organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,2-Bis(3-chloromethyl-4-ethoxyphenyl)propane

Nejmeddine Jaballah,* Taha Guerfel and Mustapha Majdoub

Département de Chimie, Faculté des Sciences, 5019 Monastir, Tunisia Correspondence e-mail: nejm_1@yahoo.fr

Received 11 June 2008; accepted 20 June 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.036; wR factor = 0.118; data-to-parameter ratio = 11.8.

The title compound, $C_{21}H_{26}Cl_2O_2$, a bis-chloromethyl derivative of *O*-ethylated bisphenol A, exhibits C_2 molecular symmetry. It shows a bent conformation with the two benzene rings nearly perpendicular [dihedral angle = 87.17 (6)°].

Related literature

For more information on the synthesis, see: Miyazawa *et al.* (1999). For background to the investigation of new conjugated polymers derived from bisphenols as potential organic semiconducting materials, see: Jaballah *et al.* (2006). For the use of bis-chloromethyl bisphenol A ethers for the control of fungal and bacterial organisms, see: Priddy & Hennis (1970).

Experimental

Crystal data C₂₁H₂₆Cl₂O₂

 $M_r = 381.32$

b = 15.185 (6) Å	$\mu = 0.33 \text{ mm}^{-1}$
c = 10.999 (4) Å	T = 293 (2) K
$\beta = 118.82 \ (3)^{\circ}$	$0.42 \times 0.33 \times 0.21 \text{ mm}$
$V = 2027.7 (13) \text{ Å}^3$	
Data collection	
Enraf-Nonius TurboCAD-4	1173 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.022$
Absorption correction: none	2 standard reflections
2374 measured reflections	frequency: 120 min
1960 independent reflections	intensity decay: 2%
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.035$	H atoms treated by a mixture of
$wR(F^2) = 0.118$	independent and constrained
S = 1.02	refinement

Z = 4

Mo $K\alpha$ radiation

 $\Delta \rho_{\text{max}} = 0.25 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors gratefully acknowledge financial support from the Ministry of Higher Education, Scientific Research and Technology of Tunisia.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2175).

References

Monoclinic, C2/c

a = 13.856 (5) Å

1960 reflections

166 parameters

- Enraf-Nonius (1994). CAD-4 EXPRESS Software. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Jaballah, N., Trad, H., Majdoub, M., Jouini, M., Roussel, J. & Fave, J. L. (2006). J. Appl. Polym. Sci. 99, 2997–3004.
- Miyazawa, A., Suzuki, Y., Sawada, T., Mataka, S. & Tashiro, M. (1999). J. Chem. Res. Synop. 7, 426–427.
- Priddy, D. B. & Hennis, H. E. (1970). US Patent 3 546 299.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2008). E64, o1360 [doi:10.1107/S1600536808018783]

2,2-Bis(3-chloromethyl-4-ethoxyphenyl)propane

N. Jaballah, T. Guerfel and M. Majdoub

Comment

BPAEtCl was synthesized as part of an ongoing program on the investigation of new conjugated polymers derived from bisphenols as potential organic semi-conducting materials (Jaballah *et al.*, 2006). This intermediate is of value in synthetic work inasmuch as the CH₂C1 group can be converted to other groups such as CH₂CN, CH₂OH and CHO. Particularly, the bend-like structure of bisphenol A (BPA) nucleus offers a special interest in metacyclophanes synthesis (Miyazawa *et al.*, 1999). Bis-chloromethyl bisphenol A ethers are also useful as microbicides for control of fungal and bacterial organisms (Priddy & Hennis, 1970). The molecular structure of BPAEtCl is shown in Fig. 1. The two benzene rings are nearly perpendicular, forming a dihedral angle of 87.17 (6)°. The ethoxy group plan [O1—C8—C9] is almost parallel with the benzene ring with the dihedral angle of 6.82 (37)° whereas chloromethyl group plan [C1—C7—Cl] is close to be perpendicular [82.62 (13)°].

Experimental

BPAEtCl was synthesized in two steps from 4,4'-isopropylidenediphenol [Bisphenol A, BPA]. To a stirred mixture of BPA (10 mmoles) and K₂CO₃ (40 mmoles) in 20 mL of dimethylformamide, was added dropwise bromoethane (30 mmoles). After stirring for 5 h at room temperature, the reaction mixture was poured into distilled water and extracted with diethyl ether. The extract was washed with distilled water, dried over anhydrous MgSO₄, and then evaporated. The resultant crude product was purified by recrystallization from ethanol/water (3/1) to afford the 2,2-bis-(4-ethoxyphenyl)propane [BPAEt] as needle-like white crystals. A mixture of BPAEt (10 mmoles), paraformaldehyde (2.5 g), and 37% aqueous HCI (8.5 mL) in acetic acid (30 mL) was heated at 328 K for 5 h. The resulting mixture was then poured into distilled water and extracted with diethyl ether. The organic layer was washed several times with distilled water and dried over anhydrous MgSO₄. After solvent removal and two recrystallizations from hexane, we obtained BPAEtCl as colourless crystals. Yield: 75%; mp: 352–354 K.

Refinement

Hydrogen atoms were located in a fourier map and refined freely with isotropic thermal parameters.

Figures

Fig. 1. The molecular structure of BPAEtCl, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted. Symmetry code: (i) -x + 1, y, -z + 5/2.

2,2-Bis(3-chloromethyl-4-ethoxyphenyl)propane

Crystal data

C₂₁H₂₆Cl₂O₂ $M_r = 381.32$ Monoclinic, C2/c Hall symbol: -C 2yc a = 13.856 (5) Åb = 15.185 (6) Åc = 10.999 (4) Å $\beta = 118.82 (3)^{\circ}$ $V = 2027.7 (13) \text{ Å}^3$ Z = 4

Data collection

Enraf–Nonius TurboCAD-4 diffractometer	$R_{\rm int} = 0.022$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 26.0^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.2^{\circ}$
T = 293(2) K	$h = -17 \rightarrow 17$
non-profiled ω scans	$k = -6 \rightarrow 18$
Absorption correction: none	$l = -1 \rightarrow 13$
2374 measured reflections	2 standard reflections
1960 independent reflections	every 120 min
1173 reflections with $I > 2\sigma(I)$	intensity decay: 2%

 $F_{000} = 808$

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 11.6 - 15.7^{\circ}$

 $\mu = 0.33 \text{ mm}^{-1}$

T = 293 (2) K

Prism, colourless

 $0.42\times0.33\times0.21~mm$

 $D_{\rm x} = 1.249 \text{ Mg m}^{-3}$ Mo *K* α radiation

Cell parameters from 25 reflections

Refinement

Refinement on F^2	H atoms treated by a mixture of independent and constrained refinement
Least squares matrix: full	$w = 1/[\sigma^2(F_0^2) + (0.052P)^2 + 0.7485P]$
Least-squares matrix. Iun	where $P = (F_0^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.036$	$(\Delta/\sigma)_{max} < 0.001$
$wR(F^2) = 0.118$	$\Delta \rho_{max} = 0.25 \text{ e } \text{\AA}^{-3}$
<i>S</i> = 1.03	$\Delta \rho_{min} = -0.21 \text{ e } \text{\AA}^{-3}$
1960 reflections	Extinction correction: none
166 parameters	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
HC2	0.2827 (17)	0.0620 (14)	1.052 (2)	0.046 (6)*
HC4	0.5740 (19)	0.1686 (14)	1.147 (2)	0.050 (6)*
H111	0.641 (2)	0.0223 (19)	1.220 (3)	0.085 (9)*
H211	0.6149 (19)	-0.0548 (15)	1.306 (3)	0.052 (6)*
H1C7	0.124 (2)	0.1193 (16)	0.880 (3)	0.064 (8)*
HC5	0.4965 (18)	0.2588 (15)	0.961 (2)	0.051 (6)*
H311	0.5386 (19)	-0.0493 (15)	1.142 (3)	0.056 (6)*
H2C7	0.126 (2)	0.2044 (18)	0.786 (3)	0.077 (8)*
H2C8	0.403 (3)	0.278 (2)	0.719 (3)	0.102 (11)*
H1C9	0.318 (3)	0.390 (2)	0.568 (4)	0.109 (13)*
H2C9	0.217 (3)	0.403 (3)	0.598 (4)	0.128 (14)*
H3C9	0.224 (4)	0.315 (3)	0.524 (5)	0.152 (17)*
H1C8	0.392 (3)	0.362 (2)	0.807 (4)	0.107 (12)*
Cl	0.11729 (5)	0.08024 (5)	0.67435 (7)	0.0780 (3)
C10	0.5	0.04410 (18)	1.25	0.0424 (7)
01	0.28391 (12)	0.26525 (10)	0.77132 (17)	0.0557 (5)
C3	0.43999 (15)	0.10349 (12)	1.1219 (2)	0.0360 (5)
C1	0.27565 (15)	0.15480 (13)	0.9159 (2)	0.0395 (5)
C5	0.45100 (18)	0.21933 (13)	0.9770 (2)	0.0436 (5)
C2	0.32750 (16)	0.10062 (13)	1.0324 (2)	0.0386 (5)
C4	0.49939 (17)	0.16456 (13)	1.0907 (2)	0.0420 (5)
C6	0.33857 (16)	0.21428 (12)	0.8875 (2)	0.0408 (5)
C7	0.15422 (18)	0.14840 (18)	0.8252 (3)	0.0522 (6)
C11	0.5796 (2)	-0.01497 (17)	1.2272 (3)	0.0600 (8)
C8	0.3483 (3)	0.3195 (2)	0.7315 (4)	0.0752 (9)
C9	0.2741 (4)	0.3638 (3)	0.5969 (4)	0.0863 (11)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic	displ	'acement	parameters	$(Å^2)$)
111011110	aispi	accincia	parameters	(<u> </u>	,

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Cl	0.0520 (4)	0.0956 (5)	0.0591 (5)	0.0027 (3)	0.0050 (3)	-0.0129 (4)
C10	0.0475 (15)	0.0365 (14)	0.0313 (17)	0	0.0095 (13)	0
01	0.0532 (9)	0.0566 (9)	0.0505 (11)	0.0097 (7)	0.0195 (8)	0.0228 (8)
C3	0.0406 (10)	0.0330 (9)	0.0282 (12)	-0.0002 (7)	0.0116 (8)	-0.0029 (8)
C1	0.0371 (10)	0.0412 (10)	0.0358 (12)	0.0050 (8)	0.0141 (9)	0.0017 (9)
C5	0.0467 (11)	0.0390 (10)	0.0434 (14)	-0.0058 (9)	0.0204 (10)	0.0022 (10)
C2	0.0382 (10)	0.0382 (10)	0.0367 (13)	-0.0020 (8)	0.0159 (9)	-0.0001 (9)

supplementary materials

C4	0.0358 (10)	0.0433 (11)	0.0363 (13)	-0.0055 (8)	0 0000 (9)	-0.0046(9)
C6	0.0350(10) 0.0450(11)	0.0433(11) 0.0383(10)	0.0305(13) 0.0344(13)	0.0055 (8)	0.0050(9) 0.0154(9)	0.0040(9)
C7	0.0400(11)	0.0592(14)	0.0478 (16)	0.0055(0)	0.0137(9)	0.0050(3)
C11	0.0727(17)	0.0392(11) 0.0472(13)	0.0393 (16)	0.0077(10)	0.0104(13)	-0.0055(12)
C8	0.0727(17) 0.0762(19)	0.0772(13)	0.0393(10)	0.0191(12) 0.0090(16)	0.0107(13) 0.0357(17)	0.0033(12)
C9	0.102 (3)	0.070(2)	0.071(2) 0.080(3)	0.0000(10)	0.052(2)	0.0311(17) 0.042(2)
0)	0.102 (5)	0.007 (2)	0.000 (5)	0.027 (2)	0.002 (2)	0.012(2)
Geometric paran	neters (Å, °)					
Cl—C7		1 808 (3)	C5—I	HC5	0.95	(2)
$C_{10} - C_{11}^{i}$		1 533 (3)	C2—I	HC2	0.95	(2)
C10-C11		1 533 (3)	C4—1	HC4	0.92	(2)
$C10$ $C2^{i}$		1.535 (3)	C7—I	1107	0.99	(2)
C10-C3		1.537(3)	C7—1	1207	0.95	(3)
01 - 06		1.357(2) 1.368(2)	C11_	-H111	1.06	(3)
01 - 00		1.300(2) 1 430(3)	C11-	-H211	0.97	(2)
C3-C2		1 386 (3)	C11-	-H311	0.98	$(\underline{-})$
C3—C4		1.388 (3)	C8—(C9	1.49	94 (4)
C1—C6		1.392 (3)	C8—I	12C8	1.04	(3)
C1—C2		1.395 (3)	C8—I	H1C8	1.00	0(4)
C1—C7		1.489 (3)	C9—I	H1C9	0.91	(4)
C5—C4		1.377 (3)	C9—I	H2C9	0.99	9 (4)
C5—C6		1.387 (3)	C9—I	H3C9	1.07	(5)
С8—С9		1.494 (4)				
C11 ⁱ —C10—C11		108.4 (3)	C1—0	C7—Cl	112.	38 (17)
C11 ⁱ —C10—C3 ⁱ		107.90 (14)	C1—0	С7—Н1С7	107.	.3 (15)
C11—C10—C3 ⁱ		112.29 (13)	Cl—C	C7—H1C7	106.	.6 (15)
C11 ⁱ —C10—C3		112.29 (13)	C1—0	С7—Н2С7	109.	.6 (16)
C11—C10—C3		107.90 (14)	Cl—C	C7—H2C7	102.	.7 (17)
C3 ⁱ —C10—C3		108.1 (2)	H1C7	—С7—Н2С7	118	(2)
C6—O1—C8		117.78 (18)	C10-	-C11—H111	111.	7 (16)
C2—C3—C4		116.32 (18)	C10—	-C11—H211	108.	.1 (14)
C2—C3—C10		123.99 (17)	H111-	—С11—Н211	109	(2)
C4—C3—C10		119.69 (16)	C10—	-C11—H311	109.	.7 (14)
C6—C1—C2		119.21 (18)	H111-	—С11—Н311	109	(2)
C6—C1—C7		121.3 (2)	H211-	—С11—Н311	109.	.5 (18)
C2—C1—C7		119.5 (2)	01—0	С8—С9	109.	.2 (3)
C4—C5—C6		120.0 (2)	01—0	C8—H2C8	107.	.3 (17)
C4—C5—HC5		118.4 (14)	C9—0	C8—H2C8	109.	.7 (19)
С6—С5—НС5		121.6 (14)	01—0	C8—H1C8	110	(2)
C3—C2—C1		122.58 (19)	C9—(C8—H1C8	113	(2)
C3—C2—HC2		119.3 (13)	H2C8		108	(3)
C1—C2—HC2		118.1 (13)	C8—0	C9—H1C9	107	(2)
C5-C4-C3		122.72 (19)	C8—(со насо	115	(2)
C_{2} C_{4} HC_{4}		118.3 (14)	HIC9	—су—н2С9	115	(3)
$C_3 - C_4 - HC_4$		119.0 (14)	C8—(со насо	109	(2)
01-00-05		123.96 (19)	HIC9	—UУ—H3UУ	110	(3)

O1—C6—C1	116.89 (18)	H2C9—C9—H3C9	101 (3)
C5—C6—C1	119.15 (19)		
Symmetry codes: (i) $-x+1$, y , $-z+5/2$.			

