth of already established K-RasG12V

lung carcinomas lacking p53. To this end, we selected compound

ETP-47037 owing to its in vivo pharmacokinetic properties. ETP-

47037 pharmacokinetic properties were determined after IV and PO

(per os) administration in BALB/c mice at doses of 3.0 and 9 mg/kg

of body weight, respectively (Supplementary Fig S8). In particular,

ETP-47037 is an orally bioavailable compound with an absorbed

fraction F = 29.5%. The half-life after IV administration is 0.5 h,

and the same parameter in the oral arm extends up to 5.2 h. ETP-

47037 is highly stable in vivo with a total clearance of 0.65 l/h/kg,

which means 12% of the hepatic blood flow for mice. The

compound is distributed in tissues, as inferred by a volume of distri-

bution of 0.6 l/kg similar to the total body water content (Supple-

mentary Materials and Methods).

Mice with already developed p53-null lung carcinomas were

treated by oral gavage during 10 days (8 days in total with a 2-day

gap) with 75 mg/kg body weight of ETP-47037. Control mice were

similarly treated with vehicle. Previously to the start and at the

end of the treatment, mice were subjected to computerized tomogra-

phy (CT) for quantification of tumor growth area. Strikingly,

10 days of treatment with this compound effectively impaired the

progression of already formed lung carcinomas compared to

the group treated with vehicle (Fig 8A and B). Of note, one of the

tumors detected before the treatment was located in a highly inflam-

matory region, and for this reason, we could not accurately deter-

mine its size before the treatment (white arrowhead in Fig 8B).

TRF1 foci levels were significantly decreased in tumor samples as

well as in intestines of mice treated with ETP-47037 compared to

the vehicle (Fig 8C). Decrease in TRF1 foci signal was accompanied

with a significant increase in cH2AX-positive cells in both intestines

and lung tumors (Fig 8D). In addition, ET-47037-treated tumors

showed a significant decrease in proliferating and mitotic cells and

increase in the number of G2-arrested cells (Fig 9A–D). Importantly,

Figure 6. Systemic Trf1 depletion in healthy tissues does not compromise tissue function nor organism viability.

A Trf1lox/lox hUBC-CreERT2 genetic mouse model.
B Trf1 expression levels in the indicated tissues of wild-type and Trf1lox/lox hUBC-CreERT2 mice subjected to a tamoxifen-containing diet for 7 weeks.
C Representative images of TRF1 immunofluorescence and quantification of the percentage of TRF1-positive cells in skin and intestine sections of wild-type and

Trf1lox/lox hUBC-CreERT2 mice subjected to a tamoxifen-containing diet for 7 weeks.
D Survival curve of wild-type and Trf1lox/lox hUBC-CreERT2 mice subjected to a tamoxifen-containing diet for 7 weeks.
E Quantification of the histological alterations observed in tamoxifen-treated Trf1lox/lox hUBC-CreERT2 mice and 4 months after tamoxifen retrieval compared to their

wild-type counterparts.
F Quantification of blood cell populations in wild-type and Trf1lox/lox hUBC-CreERT2 mice subjected to a tamoxifen-containing diet for 7 weeks and after 3 weeks and

4 months of tamoxifen retrieval.
G Trf1 expression levels in blood, intestine, skin, and bone marrow of Trf1lox/lox hUBC-CreERT2 mice subjected to a tamoxifen-containing diet either for 7 weeks or for

6 months and after 3 weeks tamoxifen retrieval compared to wild-type mice.

Data information: Error bars represent standard error. The number of mice analyzed per genotype is indicated in each case. t-test was used to assess statistical
significance. TMX, tamoxifen.

Figure 7. Efficient chemical inhibition of TRF1 telomere binding by compounds ETP-47228 and ETP-47037 in mouse lung adenocarcinoma-derived cells.

A Quantification of TRF1 levels by immunofluorescence in lung tumor-derived cell line treated with DMSO, with 10 lM ETP-47228 (24 h), and with 10 lM ETP-47037
(48 h). Representative images are shown to the right.

B Quantification of cH2AX levels by immunofluorescence in lung tumor-derived cell line treated with DMSO, with ETP-47228 (24 h), and with ETP-47037 (48 h).
Representative images are shown to the right.

C Quantification of telomere-induced foci (TIFs) by double immunofluorescence with anti-RAP1 and anti-cH2AX antibodies. Representative images are shown to the
right. White arrowheads: colocalization of cH2AX and RAP1.

D Effect of different ETP-47228 and ETP-47037 concentrations during 24 h on proliferation in lung tumor-derived cell line relative to the growth of DMSO-treated cells.
E Tumor growth quantification in allograft model ETP-47037 or with ETP-47228.

Data information: The data represent the mean values of two to three independent experiments (A–D). Error bars represent standard errors. t-test was used to assess
statistical significance.
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during the treatment, the mice showed a normal viability and did

not show any signs of sickness. Histopathological analysis of the

intestine did not reveal any apparent lesion although we saw

increased aberrant mitotic figures and nuclei characteristic of TRF1

inhibition (Fig 9E). In bone marrow, moderate aplasia, necrotic

cells, and hemosiderosis were observed. In the skin, multinucleated

cells and giant nuclei were detected (Fig 9F), a hallmark of TRF1

targeting. Of note, ETP-47037 did not induce changes in telomere

length in treated tumors as compared to untreated ones (Fig 9G).

These findings indicate that TRF1 inhibition can be achieved in vivo

using chemical compounds and that there is a therapeutic window

for targeting TRF1 in cancer that merits further work.

A

B

C D

Figure 8. “In vivo” treatment with ETP-47037 compound blocks the progression of lung carcinoma.

A Schematic representation of the ETP-47037 treatment protocol. Mice with already developed lung carcinomas were subjected to computerized tomography (CT)
measurements before the start of the treatment. ETP-47037 was given at a dose of 75 mg/kg body weight by oral gavage 8 days out of the ten that the experiment
lasted as indicated. At the end of the treatment, a CT was performed for quantification of tumor area and mice were sacrificed for further histological and molecular
analysis. Control mice were similarly treated with vehicle.

B Quantification of tumor growth relative to initial tumor size. Representative CT images are shown to the right. The white arrowhead indicates a tumor within a
highly inflammatory region.

C Quantification of TRF1 levels by immunofluorescence in intestine and lung tumors samples of mice treated with vehicle or with ETP-47037 for 10 days.
Representative images are shown to the right (n = 4).

D Number of cells showing cH2AX foci in intestine and lung tumors samples of mice treated with vehicle or with ETP-47037 for 10 days. Representative images are
shown to the right (n = 4).

Data information: The data represent the mean values obtained from three mice in each group. Error bars represent standard errors. t-test was used to assess statistical
significance.
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Figure 9. “In vivo” treatment with ETP-47037 compound does not compromise tissue viability.

A–C Quantification of the number of (A) Ki67-, (B) pan-nuclear p-H3 pattern-, and (C) foci p-H3 pattern-positive cells in untreated and ETP-470037-treated lung
carcinomas. The data represent the mean values obtained for three mice in each group. Error bars represent standard errors.

D Representative Ki67 and p-H3 images.
E Representative H&E images of intestine samples corresponding to untreated and ETP-47037-treated animals. High-magnification images are shown to the right

indicating the presence of normal mitosis, giant multinucleated and aberrant mitotic figures.
F Representative H&E images of bone marrow and skin samples corresponding to untreated and ETP-47037-treated animals. High-magnification images are shown

indicating the presence of necrosis, hemosiderosis, multinucleated cells, and giant nuclei. Bone marrow showed moderated aplasia.
G Telomere length in untreated and ETP-47037-treated lung tumor samples. Representative images are shown to the right.

Data information: t-test was used to assess statistical significance.
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Discussion

Aberrant telomerase activation is a common feature of human

cancers, where it allows the growth of malignant cells by ensuring

maintenance of a minimal functional telomere length that permits

cell division (Kim et al, 1994; Hahn et al, 1999; Gonzalez-Suarez

et al, 2000). Indeed, mutations in the telomerase gene or its

regulatory regions have been found associated with many different

types of cancer (McKay et al, 2008; Wang et al, 2008; Rafnar et al,

2009; Shete et al, 2009; Petersen et al, 2010; Melin et al, 2012;

Bojesen et al, 2013; Garcia-Closas et al, 2013; Horn et al, 2013;

Huang et al, 2013). To date, targeting of telomeres in human

cancer has been mainly via targeting telomerase activity, typically

through direct small molecule inhibitors of the enzyme activity

(Brennan et al, 2010; Joseph et al, 2010), or through immunother-

apy-based approaches (Brunsvig et al, 2006; Suso et al, 2011).

Telomeric repeats can also form DNA higher order structures

known as G-quartets, and molecules that stabilize G-quartets have

also been proposed to inhibit telomerase-mediated telomere elonga-

tion in cancer (Sun et al, 1997; Shin-ya et al, 2001; Huang et al,

2008). A predicted shortcoming of therapeutic strategies based on

telomerase inhibition to treat cancer is that they will be effective only

when telomeres shorten below a minimum length. Indeed, telomer-

ase activity is dispensable for transformation of cells with long telo-

meres (Seger et al, 2002), and studies with telomerase inhibitors

indicate that they are effective preferentially in cells with short telo-

meres (Hahn et al, 1999; Herbert et al, 1999; Wang et al, 2004; Bren-

nan et al, 2010; Wu et al, 2012; reviewed in Buseman et al, 2012).

In line with this, telomerase abrogation in the context of cancer-

prone mouse models, including the K-Ras+/G12D lung tumorigenesis

mouse model, only showed anti-tumorigenic activity after several

mouse generations in the absence of telomerase when telomeres

reached a critically short length (Chin et al, 1999; Greenberg et al,

1999; Gonzalez-Suarez et al, 2000; Perera et al, 2008). Moreover,

these anti-tumorigenic effects of short telomeres owing to telomerase

deficiency are abrogated in the absence of p53 (Chin et al, 1999;

Greenberg et al, 1999).

In contrast to telomerase inhibition, telomere uncapping has

been shown to cause rapid induction of cell death and/or senes-

cence in a manner that is independent of telomerase activity and

telomere length (Karlseder et al, 1999; Smogorzewska & de Lange,

2002; Martinez et al, 2009). Owing to the fact that telomere uncap-

ping can be achieved independently of telomere length, it emerges

as a more universal way to rapidly impair the growth of dividing

cells. Indeed, in our experimental system, Trf1 abrogation results in

a dramatic reduction in the number and the size of malignant lung

carcinoma lesions, even in the absence of p53, already in the first

mouse generation and in the absence of telomere shortening, indi-

cating that Trf1 deficiency severely impairs cancer progression in

the context of oncogenic K-Ras. As a consequence of this, all the

Trf1D/D K-Ras+/G12V p53�/� mice survived until the end point of the

experiment (24 weeks post-infection), while only 50% of the Trf1+/+

K-Ras+/G12V p53�/� mice survived the same period. These findings

indicate that Trf1 deficiency impairs the development of K-Ras-

induced lung carcinomas. Of note, this represents the first time

that effective impairment of K-Ras+/G12V p53�/� carcinomas is

achieved, as genetic abrogation of other therapeutic pathways did

not impair tumor growth in the absence of p53 (Navas et al,

2012). Furthermore, here we show that downregulation of Trf1 can

also block the growth and metastatic potential of both mouse and

human lung cancer cell lines derived from already established

K-Ras-induced lung carcinomas by using xenograft models.

We find that the mechanisms through which Trf1 deletion

impairs cancer progression are related to its previously described

roles in telomere capping, telomere replication, and mitosis (Marti-

nez et al, 2009; Sfeir et al, 2009). In this regard, we show that Trf1

deficiency results in a high burden of telomeric DNA damage, genetic

instability, proliferation defects, apoptosis, and mitotic catastrophe.

Importantly, we demonstrate here that a long-term systemic

depletion of TRF1 in healthy adult tissues does not compromise

organism viability, although we observed decreased cellularity in

some highly proliferative compartments, such as the hematopoietic

compartment and blood, which were recovered upon tamoxifen

removal. Together, these findings suggest a therapeutic window for

TRF1 inhibition in cancer.

Inspired by the above notion, we have identified compounds

that disrupt TRF1 binding to telomeres illustrating the feasibility of

chemically targeting shelterin proteins. Furthermore, we have

shown that “in vivo” treatment of already established lung

adenocarcinomas with one of the identified compounds,

ETP-47037, results in decreased TRF1 signal in vivo and the

impairment of tumor progression in the absence of decreased

mouse viability.

In summary, the results described here are proof of concept that

TRF1 abrogation is an effective therapeutic strategy to block the

growth of aggressive lung carcinomas independently of telomere

length and p53 status and that it is possible to achieve this by small

molecules that are able to target TRF1 in vivo. Finally, as this strat-

egy relies on a universal mechanism, namely induction of telomere

uncapping, we speculate that it could be applied in many other

cancer types.

Materials and Methods

Mice

K-Ras+/LSLG12Vgeo (Guerra et al, 2003), and Trf1lox/lox (Martinez et al,

2009), p53�/� (Jackson Labs, http://jaxmice.jax.org/strain/

002101.html) strains were crossed to obtain K-Ras+/LSLG12Vgeo

Trf1lox/lox p53�/� mice. To generate Trf1lox/lox hUBC-CreERT2 mice,

we crossed our Trf1lox/lox (Martinez et al, 2009) with a mouse

strain that carries a ubiquitously expressed, tamoxifen-activated

recombinase, hUBC-CreERT2mice (Ruzankina et al, 2007). Trf1lox/lox

hUBC-CreERT2 mice were fed ad libitum for 7 weeks with tamoxi-

fen-containing diet (Tekland CRD Tam400/CreER). For allograft

experiments, 7-week-old athymic nude females were obtained from

Harlan. All mice were maintained at the Spanish National Cancer

Center under specific pathogen-free conditions in accordance with

the recommendations of the Federation of European Laboratory

Animal Science Associations (FELASA). All animal experiments

were approved by the Ethical Committee and performed in accor-

dance with the guidelines stated in the International Guiding Prin-

ciples for Biomedical Research Involving Animals, developed by

the Council for International Organizations of Medical Sciences

(CIOMS).
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Adenovirus intratracheal infection

Eight- to ten-week-old mice were treated once with intratracheal

adeno-Cre (Gene Vector Core, University of Iowa, 1 × 1010 pfu/ml)

instillation with 1 × 108 PFU/mouse of virus after anesthesia by

intraperitoneal injection of ketamine–medetomidine (Domitor,

1 mg/ml; Orion Corporation). To wake up the mice after the instilla-

tion, they were injected with 0.05 mg of atipamezole (Antisedan,

5 mg/ml; Orion Corporation).

In vivo imaging by computed tomography (CT) and positron
emission tomography (PET)

Nine weeks after inoculation, an in vivo follow-up of tumor growth

was achieved by six computed tomographies (CT) every 15 days.

PET was performed 22nd week post-inoculation, and the mice were

sacrificed (24th week post-inoculation). CT and PET analyses were

performed as previously described (Ambrogio et al, 2014). For PET

quantification, tumor regions of interest (ROIs) were selected in

the PET-CT overlapped image. In these ROIs, the standardized
18FDG-glucose uptake value (SUV) was calculated using the follow-

ing formula: SUV = tumor FDG concentration (MBq)/(injected

dose/body weight).

Telomere length analyses on tissue sections

Quantitative telomere fluorescence in situ hybridization (Q-FISH)

directly on tumor sections was performed as previously described

(Flores et al, 2008) and analyzed by Definiens software.

Chemical library

The Experimental Therapeutics Program at CNIO, ETP-CNIO,

owns a chemical library of about 50,000 single compounds built

as a result of the consolidation of several sub-libraries selected

attending to different criteria such as chemical diversity, kinase-

targeted focus, potential to disrupt protein–protein interactions,

and the presence of low molecular weight compounds to facili-

tate fragment-based drug discovery. The drug-likeness of the

whole library was also ensured by the application of filters such

as “rule of five” (Lipinski, 2004). The compounds were selected

from commercial origin as well as from internally newly

designed and synthesized chemical matter. Representative

libraries of the whole 50K library with smaller sizes were defined

after clustering, based on similarity analysis, and selection of

representative compounds from each cluster. A 640-compound

library, subject of the currently reported screening campaign, is

the minimum size set of compounds representing the chemical

ETP-CNIO collection.

Screening for identification of TRF1 inhibitors

We tested the CNIO-640 library previously described. iPS cells

expressing eGFP-TRF1 were seeded in 0.1% gelatin-pretreated cell-

carrier black 384-well microplates (Perkin Elmer) at a density of

1.25 × 104 cells per well 24 h before adding the compounds.

Compounds were weighed out and diluted in dimethyl sulfoxide

(DMSO) to a final concentration of 10 mM (mother plate). From

here, an intermediate dilution plate was prepared. The appropriate

volume (ll) of each compound solution was added automatically

(Beckman FX 96 tip) from the intermediated plate to the media of

plated cells to get a 12.5-lM final concentration for each compound

assayed in duplicate. Cell viability was previously tested in a dose

curve with increasing concentrations of DMSO. After 8-h incubation,

cells were fixed in 4% paraformaldehyde in phosphate-buffered

saline (PBS) for 15 min at room temperature and washed three

times with PBS. Those compounds that killed cells at 12.5 lM at 8 h

were not considered as positive hits.

For quantitative measurement of eGFP-TRF1 foci levels,

pictures of fixed cells were automatically acquired from each well

by the Opera High Content Screening (HCS) system (Perkin

Elmer). Sixty images of random fields per well, with a

40× magnification lens, were taken under non-saturating condi-

tions. At least 1 × 103 cells were analyzed for each well. Briefly,

images were segmented using the DAPI staining to generate

masks matching cell nuclei from which eGFP-TRF1 foci were

analyzed. SPSS software was used for statistical analysis as

follows: Within each plate, the eGFP-TRF1 intensities of control

eGFP-Trf1KI/KI cells were distributed by quartiles (Q). First-quartile

distribution (Q1) was taken as threshold to distinguish low- or

high-intensity eGFP-TRF1 foci. Percentage of low vs. high GFP-

TRF1 levels was normalized using the average of negative and

positive controls as minimum and maximum reference levels. The

number obtained was taken as relative TRF1 inhibition for each

compound.

The paper explained

Problem
Unlimited cell division in cancer requires activation of mechanisms
that ensure maintenance of telomere length. Targeting of telomeres
in human cancer has been approached via targeting telomerase
activity. A caveat of therapeutic strategies based on telomerase
inhibition to treat cancer is that they will be effective only when
telomeres shorten below a minimum length. We have addressed
whether induction of telomere dysfunction independently of telo-
mere length by targeting a shelterin component could be applied
as a more universal way to rapidly impair the growth of dividing
cells.

Results
We demonstrate that acute telomere uncapping owing to inhibition
of the TRF1 shelterin component has therapeutic activity in blocking
the growth of p53-deficient K-Ras-induced lung tumors by inducing
DNA damage at telomeres. This anti-tumorigenic activity of TRF1 inhi-
bition is independent of telomere length. In parallel, we show that
whole-body partial TRF1 depletion, although resulting in moderate
loss of cellularity in the bone marrow in few Trf1-deleted mice, did
not impair organismal viability and survival. Importantly, we identify
small molecules that disrupt TRF1 binding in vivo, and that effectively
block the growth of already established p53-deficient K-Ras-induced
lung carcinomas through induction of DNA damage and cell arrest,
again in the absence of deleterious effects in mouse survival or
viability.

Impact
This represents the first demonstration that targeting the TRF1 shel-
terin component may represent a novel therapeutic approach for
cancer treatment.
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In vivo treatment with compound ETP-47037

K-Ras+/LSLG12Vgeo Trf1lox/lox p53�/� tumors were induced by intra-

tracheal adeno-Cre instillation as described above. Once the lung

tumors developed, mice were daily dosed orally with 75 mg/kg of

ETP-47037 formulated in 10% N-methyl-pyrrolidone and 90% poly-

ethylene-glycol 300 for 10 days and 2 days of resting. The reduction

in number and size of the tumors was analyzed by computed

tomography (CT).

Supplementary information for this article is available online:

http://embomolmed.embopress.org
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