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Abstract: In the present work, highly multiplexed diagnostic KITs based on an Interferometric Optical
Detection Method (IODM) were developed to evaluate six Coronavirus Disease 2019 (COVID-19)-
related biomarkers. These biomarkers of COVID-19 were evaluated in 74 serum samples from severe,
moderate, and mild patients with positive polymerase chain reaction (PCR), collected at the end of
March 2020 in the Hospital Clínico San Carlos, in Madrid (Spain). The developed multiplexed diag-
nostic KITs were biofunctionalized to simultaneously measure different types of specific biomarkers
involved in COVID-19. Thus, the serum samples were investigated by measuring the total specific
Immunoglobulins (sIgT), specific Immunoglobulins G (sIgG), specific Immunoglobulins M (sIgM),
specific Immunoglobulins A (sIgA), all of them against SARS-CoV-2, together with two biomarkers
involved in inflammatory disorders, Ferritin (FER) and C Reactive Protein (CRP). To assess the results,
a Multiple Linear Regression Model (MLRM) was carried out to study the influence of IgGs, IgMs,
IgAs, FER, and CRP against the total sIgTs in these serum samples with a goodness of fit of 73.01%
(Adjusted R-Squared).

Keywords: COVID-19 biomarkers; SARS-CoV-2; serum; immunoglobulin; ferritin; interferometric
optical detection method

1. Introduction

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is responsible
for a worldwide pandemic causing millions of infected people and a significant number
of deaths [1–3]. In Spain, the Coronavirus Disease 2019 (COVID-19) pandemic caused by
SARS-CoV-2 started at the beginning of 2020, with Madrid (Spain) being one of the areas
with a higher number of cases.

SARS-CoV-2 is a single-stranded RNA-enveloped virus whose genes S, E, M, and N
encode structural proteins. Unlike other functional proteins of SARS-CoV-2, the S protein
on the viral surface is responsible for virus entry into the host cells, is able to induce
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the host immune response, and is the main antigen of the virus to elicit neutralizing
antibodies [1,4,5]. However, it must be considered that studies carried out in Singapore
populations and by the Wuhan Union Hospital indicate that a percentage of 0.6 to 12%
of patients with COVID-19 do not produce specific antibodies against SARS-CoV-2 [6,7],
and a percentage of children are not affected by the virus, as reported in several works; for
example, a study across 25 European countries showed 16% of asymptomatic cases to be in
children [8–10].

In the study carried out at the University Hospital of La Paz (Madrid, Spain), the
severity of the COVID-19 disease was evaluated on a sample of more than 2226 patients (this
cohort of patients included patients hospitalized from 25 February to 19 April 2020), with a
higher incidence in the elderly (the median age reported in the article was 61 years old).
Global mortality was over 20% (460 of the 2226 patients died), with a higher percentage in
men. The mortality rate surpassed 40% in men over 70 y/o and in women over 80 y/o. For
elders older than 80 y/o, this mortality rate increased to above 50% on average [11].

The Polymerase Chain Reaction technique (PCR) is the accepted gold-standard diag-
nostic method for molecular detection of SARS-CoV-2 to control the pandemic crisis [5].
However, a great need remains for assays that measure immunity antibody responses,
determine seroconversion, measure other related biomarkers of COVID-19, and study the
immune response to SARS-CoV-2 [3,5,12]. Relevant technologies have been published
regarding the detection of specific antibodies associated with the immune response of
the COVID-19 infection, such as those based on enzyme-linked immunosorbent assay
(ELISA), chemiluminescence (CLIA), or lateral flow (LF), among other alternatives. In
addition, tests based on non-invasive samples such as saliva also facilitate the population-
based mass screening of COVID-19, in an attempt to overcome the current pandemic
situation [3,12,13].

Even though the viral load has been revealed to be a significant factor for the prognosis
and monitoring of the disease, relevant studies suggest that the death of patients is caused
by a defensive uncontrolled reaction of our immune system, a cytokine storm, and not by
the virus itself. In this sense, it should be noted that high levels of interleukins such as
IL-6 or TNFa have been reported in peripheral blood samples and have allowed medical
practitioners to apply promising therapies to block their effect, inhibiting proinflammatory
pathways with different drugs like Tocilizumab or Fedratinib [14–16].

Although PCR is a technique with high specificity, it is also a laborious technique,
with long waiting times and the requirement of difficult sample processing to extract the
genetic material in order to amplify it. On the other hand, simpler diagnostic tests such as
those based on LF have less sensitivity for low concentrations of the target biomarker. This
makes necessary the implementation of new diagnostic systems that allow high sensitivity
and specificity but with simpler handling, low-cost equipment, and faster analysis.

For this reason, a wide variety of biosensors have been developed, including field-
effect transistor (FET)-based biosensors [17], electrochemical biosensors [18,19], and surface
plasmon resonance (SPR)-based biosensors [20].

In a recent previous work, we reported an immunosensor for measuring specific
immunoglobulins in sera and saliva [21]. In the present work, we increased the demulti-
plexing capacity to be able to measure six biomarkers in a single KIT: sIgT, sIgG, sIgM, sIgA,
FER, and CRP. We developed an in vitro diagnostic system based on a highly multiplexed
KIT with 65 interferometric biotransducers in a single KIT. The basis of the interferometric
optical-based technology employed to perform this qualitative and quantitative study has
been described previously in detail, and it is well correlated with ELISA [21,22]. These
biotransducers, also called Biophotonic Sensing Cells (BICELLs) are well reported and
described in the literature [23–25]. The in vitro detection system is based on the Inter-
ferometric Optical Detection Method (IODM) [26,27], whose readout signal is measured
in ∆IROP (%) (Increased Relative Optical Power) to analyze six different biomarkers per
sample in a rapid, cost-effective, affordable, and reliable manner. In this work, we report the
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significant changes necessary to overcome the challenge of measuring multiple biomarkers
in a single diagnostic KIT.

The present work reports the analysis of 74 serum samples of severe (25), moderate (26),
and mild (23) patients with a positive PCR, collected at the end of March 2020 from the
Hospital Clínico San Carlos in Madrid (Spain). Patients were divided into these severity
groups based on their hospitalization in the intensive care unit and the requirement for
mechanical ventilation. Mild patients were those who did not require hospitalization, mod-
erate patients were defined as those who were hospitalized but did not require admission
to the ICU and mechanical ventilation, and finally, severe patients were those who required
admission to the ICU and mechanical ventilation.

The aim of this study was to evaluate the immune response by measuring the titer
of total specific Immunoglobulins (sIgT), specific Immunoglobulins G (sIgG), specific
Immunoglobulins M (sIgM), and specific Immunoglobulins A (sIgA) against SARS-CoV-2,
together with the inflammatory biomarkers Ferritin (FER) and C Reactive Protein (CRP), to
evidence differences associated with the immunoresponse.

2. Materials and Methods
2.1. Reagents and Chemicals

Anti-Ferritin heavy chain (α-FTH1) and anti-C Reactive Protein (α-CRP) antibodies,
Bovine Serum Albumin (BSA), casein hydrolysate, Phosphate Buffered Saline (PBS), and
secondary antibodies (α-IgG, α-IgM and α-IgA) were purchased from Sigma-Aldrich, St.
Louis, MO, USA.

2.2. Samples and Patients

Seventy-four serum samples of patients with SARS-CoV-2 infection confirmed by PCR
and twenty samples from blood donors were provided by the biobank of the Hospital
Clínico San Carlos (HCSC) (B.0000725; PT17/0015/0040; ISCIII-FEDER). These samples
were characterized with information about symptoms and blood groups complying with
current legal ethical regulations, with the collaboration of the Instituto de Medicina de
Laboratorio (IML) and the Unidad de Inovación of the HCSC. A total of 20 of these samples
belonged to asymptomatic patients.

Once these samples were received, they were heated at 56 ◦C to inactivate the comple-
ment and to reduce the potential risk from any residual virus. Then, serum was diluted at
1:10 and stored at −80 ◦C until used.

2.3. Recombinant SARS-CoV-2 S1 Protein

To produce the recombinant virus protein, SARS-CoV-2 cDNA was kindly donated by
Isabel Solá (Centro Nacional de Biotecnología, Spanish National Research Council (CNB-
CSIC, Spain)). This recombinant SARS-CoV-2 spike protein (rS1) was produced in Pichia
Pastoris and purified using the methods described in [21,28].

2.4. Fabrication of Multiplexed Diagnostic KITs

A more detailed description of the fabrication of KITs by the Optics, Photonics,
and Biophotonics Group can be found in previous works [22,23,26]. We designed the
diagnostic KIT with 65 wells with a diameter of 1 mm, made of Polyvinyl Chloride (PVC),
with a Fabry-Perot interferometric biosensing site with a diameter of 200 microns, made
of SU-8 epoxy resist within each well, which only needs a drop with a sample volume
of 1 µL (Figure 1). The interferometric signal produced by each biosensing site was read
out vertically using an optical reader. In summary, a negative resist (SU-8) was spin-
coated over a Silicon wafer, then a photolithography process was performed to create a
multiplexed design with 65 sensing cells over the surface, as previously described [21].
After a dicing step, the multiplexed KITs were finalized by fixing the wafer chips to glass
slides. Figure 2 represents the design of this highly multiplexed diagnostic KIT and the
assays carried out.
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Figure 1. (A) Multiplexed 65-well KIT used for the described assays. (B) Detail of the sensor used,
highlighting the BICELLs in yellow surrounded by the PVC. Abbreviations: Biophotonic Sensing
Cell (BICELL), Polyvinyl Chloride (PVC).

Figure 2. Depiction of the methodology followed for SARS-CoV-2 detection. The diagnostic kit used
for the multiplexed diagnosis (on the bottom of the figure) is composed of 65 biosensing sites (purple
dots represented in the picture) made of SU-8 epoxy resist and fabricated on a Silicon substrate
chip placed on a glass slide to facilitate its handling. The upper layer is a PVC container (a blue
sheet on the image), which holds/separates the micro-volume samples. To carry out the assay,
as a first step (0), the immobilization of specific bioreceptors is performed. Later, in step (1), the
direct recognition of SARS-CoV-2 specific biomarkers sIgTs, FER, and CRP is measured from three
different types of serum samples (two samples from unknown patients, and a control serum). Finally,
step (2) determines the biosensing signal of sIgG, sIgM, and sIgA through incubation with secondary
antibodies. Abbreviations: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Anti-
Ferritin heavy chain (α-FTH1) and anti-C Reactive Protein (α-CRP), recombinant SARS-CoV-2 spike
protein (rS1), Bovine Serum Albumin (BSA) and C Reactive Protein (CRP).
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2.5. Biofunctionalization of the Multiplexed Diagnostic KITs

First, the surface of the biosensing sites was activated through an O2 plasma [21,29]
process to immobilize the specific bioreceptors, rS1, α-FTH, and α-CRP, by covalent bind-
ing. The diagnostic kits were incubated with 300 ng of rS1 (1 µL at 300 µg/mL in PBS
(pH 7.5)), 100 ng of α-FTH1 (1 µL at 100 µg/mL in PBS (pH 7.5)), and 100 ng of α-CRP
(1 µL at 100 µg/mL in PBS (pH 7.5)) until saturation, using an automated liquid dispensing
platform, BioDot AD1520TM. BSA was incubated as a negative control (1 µL at 50 µg/mL
in PBS (pH 7.5)) to check the selectivity of the sensing system. After that, proteins were
incubated in a humid environment at 37 ◦C for 3 h.

After the incubation time, the diagnostic KITs were washed with Milli-Q water and
dried with particle filters and dry air. Then, the readout signal (∆IROP (%)) of each sensing
site was measured, and the values were confirmed to fit within our admissible limits of
tolerance. To prevent non-specific binding on the remaining binding surface, all diagnostic
KITs were blocked with casein hydrolysate 1× for 1 h under agitation.

The BioDot dispensing system is able to dispense accurately small volumes of reagent (on
the order of 100 nanoliters), allowing excellent reproducibility in the biofunctionalization stage.

2.6. In Vitro Detection of IgT, IgG, IgM, IgA, FER, and CRP

First, the diagnostic kits were biofunctionalized with rS1 protein and α -FTH1 and
α -CRP antibodies, in addition to BSA protein as a negative control, and then were blocked.
After this process, SARS-CoV-2 specific antibodies, FER and CRP, were measured. Serum
samples were diluted at 1:10 and incubated in order to measure sIgT, FER, and CRP directly
in a single step (Figure 2). In this case, specific antibodies (IgG, IgM, and IgA) to the virus,
ferritin, and PCR were measured in each KIT for two different patients (together with
their negative controls), and the positive control (PCR-confirmed COVID-19 patient) was
incubated in each diagnostic KIT. After the washing process, the FER, CRP, and sIgT levels
of the patients were directly detected.

Titers of the specific antibodies were analyzed simultaneously. The concentrations of
IgGs, IgMs, and IgAs were determined by secondary antibodies (α-IgG, α-IgM, and α-IgA)
(Figure 2). The readout signal ∆IROP (%) was measured after each stage of incubation.

For each biomarker, we examined the difference in the patient signal corrected by the
BSA signal in the corresponding diagnostic KIT to determine the specific signal we were
measuring, since we eliminated the background signal produced by each patient’s serum.
The signal obtained in a serum sample of a clinically tested healthy patient minus the BSA
signal in the corresponding diagnostic KIT plus the standard uncertainty was established
as a negative control [30]. As a positive control signal, we considered that resulting from
the serum sample of a clinically diagnosed patient. Both signals were used to control the
quality of the measurements during the trial.

As the sample signals were referenced to the BSA level, and 5 of a given serum sample
signal is the difference between the signal in the corresponding biomarker (sIgT, sIgG, sIgM,
sIgA, FER, and CRP), normalized to the BSA signal, this protocol ensures the comparability
of the data collected for this trial.

2.7. Statistical Comparisons among the Severe, Moderate, and Mild Patients’ Groups

We analyzed whether the degree of severity (Severe, Moderate, and Mild groups, as
classified by the hospital) was a significant factor for the variable response IgT (the total
concertation of specific immunoglobulins against SARS-CoV-2). As a result, the ANalysis
Of VAriance (ANOVA) showed that the degree of severity was significant for the variable
response (IgT) with a p-value of 0.045. When we compared the IgT for each of the different
groups of severity (Severe, Moderate, and Mild), we observed that the Severe group was
different from the Moderate and Mild groups. The pairwise comparison showed that,
indeed, Severe was different from Moderate and Mild, with p-values of 0.028 and 0.036
respectively. Therefore, in terms of IgT, the groups Moderate and Mild were different from
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the group of Severe patients. However, the Moderate and Mild groups did not present
significant differences (p-value = 0.917) in terms of IgT.

2.8. Multiple Linear Regression Models

In this case, study we employed a Multiple Linear Regression Model (MLRM) to
evaluate the titers of sIgG, sIgM, and sIgA FER and CRP, and how they were correlated
with the sIgT.

The steps for obtaining this model were as follows: we firstly obtained the correlation
matrix among all the quantitative variables (sIgT, sIgG, sIgM, sIgA, FER, and CRP). The
correlation results are presented at the end of the document. Secondly, we obtained the
simple regression models of sIgT against sIgG, sIgM, sIgA, FER, and CRP to test that
the variables were significant (see Table 1). Finally, we evaluated all the variables in the
Multiple Regression Model, noting that the variable CRP was not significant, with a p-value
of 0.472, which was much higher than the considered statistical significance level of 0.05.
Finally, we removed the CRP variable for the Multiple Regression Model obtaining a
goodness of fit of 70.29% (Adjusted R-Squared).

Table 1. p-values obtained for the model of the simple linear regression model. p-values lower than
the statistically significant level of (α = 0.05) can be considered to be related to sIgT.

sIgG sIgM sIgA FER CRP

sIgT 1.59 × 10−6 0.000122 0.00362 1.17 × 10−6 0.00362

Finally, we considered the qualitative variable of Severe, Moderate, and Mild in the
Multiple Regression Model, allowing us to achieve a goodness of fit of 73.01% (Adjusted
R-Squared). All the models presented a good statistical diagnosis.

3. Results

Four different proteins were immobilized as bioreceptors onto each interferometric
biosensing site of the diagnostic KIT: α-FTH1, α-CRP, rS1, and BSA. In a first step, the
patients’ samples were incubated, washed, dried, and optically readout to recognize FER,
CRP, and sIgT, which mainly correspond to the compendium of sIgG, sIgM, sIgA against
SARS-CoV-2. In a second step, we identified and classified the different types of antibodies
incubating anti-human IgG (α-IgG), anti-human IgM (α-IgM), and anti-human IgA (α-IgA).

We measured the serum samples and analyzed the different biomarkers for each Level
of Severity of COVID-19 (LSC) following the above-mentioned biosensing strategy. These
results can be observed in serum samples from patients classified as severe (Figure 3),
moderate (Figure 4), and mild (Figure 5). The level of the readout signal for the titer of sIgT,
FER, and CRP is proportional to the concentration of those molecules in the sample [26,27].
However, the signal of the titers of sIgG, sIgM, and sIgA is proportional to the concentration
of the secondary antibody employed to specifically recognize the human sIgG, sIgM, and
sIgA present in the serum samples.
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Figure 3. Results of the biomarkers measured in samples from patients with Severe symptoms. The
cut-off for each marker is shown in colored shading. Abbreviations: total specific Immunoglobulins
(sIgT), specific Immunoglobulins G (sIgG), specific Immunoglobulins M (sIgM), specific Immunoglob-
ulins A (sIgA), together with Ferritin (FER), Reactive Protein (CRP) and ∆IROP (%) (Increased
Relative Optical Power.

Figure 4. Results of the biomarkers measured in samples from patients with Moderate symptoms. The
cut-off for each marker is shown in colored shading. Abbreviations: total specific Immunoglobulins
(sIgT), specific Immunoglobulins G (sIgG), specific Immunoglobulins M (sIgM), specific Immunoglob-
ulins A (sIgA), together with Ferritin (FER), C Reactive Protein (CRP) and ∆IROP (%) (Increased
Relative Optical Power.
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Figure 3. Results of the biomarkers measured in samples from patients with Severe symptoms. The
cut-off for each marker is shown in colored shading. Abbreviations: total specific Immunoglobulins
(sIgT), specific Immunoglobulins G (sIgG), specific Immunoglobulins M (sIgM), specific Immunoglob-
ulins A (sIgA), together with Ferritin (FER), Reactive Protein (CRP) and ∆IROP (%) (Increased
Relative Optical Power.

Biosensors 2022, 12, 671 7 of 14

Figure 3. Results of the biomarkers measured in samples from patients with Severe symptoms. The
cut-off for each marker is shown in colored shading. Abbreviations: total specific Immunoglobulins
(sIgT), specific Immunoglobulins G (sIgG), specific Immunoglobulins M (sIgM), specific Immunoglob-
ulins A (sIgA), together with Ferritin (FER), Reactive Protein (CRP) and ∆IROP (%) (Increased
Relative Optical Power.

Figure 4. Results of the biomarkers measured in samples from patients with Moderate symptoms. The
cut-off for each marker is shown in colored shading. Abbreviations: total specific Immunoglobulins
(sIgT), specific Immunoglobulins G (sIgG), specific Immunoglobulins M (sIgM), specific Immunoglob-
ulins A (sIgA), together with Ferritin (FER), C Reactive Protein (CRP) and ∆IROP (%) (Increased
Relative Optical Power.
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Figure 4. Results of the biomarkers measured in samples from patients with Moderate symptoms. The
cut-off for each marker is shown in colored shading. Abbreviations: total specific Immunoglobulins
(sIgT), specific Immunoglobulins G (sIgG), specific Immunoglobulins M (sIgM), specific Immunoglob-
ulins A (sIgA), together with Ferritin (FER), C Reactive Protein (CRP) and ∆IROP (%) (Increased
Relative Optical Power.
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Figure 5. Results of the biomarkers measured in samples from patients with Mild symptoms. The cut-
off for each marker is shown in colored shading. Abbreviations: total specific Immunoglobulins (sIgT),
specific Immunoglobulins G (sIgG), specific Immunoglobulins M (sIgM), specific Immunoglobulins
A (sIgA), together with Ferritin (FER), Reactive Protein (CRP) and ∆IROP (%) (Increased Relative
Optical Power.

To compare these results, we calculated the percentage of positives, considering the
six biomarkers for each LSC. The results can be observed in Figure 6.

Figure 6. Summary of the qualitative comparison. (A) Percentage of positives for each biomarker
as a function of the LSC. (B) Classification of each LSC as a function of the titers of sIgT, sIgG,
sIgM, sIgA, FER, and CRP. Abbreviations: Level of Severity of COVID-19 (LSC), total specific
Immunoglobulins (sIgT), specific Immunoglobulins G (sIgG), specific Immunoglobulins M (sIgM),
specific Immunoglobulins A (sIgA), together with Ferritin (FER), C Reactive Protein (CRP) and
∆IROP (%) (Increased Relative Optical Power.
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Figure 5. Results of the biomarkers measured in samples from patients with Mild symptoms. The cut-
off for each marker is shown in colored shading. Abbreviations: total specific Immunoglobulins (sIgT),
specific Immunoglobulins G (sIgG), specific Immunoglobulins M (sIgM), specific Immunoglobulins
A (sIgA), together with Ferritin (FER), Reactive Protein (CRP) and ∆IROP (%) (Increased Relative
Optical Power.
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six biomarkers for each LSC. The results can be observed in Figure 6.

Figure 6. Summary of the qualitative comparison. (A) Percentage of positives for each biomarker
as a function of the LSC. (B) Classification of each LSC as a function of the titers of sIgT, sIgG,
sIgM, sIgA, FER, and CRP. Abbreviations: Level of Severity of COVID-19 (LSC), total specific
Immunoglobulins (sIgT), specific Immunoglobulins G (sIgG), specific Immunoglobulins M (sIgM),
specific Immunoglobulins A (sIgA), together with Ferritin (FER), C Reactive Protein (CRP) and
∆IROP (%) (Increased Relative Optical Power.



Biosensors 2022, 12, 671 9 of 14

We observed that 96% of Severe donors showed a positive sIgT signal, in contrast to
77% of Moderate and 65% of Mild patients.

Over 72% of Severe donors showed a positive sIgG signal, in contrast to over 54% of
Moderate and 39% of Mild patients. Over 48% of Severe donors showed a positive sIgM
signal, higher than in Moderate and Mild patients. Only 44% of Severe donors showed a
positive sIgA signal, in contrast to 38 and 57% of Moderate and Mild patients, respectively.

Regarding the inflammatory biomarkers, over 60% of Severe patients showed signifi-
cantly positive FER values in contrast to 58% of Moderate and 43% of Mild patients. There
was not a trend in CRP positive values of Severe, Moderate, and Mild donors.

From a qualitative point of view, we observed that the positivity of the selected
biomarkers depends on the severity of COVID-19, leading to a higher titer of antibodies,
particularly for sIgT and sIgG for Severe patients, in contrast to the titer of sIgA. It is also
observed that the percentage of positives in FER is higher for Severe patients, and no
differences were found in the percentage of CRP.

We considered it worthy to analyze some asymptomatic cases. Twenty blood donors
from the hospital Clínico San Carlos were analyzed in order to obtain a preliminary figure
of potential asymptomatic cases. As a result, we included some cases at the end of February
2020, and we also measured some volunteers from our research center at the end of
May 2020.

We discovered that some blood donors presented a significant titer of specific anti-
bodies to SARS-CoV-2 (Figure 7), and although the sample of 20 donors was limited, the
roughly five cases found to represent a percentage of 25%.
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particularly for sIgT and sIgG for Severe patients, in contrast to the titer of sIgA. It is also
observed that the percentage of positives in FER is higher for Severe patients, and no
differences were found in the percentage of CRP.

We considered it worthy to analyze some asymptomatic cases. Twenty blood donors
from the hospital Clínico San Carlos were analyzed in order to obtain a preliminary figure
of potential asymptomatic cases. As a result, we included some cases at the end of February
2020, and we also measured some volunteers from our research center at the end of
May 2020.

We discovered that some blood donors presented a significant titer of specific anti-
bodies to SARS-CoV-2 (Figure 7), and although the sample of 20 donors was limited, the
roughly five cases found to represent a percentage of 25%.

Figure 7. Asymptomatic cases of blood donors at the end of February 2020. Abbreviations: total
specific Immunoglobulins (sIgT), specific Immunoglobulins G (sIgG), specific Immunoglobulins
M (sIgM), specific Immunoglobulins A (sIgA), together with Ferritin (FER), C Reactive Protein (CRP)
and ∆IROP (%) (Increased Relative Optical Power.
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Finally, we studied these experimental results by analyzing the degree of correlation
of each biomarker measured (sIgG, sIgM, sIgA, FER, and CRP) in the diagnostic KIT.

In this basic model, we observed that sIgG, sIgM, and FER were rather more significant
than sIgAs and CRP. It could be assumed that sIgAs do not provide much more additional
information once IgGs and IgMs have been analyzed, and CRP behaves as an unspecific
biomarker for COVID-19. In Figure 8, this correlation matrix can be observed:

Figure 8. Correlation matrix. The size of the circles shows the correlation level highlighted on the left
bar of the figure. Abbreviations: total specific Immunoglobulins (sIgT), specific Immunoglobulins
G (sIgG), specific Immunoglobulins M (sIgM), specific Immunoglobulins A (sIgA), together with
Ferritin (FER) and C Reactive Protein (CRP).

The p-values for each biomarker are presented in Table 1.
Once the individual correlation of each of the individual biomarkers with the total

amount of specific antibodies against SARS-CoV-2 had been analyzed, we analyzed a
multiple regression model correlating the sIgT with the biomarkers sIgG, sIgM, sIgA, FER,
and CRP. In this model, we observed that CRP was not a significant variable, confirm-
ing that CRP is an unspecific biomarker due to its expression in multiple inflammatory
pathologies [31]. In fact, the p-value of CRP in this model of 0.47 is much higher than the sta-
tistically significant level considered of 0.05. Thus, avoiding the CRP in the multiple regres-
sion model, we observed that sIgG (p-value = 1.5 × 10−10), sIgM (p-value = 6.08 × 10−8),
sIgA (p-value = 7.09 × 10−8) and FER (p-value = 1.7 × 10−4) were highly significant. Con-
sidering this final model, we calculated the coefficients to explain the sIgT as a function
of the abovementioned biomarkers sIgG, sIgM, sIgA, and FER obtaining the model in
Equation (1):

ÎgT = −0.20 + 0.76 [IgG] + 1.02 [IgM] + 1.91 [IgA] + 0.43 [FER] (1)

It can be observed that the higher the concentration of IgG, IgM, IgA, and FER, the
higher the concentration of sIgT. In this case, the goodness of fit found was 70.29% (Adjusted
R-Squared). This means that the total level of specific immunoglobulins against SARS-
CoV-2 increases with increasing levels of sIgGs, sIgMs, and sIgGs, and FER is a specific
biomarker for COVID-19.
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Finally, given that we have classified the severity of COVID-19, (Severe, Moderate,
and Mild) we considered studying these qualitative variables in the multiple regression
model. This model can be observed in Equation (2), which in this case, explains the total
amount of specific immunoglobulins against SARS-CoV-2 with a goodness of fit of 73.01%
(Adjusted R-Squared).

ÎgT = 22.72 + 0.78 [IgG] + 1.05 [IgM] + 0.88 [IgA] + 0.41 [FER]− 58.92 [Mild]− 14.78 [Moderate] (2)

In this model, Severe patients corresponded with the intercept, which had a coefficient
of 22.72. It was clearly observed that the higher the sIgG, sIgM, sIgA, and FER, the higher
the level of IgT. Moreover, it is worthy to note that Mild and Moderate patients exhibited
decreased levels of sIgT, which is quite sensible, and this result could suggest that the
severity of COVD19 is related to the total amount of sIgTs and FER.

4. Discussion

In this work, we report the benefits of using this type of in vitro diagnostic system,
which consists of a highly multiplexing diagnostic KIT based on IODM and ∆IROP (%)
measurement to evaluate the COVID-19 disease, considering multiple biomarkers by a
rapid, cost-effective, affordable, and reliable method. In addition, its handling is perfectly
compatible with the usual practice in clinical analysis laboratories.

For this particular study, we considered six biomarkers: sIgT, the aforementioned spe-
cific SARS-CoV-2 antibodies, and two inflammatory biomarkers. Regarding the qualitative
analyses in serum, a higher level of sIgT was observed in Severe patients compared to
Moderate and Mild patients. This was the case, as well, for the biomarkers sIgG and sIgM.
We also found differences in the inflammation marker FER, which was higher in patients.
However, no significant differences were found for the other marker CRP. It is relevant to
stress that at the end of February 2020, over 25% of blood donors at Hospital Clínico San
Carlos showed previous contact with SARS-CoV-2.

We evaluated the biomarkers considered and built a multiple regression model to
analyze the influence of these biomarkers on COVID-19. As a result, it is worth mentioning
that this model explained the influence of the sIgG, sIgM, sIgA, and FER in the observation
of sIgT with a goodness of fit of 73.01% (Adjusted R-Squared).

It must be considered that the sIgGs, sIgMs, and sIgAs biomarkers were obtained
in a second incubation step with a secondary antibody, in contrast with sIgT, which was
obtained directly due to the change in the interferometry pattern (label-free detection)
after the first incubation step. Therefore, it is logical that there was no direct correction.
However, even considering that the detection mechanism was different, it is remarkable
that the results obtained are highly consistent, and it can be observed that the higher the
sIgGs, sIgMs, and sIgAs, the higher the level of sIgT. It is also relevant to consider how
the FER biomarker behaves as a specific biomarker for COVID-19, in contrast with the
unspecific CRP biomarker in the multiple regression model obtained. Finally, we must
emphasize that when the severity of the disease was included in the multiple regression
model, the patients with higher levels of specific immunoglobulins against SARS-CoV-2
corresponded to the Severe patients, suggesting that the severity of COVD19 is related to
the total amounts of sIgTs and FER.

Finally, in this work, we report a case study for measuring six biomarkers exhibiting
relevant results and demonstrating the capacity for this technology to be transferred and
used in clinical practice. It is also worth mentioning here that this technology can be easily
designed to measure multiple biomarkers in order to improve the screening capacity in
the future. With the ability to simultaneously measure many biomarkers, for example, this
KIT can be designed for other relevant biomarkers as prognostic factors of the disease,
such as some cytokines, in a single patient sample, while at the same time justifying
and validating the benefits of using highly multiplexed KITs to predict disease and to
investigate which are the most appropriate biomarkers, speeding up the screening capacity
in an affordable way.
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