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Abstract

Acetylcholinesterase (AChE) inhibitors are widely used as pesticides and drugs. Their primary effect is the overstimulation of
cholinergic receptors which results in an improper muscular function. During vertebrate embryonic development nerve
activity and intracellular downstream events are critical for the regulation of muscle fiber formation. Whether AChE
inhibitors and related neurotoxic compounds also provoke specific changes in gene transcription patterns during vertebrate
development that allow them to establish a mechanistic link useful for identification of developmental toxicity pathways
has, however, yet not been investigated. Therefore we examined the transcriptomic response of a known AChE inhibitor,
the organophosphate azinphos-methyl (APM), in zebrafish embryos and compared the response with two non-AChE
inhibiting unspecific control compounds, 1,4-dimethoxybenzene (DMB) and 2,4-dinitrophenol (DNP). A highly specific
cluster of APM induced gene transcripts was identified and a subset of strongly regulated genes was analyzed in more
detail. The small heat shock protein hspb11 was found to be the most sensitive induced gene in response to AChE inhibitors.
Comparison of expression in wildtype, ache and sopfixe mutant embryos revealed that hspb11 expression was dependent on
the nicotinic acetylcholine receptor (nAChR) activity. Furthermore, modulators of intracellular calcium levels within the
whole embryo led to a transcriptional up-regulation of hspb11 which suggests that elevated intracellular calcium levels may
regulate the expression of this gene. During early zebrafish development, hspb11 was specifically expressed in muscle
pioneer cells and Hspb11 morpholino-knockdown resulted in effects on slow muscle myosin organization. Our findings
imply that a comparative toxicogenomic approach and functional analysis can lead to the identification of molecular
mechanisms and specific marker genes for potential neurotoxic compounds.

Citation: Klüver N, Yang L, Busch W, Scheffler K, Renner P, et al. (2011) Transcriptional Response of Zebrafish Embryos Exposed to Neurotoxic Compounds
Reveals a Muscle Activity Dependent hspb11 Expression. PLoS ONE 6(12): e29063. doi:10.1371/journal.pone.0029063

Editor: Henry H. Roehl, University of Sheffield, United Kingdom

Received July 22, 2011; Accepted November 20, 2011; Published December 19, 2011
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Introduction

Understanding of chemical-induced biological responses and

their underlying pathways is indispensable to evaluate the impact

of chemicals on organisms. Toxicogenomic analysis is an effective

approach to better understand these pathways and their related

adverse effects [1–3]. A major step forward is the identification of

chemical-specific gene expression signatures which could be used

to assign mechanisms of action (MoA) to non-characterized or

unknown compounds [4]. Changes in gene expression by exposure

to chemicals can be directly inferred from binding of a compound

to a transcription factor. Prominent examples are the aryl

hydrocarbon or estrogen receptors. However, many compounds,

e.g. neurotoxic chemicals, may not interfere directly with a

transcription factor but affect gene expression patterns indirectly

through a complex signaling cascade.

In the present study, we examined the toxicogenomic response

to azinphos-methyl (APM), an AChE-inhibitor, using zebrafish

embryos as a model. AChE catalyzes the hydrolysis of the

neurotransmitter acetylcholine (ACh) and is important for the

cholinergic neurotransmission. Furthermore, non-cholinergic

functions of AChE have been described in neuronal development

[5,6]. AChE is the target of many toxins like insecticides, chemical

weapons, and snake venoms [7]. Prolonged AChE inhibition or

complete lack of AChE results in an accumulation of ACh and

overstimulation of the muscle, leading to spasms and myopathy-

like phenotypes [5,8,9]. The zebrafish embryo has been selected as

model for the following reasons: (i) Toxicogenomic approaches in

the zebrafish embryo have recently shown that chemicals can

provoke specific and sensitive gene expression changes [10–12]. (ii)

It has been described that AChE is required for neuronal and

muscular development in zebrafish embryos and no other ACh-

hydrolyzing enzymes are present in this organism [5,13,14]. (iii)

Appropriate mutant strains that either lack AChE (ache) or nAChR

(sopfixe) activity are available to support functional analyses.

First, we compared changes in gene expression patterns

provoked by APM with those of two non-AChE inhibiting

compounds, 1,4-dimethoxybenzene (DMB), a narcotic (baseline
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toxic) compound and 2,4-dinitrophenol (DNP), an oxidative

decoupling agent. The test compounds were selected to allow

the identification of genes specifically responding to compounds

inhibiting acetylcholine esterase. Neurotoxicity is a common MoA

among compounds exhibiting an excess toxicity (i.e. ratio of

predicted baseline toxicity versus measured toxicity). The

organophosphate insecticide and known acetylcholine esterase

inhibitor APM [15] exhibits a high acute excess toxicity, i.e. the

measured LC50 is 1340fold below the predicted acute toxicity [16].

This clearly supports the specific neurotoxic mode of action. The

other compounds were selected as two different non-neurotoxic

reference compounds in order to allow the identification of MoA

specific gene expression patterns. DNP, an industrial chemical, is a

protonionophor or uncoupling agent that disrupts generation of

ATP from proton-gradients in the mitochondria [17]. DNP has a

moderate excess toxicity of 23. In contrast to APM and DNP the

acute fish toxicity of DMB is in the same order of magnitude as the

predicted baseline-toxicity. Subsequently, detailed transcriptional

analyses of selected genes were applied to link gene expression

changes to the MoA. We investigate the expression of the small

heat shock protein hspb11 in wildtype, ache and sopfixe mutant

embryos in more detail and study its role during development. For

the first time, we demonstrate that developmental hspb11

expression is muscle-activity dependent and is indirectly regulated

by intracellular calcium levels. Furthermore, Hspb11 is required

for slow muscle myofibril organization in the embryo. These

results show that a comparative toxicogenomic approach and

functional analysis can lead to the identification of molecular

mechanisms and specific marker genes for potential neurotoxic

compounds.

Results

Toxicogenomic responses to APM exposure are highly
specific

For transcriptional profiling it was aimed that similar – with

respect to toxicity – effect concentrations were used that did not

induce severe morphological changes. Based on concentration

response curves of zebrafish embryos exposed from 2-50 hours

post fertilization (hpf) we selected the modeled LC10 (6 mM for

APM, 509 mM for DMB and 14 mM for DNP) as exposure

concentrations for the microarray study (Figure S1). Exposures to

this effect level did not induce gross morphological changes.

However, APM inhibited zebrafish AChE enzymatic activity half-

maximally at 0.15 mM and caused an almost complete block of

AChE activity at 6 mM (Figure S2). It is known that in ache mutants

the lack of AChE activity can cause a progressive myopathy in

zebrafish embryos [5,8]. To test whether APM caused similar

defects we performed a birefringence analysis of embryos exposed

from 12–72 hpf to 6 mM APM (according to [8]). APM treated

embryos were immobile and displayed a reduced birefringence

compared to controls (Figure 1). This suggests that a prolonged

exposure with 6 mM APM caused changes in muscular structures.

For the microarray analysis we exposed zebrafish embryos for

24 h (26–50 hpf) and 48 h (2–50 hpf). The different exposure

durations were chosen in order to identify potential differences

with respect to primary or secondary responses. By hierarchical

cluster analysis we identified an APM specific cluster of

significantly induced genes after the 24 h as well as the 48 h

exposure (Figure S3). The observed differences, however, were

more prominent after 24 h of exposure. In order to identify

pathways, associated with the transcriptional changes, a gene set

enrichment analysis (GSEA) was performed. Some of the identified

gene sets in the 24 h and 48 h treatments referred to factors/genes

involved in neuronal and muscle function/differentiation (axon

guidance, neurogenesis, voltage gated channel activity, muscle

structure and contraction, muscle tissue maintenance and

differentiation, supplement Table S1). More gene sets indicating

effects specific for neurons and muscles were identified for the 48 h

treatment. This may indicate that GSEA revealed (subtle) changes

in neuron or muscle structure and differentiation. However,

GSEA did not indicate interference with a specific signaling

pathway.

Transcriptional changes of the zebrafish embryo are
AChE-inhibitor concentration-dependent

In order to unravel the MoA leading to the expression changes

in the APM-specific gene cluster, we selected hspb11 (heat shock

protein, alpha-crystallin-related, b11), pdlim3b (PDZ and LIM

domain 3b), and socs3a (suppressor of cytokine signaling 3a) for

concentration-dependent quantitative expression analysis. The

selection of these genes was based on an initial RT-PCR

verification experiments (not shown) and the genes covered

different potential gene functions, e.g. stress response (hspb11),

immuno response (socs3a) and cytoskelatal assembly (pdlim3b). The

expression of these genes was gradually increased with elevated

APM concentrations. By means of qPCR an about two-fold

(pdlim3b), 8-fold (hspb11) and 6-fold (socs3a) maximum induction

after 24 h of exposure was observed (Figure 2A). Lowest observed

effect concentrations for gene expression changes compared to the

control were 0.7 mM and 3 mM of APM. Changes of hspb11 and

socs3a gene expression were already detected in 2 h (48 to 50 hpf)

APM exposures whereas the induction of hspb11 (approx. 20-fold)

exceeded the levels of expression after 24 h of exposure (Figure 2A

and B). The expression of hspb11 was also found to be induced by

other AChE inhibitors such as propoxur, disulfoton, and

galantamine (Figure S4). In contrast, the expression of socs3a was

not affected by the disulfoton treatment but also elevated after a

treatment with the non-AChE-inhibiting compound 4-nitrophenol

(Figure S4D). Pdlim3b was induced by all tested AChE inhibitors

and not by 4-nitrophenol. This suggests that hspb11 and pdlim3b

up-regulation is a specific response to AChE inhibitors. Due to the

strong and sensitive changes in hspb11 expression subsequent

functional analyses were focused on hspb11.

APM Mediated hspb11 Up-Regulation Depends on
nAChR Activity

APM-induced hspb11 expression could be mediated by the

overstimulation of the nAChR. In order to elucidate the role of

nAChR we analyzed hspb11 expression in the zebrafish ache and

sopfixe mutant lines. Due to a point mutation in the ache gene,

homozygous ache mutant embryos completely lack AChE activity

Figure 1. Repression of AChE activity with APM resulted in a
reduced birefringence. (A) Wild-type zebrafish embryo axial
musculature is highly birefringent at 72 hpf. (B) APM [6 mM] exposure
from 12–72 hpf resulted in defects in the axial musculature, which are
shown by a reduced birefringence at 72 hpf.
doi:10.1371/journal.pone.0029063.g001

Muscle Activity Dependent Expression of hspb11
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[5]. The sopfixe mutant harbors a point mutation in the d-subunit of

the muscular nAChR, encoded by the gene chrnd, and, hence, lacks

a functional nAChR. The d-subunit is expressed in all striated

muscles in embryonic and early larval stages [18]. Homozygous

(2/2) forms of both mutant embryos show severe impairment of

motility but are viable up to 5 days post fertilization (dpf).

Interestingly, the expression of hspb11 was strongly increased in

48 hpf ache 2/2 and repressed in sopfixe 2/2 mutant embryos

(Figure 3A). Furthermore, exposure of sopfixe 2/2 with APM (24–

48 hpf) did not result in further induction of hspb11 expression,

whereas sopfixe siblings exposed to APM showed a 9-fold up-

regulation (Figure 3B). These data indicate that hspb11 induction

by APM is dependent on a functional nAChR.

Modulators of Cytosolic Calcium Levels Induce hspb11
Expression

ACh triggers muscular contraction by depolarizing muscle cells

and subsequent transient release of calcium from the sarcoplas-

matic reticulum. Calcium is not only the principal signaling

molecule for muscle contraction, it is also required for normal

development of muscles. It is hypothesized that excess activation of

AChR by unhydrolyzed ACh results in a large influx of calcium

ions in muscle cells. Indirect evidence for the role of calcium ions is

provided by studies that demonstrate a rescue of myopathy

(provoked by exposure to AChE inhibitors) by calcium channel

blockers [19–21]. Hence, we concluded that hspb11 induction by

AChE inhibition might be a result of increased cytosolic calcium

levels and increased muscular contractions mediated by overstim-

ulation of the nAChR. Hence, non-AChE inhibiting compounds

that lead to an increase in cytosolic calcium should increase hspb11

mRNA abundance. Therefore, we exposed zebrafish with

thapsigargin and caffeine. Thapsigargin is a specific blocker of

the sarco/endoplasmic reticulum calcium-ATPase (SERCA) [22].

Caffeine represents an activator of ryanodine receptors (RyRs), a

major mediator of calcium-induced calcium release in adaxial

muscles [23]. Exposure of wildtype embryos with either thapsi-

gargin [1 mM] for 2 h (48–50 hpf) or caffeine [2 mM] for 24 h

(26–50 hpf) resulted in an increased hspb11 gene expression.

Thapsigargin induced hspb11 mRNA expression 11-fold and

caffeine 23-fold (Figure 3C).

Hspb11 Is Expressed in Muscle Pioneers and Shows a
Muscle-activity Dependent Expression

In order to determine the function of hspb11, we first analyzed

the spatiotemporal hspb11 expression. At 18 hpf hspb11 is

expressed in the adaxial cells (i.e. somitic cells next to the

notochord, Figure 4A–A0). At 24 hpf hspb11 mRNA expression is

restricted to muscle pioneers (Figure 4B and B9). To elucidate

whether the hspb11 transcripts are exclusively expressed at these

early stages in muscle pioneers, we screened the hspb11 expression

pattern in smu 2/2 mutant embryos. smu mutants are defective in

smoothened - a mediator of hedgehog signals - and lack muscle

pioneers [24]. In smu 2/2 embryos hspb11 expression was lost

(Figure S5A and B) indicating that hspb11 is specifically expressed

in muscle pioneers. During later development hspb11 expression

was restricted to the notochord (Figure 4C). Interestingly, this

hspb11 expression pattern changed in APM exposed embryos and

in ache2/2 mutant embryos where transcripts were also detected

in the myotomes of the trunk in addition to the notochord

(Figure 4D and E). To test whether the developmental hspb11

expression is dependent on nAChR activity we investigated the

hspb11 expression pattern of sopfixe mutants. Of a single cross of

heterozygote parents we used 30 embryos at 18 hpf for WISH. In

8 embryos, we did not detect any hspb11 expression pattern in

muscle pioneers whereas 22 embryos showed a wildtype hspb11

expression pattern, as expected for a recessive trait inherited in a

mendelian fashion (Figure 4F and H). Further, at 24 hpf the sopfixe

2/2 embryos lack hspb11 expression pattern whereas sopfixe+/?

embryos have a wildtype hspb11 expression pattern (Figure 4G and

I). To exclude that the lack of hspb11 expression pattern is caused

Figure 2. APM concentration dependent induction of hspb11,
pdlim3b and socs3a in zebrafish embryos. APM exposures for (A)
24 h (26–50 hpf) and (B) 2 h (48–50 hpf). Concentrations are given in
mM. Bars represent the relative gene expression as fold change of the
respective untreated control as mean 6 standard deviation of three
independent replicate exposures. Control = ctrl. * P,0.05.
doi:10.1371/journal.pone.0029063.g002

Figure 3. APM mediated hspb11 induction depends on nAChR
activity and increased intracellular calcium levels. (A) hspb11
expression analysis in ache and sopfixe2/2 zebrafish mutant embryos at
48 hpf. (B) hspb11 expression in sopfixe null mutants and siblings (+/? =
heterozygous and wildtype) after APM (6 mM) exposure (26–50 hpf). (C)
1 mM Thapsigargin (TG) and 2 mM caffeine (CAF) induce hspb11
expression in zebrafish embryos (exposure period 48–50 hpf). Bars
represent the relative gene expression as fold change of the respective
untreated control as mean 6 standard deviation of three independent
replicate exposures Control = ctrl. * P,0.05.
doi:10.1371/journal.pone.0029063.g003

Muscle Activity Dependent Expression of hspb11
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by a loss of muscle pioneers in sopfixe2/2 embryos, we analyzed

the eng2a expression in sopfixe2/2 embryos. It is known that

muscle pioneers highly express engrailed1 and engrailed2 genes [25].

In all embryos of a cross of heterozygous parents, we detected

muscle pioneer specific eng2a expression at 18 hpf (Figure S5C).

These altered hspb11 expression patterns led us to ask if the hspb11

expression is muscle-activity dependent and can be repressed by

blocking the muscle contraction with the anesthetic MS-222, a

voltage-gated Na+ channel blocker, in order to prevent action

potentials. Treatment with MS-222 [0.5 mM] for a 6 h (18 hpf to

24 hpf) resulted in a significant hspb11 repression (Figure 5A) and

the wildtype hspb11 expression pattern was lost (Figure 5B and C).

This suggests that the developmental hspb11 gene expression is

muscle activity dependent.

Hspb11 is Involved in Slow Muscle Myosin Organization
and/or Maintenance

To examine the developmental function of Hspb11, we

performed a morpholino-mediated knockdown of Hspb11.

Therefore we used two translation-blocking morpholinos,

MO(ATG)-hspb11 and MO(59UTR)-hspb11, and a mismatch

control morpholino (mmMO-hspb11) that harbors five mismatches

compared to the MO(ATG)-hspb11 were used. To avoid interfer-

ence with nonspecifically induced apoptosis a morpholino directed

against p53 was co-injected [26]. To prove that the injected hspb11

morpholinos are specific to hspb11 mRNA we performed

additional control experiments. First, we injected a gfp mRNAs

that contains either the morpholino binding site for MO(ATG)-

hspb11 or MO(59UTR)-hspb11 upstream of the GFP coding

sequence and we detected a bright GFP fluorescence (Figure

S6). Coinjection of gfp mRNA with either MO(ATG)-hspb11 or

MO(59UTR)-hspb11 strongly reduced the GFP fluorescence

(Figure S6). Further, coinjection with the designed mmMO-hspb11

and gfp mRNA did not reduce the GFP fluorescence (Figure S6).

Both MO(ATG)-hspb11 and MO(59UTR)-hspb11 morphants

showed a ventral body curvature. In MO(ATG)-hspb11 and

MO(59UTR)-hspb11 injected embryos, 82% (n = 79, 2 replicates)

and 73% (n = 114, 2 replicates) showed a morphant phenotype,

respectively. The MO(59UTR)-hspb11 phenotype was much

stronger and mmMO-hspb11 control injected embryos showed

no effects (Figure 6A–C). Additionally, we tried to rescue this

morphant phenotype by coinjection of a hspb11 mRNA that is not

targeted by MO(ATG)-hspb11 and MO(59UTR)-hspb11. Coinjec-

tion of the hspb11 mRNA with either MO(ATG)-hspb11 or

MO(59UTR)-hspb11 reduced the ventral body curvature pheno-

types to 53% (n = 98, 2 replicates) and 51% (n = 137, 2 replicates),

respectively.

In MO(ATG)-hspb11, MO(59UTR)-hspb11 and mmMO-hspb11

injected embryos, we detected a wildtype eng2a expression pattern

in muscle pioneers at 18 hpf (Figure S5D and E). Furthermore,

knockdown of Hspb11 did not lead to a decrease in birefringence

(Figure 6D–F). However, 80% (n = 10) of hspb11 morphants

showed a disruption in slow muscle myosin distribution. Gaps

were formed between slow myofibers in knockdown embryos

(Figure 6G–I). There are no other impairments, such as extra long

intersomitic myofibers, detached myofibers or defective myosepta.

This indicates that the development of muscle pioneers is not

Figure 4. Developmental hspb11 expression pattern in wildtype, APM exposed, ache and sopfixe mutant embryos. Expression pattern of
hspb11 at 18 hpf were detected in developing adaxial musculature (A–A0). During later developmental stages, at 24 hpf, hspb11 mRNA transcripts
were restricted to muscle pioneers (B and B9) and became only expressed in the notochord at 50 hpf (C). (A, B) lateral view, (A9) dorsal view and (A0
and B9) cross sections. Increased expression pattern in axial musculature was observed in APM exposed (D) and homozygous (2/2) ache mutant
embryos (E). Hspb11 expression in homozygous sopfixe2/2 embryos (F and G) and heterozygous/wildtype (+/?) siblings (H and I).
doi:10.1371/journal.pone.0029063.g004

Figure 5. Blocking the skeletal muscle contraction with MS-222
inhibits developmental hspb11 expression. (A) qPCR hspb11
expression analysis. (B) Wildtype hspb11 expression pattern at 24 hpf.
(C) MS222 treatment results in the loss of hspb11 expression pattern at
24 hpf.
doi:10.1371/journal.pone.0029063.g005

Muscle Activity Dependent Expression of hspb11
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dependent on Hspb11. Moreover, the myofibril organization in

superficial muscle cells is affected in the hspb11 morphants, which

suggests that Hspb11 is involved in slow muscle myofibril

organization and/or maintenance.

Discussion

By a comparative toxicogenomic approach we demonstrated

that the AChE inhibitor APM induced specific responses on the

gene expression levels in zebrafish embryos. Other non-AChE

inhibiting compounds (DMB and DNP) did not affect the same

cluster of genes. Gene set enrichment analyses (GSEA) revealed

APM affected genes as enriched in a couple of gene sets involved

in neuronal/muscle structure and differentiation. The enrichment

of genes within these gene sets particularly after 48 h of exposure

might indicate subtle morphological changes caused by APM. This

is supported by the birefringence analysis which revealed

structural alterations in muscular tissue. It is known that the lack

of AChE activity in zebrafish results in an increase of muscular

activity and can cause a progressive myopathy [5,8]. We showed

that genes of the APM-specific cluster (hspb11, pdlim3b and socs3a)

were differently expressed in response to various AChE inhibitors.

Pdlim3b, also known as Alp-like, is a structural protein and a

member of the PDZ/LIM protein family which are characterized

by the presence of both, a PDZ and a LIM domain [27]. Their

functions are related to actin anchorage in muscles and non-

muscle cells. PDZ/LIM proteins are required for muscle

development and maintenance as has been shown for zebrafish

pdlim7 [28]. During zebrafish development pdlim3b (alp-like) is

expressed in myotomes [27]. Hence, changes in pdlim3b expression

in response to AChE inhibitors might be related to early

disturbances of muscle structure and differentiation. The compar-

ison of the responses to different AChE inhibitors and 4-

nitrophenol indicated that socs3a was not induced specifically by

AChE inhibitors. Socs3a belongs to the suppressor of cytokine

signaling (Socs) protein family. It negatively regulates cytokine

signaling in order to prevent excessive cytokine signaling that may

disturb the normal homeostasis and cellular functions [29,30].

Hspb11 is a member of the small heat shock proteins (sHSPs)

family, which is a subclass of HSPs characterized by their low

molecular weight and presence of the conserved a-crystalline

domain. Many sHSPs act to prevent or reverse improper protein

associations in an ATP independent manner and they are

expressed in nearly all species [31,32]. In our microarray

experiments, hspb11 was the only significantly induced member

of sHSPs in zebrafish embryos exposed to APM. Commonly, the

chaperone function, i.e. the support of correct protein folding, is

considered as major physiological role of sHSPs and is regarded as

the reason for their induction by a variety of stress factors [33]. It

has been shown that HSPs are involved in several other processes,

such as actin regulation, intermediate filaments assembly,

apoptosis signaling or regulation of the cellular redox status

[34,35]. Furthermore, various diseases are known to be linked to

mutations of sHSPs including cancer, neurodegenerations, and

myopathies [36,37]. Up to now, thirteen sHSPs are identified in

zebrafish and their developmental and heat shock induced

expression patterns have been described. The expression of hspb11

is strongly induced after heat shock and transcripts are found

throughout the somites and the hearts [38]. Hspb11 orthologs seem

to exist in nearly all vertebrates except mammals.

ACh is a neurotransmitter which is released by excitation of

motoneurons at the neuromuscular junction. Binding of acetyl-

choline to nAChR depolarizes membranes of adjacent muscle cells

and induces an intracellular calcium increase. Calcium acts as a

messenger linking excitation events at the membrane with

downstream effects, like contraction, ATP production and

transcription [39,40]. Thus, the observed altered expressions of

hspb11 could be mediated via the ACh/nAChR/calcium pathway.

In this case, transcriptional up-regulation would primarily be

observed in skeletal muscle tissues. An inactivation of nAChR

would result in a loss of hspb11 expression and ache mutants should

exhibit elevated hspb11 levels as well. Furthermore, it would be

likely that compounds, which do not activate nAChR but increase

cytosolic calcium levels, induce the expression of hspb11. Indeed,

the experimental observations clearly support the anticipated role

of nAChR and calcium, i.e. the ache 2/2 mutant exhibited an

Figure 6. Knockdown of Hspb11 results in slow muscle myosin disorganization in skeletal muscles. (A, D and G) mmMO-hspb11 injected
embryos. (B, E and H) MO(ATG)-hspb11 morphants. (C, F and I) MO(UTR)-hspb11 morphants. (A–C) Phenotypic observations of morpholino injected
embryos at 48 hpf. (D–E) Muscle organization determined with birefringence at 72 hpf. (G–I) Slow muscle myosin distribution at 72 hpf shown by
immunofluorescence staining with antibody F59. Arrows indicate gaps in fiber distribution.
doi:10.1371/journal.pone.0029063.g006

Muscle Activity Dependent Expression of hspb11
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elevated hspb11 expression in muscle tissue similar as in embryos

exposed to APM. In sopfixe2/2 mutants, which do not express a

functional nAChR, the hspb11 developmental expression pattern

was completely lost and an induction of hspb11 with APM was not

possible. This data and the repressed transcription of hspb11 by

MS-222 provided evidences that developmental hspb11 expression

is muscle activity dependent.

Modulation of intracellular calcium levels with thapsigargin or

caffeine, which most likely affect the whole zebrafish embryo and

is not restricted to muscles, resulted in hspb11 induction. Calcium

dependent signal transduction cascades play important roles in the

control of skeletal muscle gene expression in mammals and

increased calcium levels result in, for instance, suppression of gene

expression of myogenin and nAChR [41]. Likewise, in ache 2/2

mutant zebrafish embryos the sub-cellular localization of nAChRs

is disturbed [5]. In our study, however, we did not detect down-

regulation of muscle-specific genes such as nAChR or myogenin.

It has been shown in zebrafish that acetylcholine and calcium

signaling are required for the organization of slow muscle

myofibrils [42]. Additionally, zebrafish mutants that exhibit

disturbed calcium regulation in muscle tissues, such as ache, sopfixe

or acc, showed disarrayed muscle fibers [5,18,43]. In our study, we

showed that hspb11 expression is modulated in ache and sopfixe

mutants. A continuous elevation of calcium levels and subse-

quently enhanced calcium-activated protease activity has been

shown to cause myofibre degeneration [20,44]. This suggests that

the correct regulation of cytosolic calcium transients is important

for hspb11 gene expression and myofibril organization and Hspb11

may compensate for calcium-induced protein degradation. We

demonstrate that down-regulation of Hspb11 has no effect on

muscle pioneer development, which is supported by the eng2a

expression. Furthermore, morpholino knockdown of Hspb11

alters the distribution of slow muscle myosin. Hence, Hspb11 is

important for myofibril organization and/or maintenance.

Hspb11 may play a critical role in folding and assembly of

various sarcomeric proteins during myofibrillogenesis and it

remains to identify Hspb11 client proteins.

The transcriptional regulation of hspb11 can be mediated via

specific transcription factors, e.g. Creb, Nfat, Nf-kB, which are

important components of intracellular signaling pathways and are

regulated by calcium [45,46]. By analyzing sequences 5 kb

upstream of the hspb11 transcriptional start site, several putative

binding sites of these transcription factors are present (27 for Creb,

12 for Nfat, and 5 for Nf-kB, respectively, data not shown).

However, the precise mechanism of the hspb11 transcriptional

regulation remains to be further investigated.

In summary, the combination of comparative toxicogenomics

and functional analysis has led to the identification of hspb11 as a

possible marker for interference with neuromuscular signaling

and/or calcium signaling. Further research need to address how

elevated calcium levels and hspb11 expression are linked.

Materials and Methods

Ethics Statement
All zebrafish husbandry and experimental procedures were

performed in accordance with the German animal protection

standards and were approved by the Government of Saxony,

Landesdirektion Leipzig, Germany (Aktenzeichen 75-9185.64).

Based on the Guidelines on the protection of experimental animals by the

Council of Europe, Directive 2010/63/EU, which allows zebrafish

embryos to be used up to the moment of independent feeding

(approximately 5 days after fertilization). Because embryos used

here were no more than 4 days old, no license is required by

Council of Europe (1986), Directive 2010/63/EU or the local

authority.

Fish maintenance
A wildtype zebrafish strain (WiK) was obtained from the Max

Planck Institute of Developmental Biology (Tübingen, Germany)

and cultured at 26uC according to standard procedures [47].

Mutant lines achesb55, sopfixe and smub577 have been described

previously and were kept at the Institute of Toxicology and

Genetics, Karlsruhe [5,18,48].

Chemical exposure experiments
Embryos were exposed from 2–50 hpf, 26–50 hpf, 48–50 hpf

and/or 12 hpf (5-somite stage) to 72 hpf in 100 ml crystallization

dishes covered with watchmaker glasses with the chemicals. The

following chemicals were used: APM (azinphos-methyl, CAS#86-

50-0, purity 98,5%, Fluka), DMB (1,4-dimethoxybenzene,

CAS#150-78-7, purity 99%, Sigma-Aldrich), 2,4-DNP (2,4-

dinitrophenol, CAS#51-28-5, purity 99%, Fluka), GAL (galanta-

mine hydrobromide, CAS#1953-04-4, purity 98%, Sigma),

propoxur (CAS#114-26-1, purity 99,9%, Fluka), disulfoton

(CAS#298-04-4, purity 99%, Fluka), 4-nitrophenol (CAS#100-

02-7, Fluka), thapsigargin (CAS#67526-95-8, purity $98%,

Sigma), caffeine (CAS#58-08-2, purity $99%, Fluka) and MS-

222 (Ethyl 3-aminobenzoate methanesulfonate, CAS#886-86-2,

purity 98%, Sigma-Aldrich). Stock solutions of the chemicals were

prepared either in exposure medium (294.0 mg/L CaCl2*2H2O,

123.3 mg/L MgSO4*7H2O, 64.7 mg/L NaHCO3, 5.7 mg/L

KCl; according to ISO guideline 15088 or DMSO (thapsigargin)).

Exposure concentrations were prepared by dilution of stock

solutions. In case of thapsigargin DMSO concentration in

exposure and control media was adjusted to 0.01%. Exposure

concentrations of APM, DMB and DNP were analyzed by GC-

MS by the TZW (Technologie Zentrum Wasser, Karlsruhe,

Germany). After 48 h of exposure 90% (APM, 5.23 mmol/L), 75%

(DMB, 379 mmol/L) or 74% (DNP, 10.6 mmol/L), respectively, of

the nominal concentrations could be detected.

Microarray analysis
RNA was extracted from 50 embryos for each treatment

(controls and embryos exposed to the LC10, 4 independent

biological replicates each). We used the 4644 K Agilent D. rerio

oligo microarrays (Amadid #015064, Agilent, Böblingen, Ger-

many). The synthesis/labeling of cRNA with Cy3 (Agilent Low

RNA Input Linear Amplification Kit) and hybridizations with the

microarray slides were performed according to the manufacturer’s

instructions. Slides were scanned with an Agilent DNA Microarray

Scanner.

Fluorescent intensities of individual microarray spots were

extracted using the Agilent Feature Extraction software (Version

9.1). Log2-transformed fluorescent intensities were quantile

normalized and used to calculate the ratio for each treatment

versus the mean fluorescent value of the respective control.

Analysis of statistical significance with SAM [49], false discovery

rate adjusted to 0, p,0.03) and hierarchical clustering were

performed with these ratios and the TMEV software package

version 4.3 [www.tm4.org] [50]. The microarray data is MIAME

compliant, and raw and normalized data have been submitted to

the Gene Expression Omnibus (GEO) database [www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?acc = GSE27680].

For the identification of biological functions and pathways

associated with the changes in gene expression caused by the

APM treatment, Gene Set Enrichment Analyses (GSEA) [www.

broadinstitute.org/gsea/index.jsp] [51,52] was performed. Since
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the Molecular Signatures Database (MSigDB), on which GSEA is

based, contains mostly human and rodent gene sets, we used the

human ortholog gene names/annotations for this analysis.

Human orthologs of the whole microarray probe set were

assigned using Biomart [http://www.ensembl.org/biomart/index.

html]. GSEA was performed using the complete dataset whereas

5961 genes, i.e. those for which a human ortholog was identified,

could be associated with gene sets from the database. The gene sets

of the MSigDB (v3.0) databases C2 (Gene sets collected from

various sources such as online pathway databases, publications in

PubMed, and knowledge of domain experts) and C5 (Gene sets of

Gene Ontology terms) were used for the analysis.

AChE activity assay
Zebrafish embryos were exposed with different APM concen-

trations for 24 h (26–50 hpf). 30 embryos were used for AChE

activity assay and were performed as previously described [53].

Non-linear modeling was performed from the plot of AChE

activities with JMP 8.0 software (SAS, Cary, NC).

Quantitative real-time PCR analysis
Total RNA was extracted from 50 control, mutant or exposed

zebrafish embryos at 50 hpf. 2 mg of total RNA was reversely

transcribed with RevertAidTM H Minus Reverse Transcriptase

(Fermentas) according to the manufacturer instructions. qPCR

was carried out using Step-One-Plus PCR System (Applied

Biosystems) and we used the SensiMix
TM

SYBR with ROX as

passive reference (Bioline). qPCR experiments were performed

with three independent biological replicates and each single run

was performed in three replicate samples. Statistical analysis of

qPCR experiments were performed with one-way ANOVA

followed by Dunnett’s post test using GraphPad Prism 5.0

software (GraphPad Software, San Diego California USA). Primer

sequences are given in Table S1. Relative expression levels were

determined by using the DDCt method [54].

Cloning, in situ hybridization, immunohistochemistry,
and microscopy

The open reading frame (ORF) of hspb11 was amplified with

ORF primers (Table S2), cloned into pCRII-blunt vector

(Invitrogen) and was verified by sequencing. This construct was

used for the synthesis of in situ hybridization probes. GFP

constructs were amplified with F1-MOATG-gfp/R1-GFP

primers for atg-gfp and F2-MOUTR-gfp/R1-GFP primers for

utr-gfp (Table S2) using pEGFP-N1 (Clonetech) vector as

template. Construct for the rescue experiment was generated

by using mmhspb11-F/hspb11-ORF_Rev primers (Table S2)

and hspb11-ORF-pCRII vector as template. Products were

cloned into pCRII blunt vector (Invitrogen) and subcloned into

pCS2P+. We performed whole-mount in situ hybridization

(WISH) and immunohistochemistry as described previously

[55,56]. We used the monoclonal antibody directed against

slow muscle myosin (F59). The F59 monoclonal antibody

developed by Frank E. Stockdale was obtained from the

Developmental Studies Hybridoma Bank developed under the

auspices of the NICHD and maintained by The University of

Iowa, Department of Biology, Iowa City, IA 52242. WISH was

performed with ,50 embryos per treatment if not stated

elsewhere. Birefringence was analyzed with a stereomicroscope

(MZ16F; Leica, Wetzlar, Germany) as described previously [5].

A Leica compound microscope (DM 5000B) and LCS software

(Leica, Wetzlar, Germany) were used to analyze antibody

staining.

Morpholino knockdown and mRNA injection
Morpholinos (Gene Tools, LLC, Philomath, OR) were

dissolved in water and injected at the following concentrations:

0,25 mM – 1 mM MO(ATG)-hspb11 (59- TCGGGCAAAG-

CATCTTCAGTGGATT- 39); 0,25 mM–1 mM mmMO-hspb11

(59-TCcGGgAAAGgATCTTCAcTGcATT-39) was a 5 base

mismatch control for MO(ATG)-hspb11; 0,25 mM–0,5 mM

MO(59UTR)-hspb11 (59- TTTGCTGTTGAGCTGTTTGGC-

TTCT- 39); 0,25 mM–1 mM MO-p53 (59-GACCTCCTCTC-

CACTAAACTACGAT-39). 59 capped mRNAs were transcribed

from linearized vectors using the mMESSAGE mMACHINE SP6

Kit (Applied Biosystems/Ambion, Austin, TX). Injection needles

were pulled from borosilicate glass capillary tubes with filament

(GC100F-10; Warner Instruments, LLC, Hamden, CT) using a

Narishige micropipette puller (Tokyo, Japan). Embryos were

injected with the Eppendorf FemtoJet (Hamburg, Germany)

through the chorion into the yolk compartment at the one-cell

stage.

Supporting Information

Figure S1 Acute toxicity of AMP, DMB and DNP in
zebrafish embryos. Dose response curves were determined by

recording mortality in 2–50 hpf exposed embryos. Non linear

regression modeling was performed with SigmaPlot version 11

(Systat Sofware Inc., San Jose, California) using the Hill 4

parameter equation (f = y0+a*x‘b/(c‘b+x‘b)).

(TIF)

Figure S2 AChE enzymatic activity in response to
various APM concentrations. AChE enzyme activities are

expressed as fold change of controls (based on specific activity). (n

= 3, exposures from 26–50 hpf).

(TIF)

Figure S3 Heat map of a hierarchical cluster analysis of
genes significantly differentially expressed in zebrafish
embryos. Embryos were exposed for 24 h (26–50 hpf) or 48 h

(2–50 hpf) to azinphos-methyl (APM), 1,4-dimethoxybenzene

(DMB) or 1,2-dinitrophenol (DNP). Genes with significantly

altered expression were identified using SAM (TM4 software

suite). Treatments were performed by two separate series of

experiments, one for the 24 h exposure and one for the 48 h

exposure. C24 and C48 are control samples that refer to these

separate experiments. Data represent the log2-ratio of each

treatment or control to the average of control levels (either C24

or C48). Numbers 1–4 indicate different independent biological

replicates. The cluster of genes, which are specifically regulated by

APM, is marked by orange lines.

(TIF)

Figure S4 qPCR analysis of hspb11, pdlim3b and socs3a
expression in zebrafish embryos. Embryos were exposed

from 26–50 hpf to different AChE inhibitors. (A) Propoxur, (B)

disulfoton, and (C) galantamine. (D) 4-nitrophenol served as

unspecific (non-acetylcholinesterase inhibiting) control. Concen-

trations are given in mM if not differently labeled. Bars represent

the relative gene expression as fold change of the respective

untreated control as mean 6 standard deviation of three replicate

exposures. Control = ctrl. * P,0.05.

(TIF)

Figure S5 Muscle pioneer specific expression analysis
of hspb11 and eng2a expression. (A) Transcripts of hspb11

mRNA are localized in muscle pioneers of wildtype or smu

heterozygous embryos (+/?). (B) smu2/2 embryos lack muscle

Muscle Activity Dependent Expression of hspb11

PLoS ONE | www.plosone.org 7 December 2011 | Volume 6 | Issue 12 | e29063



pioneers and hspb11 expression is absent. (C) Homozygous

sopfixe2/2 mutants show wildtype eng2a expression in muscle

pioneers and at the midbrain-hindbrain boundary (mhb). (D and

E) Muscle pioneer development in MO(UTR)-hspb11 and

mmMO-hspb11 injected embryos was not effected, confirmed by

eng2a expression.

(TIF)

Figure S6 MO(ATG)-hspb11 and MO(59UTR)-hspb11
morpholinos specifically target their hspb11 binding
sites. Embryos injected with gfp mRNA that contains the MO

binding site expresses GFP. Co-injection of MO(ATG)-hspb11 or

MO(59UTR)-hspb11 with the gfp mRNA abolishes GFP expres-

sion, whereas with the mmMO-hspb11 morpholino does not

reduce GFP expression. atg-gfp mRNA contains MO(ATG)-hspb11

binding site. utr-gfp mRNA contains MO(UTR)-hspb11 binding

site.

(TIF)

Table S1 Gene sets exhibiting greatest overlap to
differentially expressed genes in APM treated zebrafish
embryos. The analysis was performed by the software GSEA

(gene set enrichment analysis) for all genes of which a human

ortholog could be identified. Gene expression patterns of APM-

treatments were compared to all other treatments (controls,

exposure to 1,4-dimethoxybenzene and 1,2-dinitrophenol). Only

gene sets with a p-value,0.01 are shown.

(XLS)

Table S2 List of primers used in this study.

(XLS)
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