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Abstract: 10 

AD related pathologies, such as beta-amyloid (Aβ) and phosphorylated tau (pTau), are evi-11 

dent decades before any noticeable decline in memory occurs. Identifying individuals during this 12 

asymptomatic phase is crucial for timely intervention. The Mnemonic Similarity Task (MST), a 13 

modified recognition memory task, is especially relevant for early AD screening, as it assesses 14 

hippocampal integrity, a region affected (both directly and indirectly) early in the progression of 15 

the disease. Further, strong inferences on the underlying cognitive mechanisms that support per-16 

formance on this task can be made using Bayesian cognitive modeling. We assessed whether an-17 

alyzing MST performance using a cognitive model could detect subtle changes in cognitive func-18 

tion and AD biomarker status prior to overt cognitive decline. We analyzed MST data from >200 19 

individuals (young, cognitively healthy older adults, and individuals with MCI), a subset of 20 

which also had existing CSF Aβ and pTau data. Traditional performance scores and cognitive 21 

modeling using multinomial processing trees was applied to each participants MST data using 22 

Bayesian approaches. We assessed how well each could predict age group, memory ability, MCI 23 

status, Aβ/pTau status using ROC analyses. Both approaches predicted age group membership 24 

equally, but cognitive modeling approaches exceeded traditional metrics in all other compari-25 

sons. This work establishes that cognitive modeling of the MST can detect individuals with AD 26 

prior to cognitive decline, making it a potentially useful tool for both screening and monitoring 27 

older adults during the asymptomatic phase of AD.  28 
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1. Introduction: 29 

Alzheimer's disease (AD) is marked by a gradual decline in memory and cognitive abilities 30 

that are often observed only after beta-amyloid (Aβ) and phosphorylated tau (pTau) are already 31 

present (Sperling et al., 2011; Jack et al., 2018; Jia et al., 2024; Li et al., 2024). Elevated levels of 32 

Aβ and pTau increase the risk of cognitive decline (Donohue et al., 2017; Ossenkoppele et al., 33 

2022), making this preclinical stage of AD a critical window for early detection and intervention 34 

(Sperling et al., 2013). During this phase, therapies targeting Aβ and pTau could be most effec-35 

tive, prior to irreversible neuronal loss (Boxer and Sperling, 2023).  36 

Measuring Aβ and pTau is possible using PET and CSF, but both invasive and costly, limit-37 

ing their general application in clinical settings (McMahon et al., 2003; Wittenberg et al., 2019). 38 

Recent developments in blood testing for Aβ and pTau levels show promise in overcoming these 39 

barriers (Hansson et al., 2023; Barthélemy et al., 2024) enabling them to become useful clinical 40 

tools. The early detection of subtle cognitive decline via digital biomarkers is also showing 41 

promise (Dagum, 2018; Ding et al., 2022; Macdougall et al., 2024). These non-invasive assess-42 

ments, which can often be remotely self-administered, could complement blood tests in identify-43 

ing individuals at future risk of decline, as they may detect different aspects of AD progression. 44 

Supporting this, work has found that combining blood biomarkers with cognitive tests offers a 45 

more accurate prediction of AD than using either method alone (Wang et al., 2023). However, 46 

traditional cognitive tests have been less effective in identifying individuals at high risk of AD 47 

before cognitive symptoms appear (Hedden et al., 2013). This underscores the need for refined 48 

cognitive tasks that can detect subtle cognitive changes linked to AD pathology and aid in early 49 

diagnosis when combined with biomarker analysis. 50 

The Mnemonic Similarity Task (MST) is a promising tool as it is designed to tax hippocam-51 

pal function through its emphasis on pattern separation, a process central to rapidly learning new, 52 

arbitrary information (Kirwan and Stark, 2007; Bakker et al., 2008; Lacy et al., 2011). Perfor-53 

mance on the pattern separation component of the MST (the Lure Discrimination Index or LDI) 54 

has been associated with functional and structural changes within the hippocampus and related 55 

structures while the recognition memory aspect (REC) of the task has not (Kirwan et al., 2012; 56 
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Stark et al., 2019). Given that the hippocampus (and entorhinal cortex which serves as a gateway 57 

to the hippocampus) is one of the first affected by aging and AD (Small et al., 1999, 2011; Mor-58 

rison and Hof, 2002; Sabuncu, 2011), its unsurprising that performance declines with age and 59 

AD (Ally et al., 2013; Stark et al., 2013). Further, work has demonstrated that the MST can pre-60 

dict early cognitive changes in AD and this task has been used in multiple clinical trials includ-61 

ing A4 and HOPE4MCI (Papp et al., 2020; Belliart-Guérin and Planche, 2023; Kim et al., 2023; 62 

Mohs et al., 2024) 63 

The MST’s traditional metrics are designed to be simple and robust, but obscure potentially 64 

useful aspects of memory performance. Cognitive modeling of individual’s memory can give a 65 

richer understanding of mechanisms (Norman et al., 2001) and how these are altered by aging or 66 

cognitive impairments (Lee et al., 2020; Chwiesko et al., 2023; Mulhauser et al., 2023). Recently 67 

we developed a cognitive model to analyze performance on the MST using Bayesian methods 68 

that both fit individual participant performance and identified individual differences in memory 69 

and response strategies (Lee and Stark, 2023).  70 

Here, we applied this approach to determine whether it aids the MST’s ability to discriminate 71 

various groups of individuals based on age, cognitive status, and Aβ/pTau status. We found that 72 

the cognitive model was clearly superior to traditional metrics, particularly in regards to Aβ/pTau 73 

status, highlighting the MST’s potential as an effective digital biomarker for early AD detection 74 

and monitoring.  75 

2. Methods 76 

Data from this study came from two previously published works. Experiments 1-3 used par-77 

ticipants from Stark et al. (2013), while Experiment 4 used data from Trelle et al. (2021). Both 78 

used the same format of the MST, and both works attempted to identify cognitively “healthy” 79 

adults as part of their screening and assessment procedures. 80 

2.1. Experiment 1: Predicting Age Group from Cognitive Modeling of the MST 81 

For predicting age group, people who were less than 40 years old (n = 27, age=27.41±5.7, 82 

16F) were classified as young and individuals who were over 60 (n = 46, age=71.33±6.4, 28F) 83 
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were considered aged. All individuals were initially screened to be cognitively healthy without 84 

impairment using a battery of cognitive tasks. These include the Mini Mental State Exam (Crum 85 

et al., 1993), Wechsler Memory Scale Logical Memory (Wechsler, 1997c), Rey Auditory Verbal 86 

Learning Test (Rey, 1941), Verbal Fluency (Tombaugh, Kozak, & Rees, 1999), Digit Span 87 

(Wechsler, 1997a), Trails A and B (Tombaugh, 2004),and Letter Number Sequencing (Wechsler, 88 

1997b), and the Wechsler Adult Intelligence Score III (Wechsler, 1997a). All individuals scored 89 

within 1.5 standard deviations of the mean of their age group for all neuropsychological 90 

measures.  91 

2.2. Experiment 2: Predicting memory deficits older adults using Cognitive Modeling of 92 

the MST 93 

Significant work has used the Rey Auditory Verbal Learning Test (RAVLT) to differentiate 94 

older adults into separate groups based on cognitive function. The RAVLT consists of learning a 95 

list of 15 words and recalling them after a delay of 15 minutes and the delay score ranges from 0 96 

to 15 and reflects the number of words correctly recalled after the delay. In the original report, 97 

older adults were split into thirds based on their RAVLT performance to parallel work in the ro-98 

dents that examined aged unimpaired (AU) and aged impaired (AI) groups (Stark et al., 2013). It 99 

is important to note that AI individuals (RAVLT of 5-8) are still within their age-based norms 100 

and are not clinically impaired. AU individuals (RAVLT of 12-15) have performance similar to 101 

young adults (this threshold is often used as part of the “SuperAger” criteria). However, here we 102 

used a threshold of 9 on the RAVLT to split older adults into either individuals with age-related 103 

memory deficits (AMD) or no age-related memory deficits (NMD). Similar to prior work, indi-104 

viduals who scored higher than 9 were considered NMD (n = 31, age=71.29±6.79, 18F), and 105 

those who scored 9 or below, but within normal limits of their age group, were considered AMD 106 

(n = 15, age=71.40±5.8, 10F) (Harrison et al., 2012; Gefen et al., 2014, 2015; Radhakrishnan et 107 

al., 2022). 108 

2.3. Experiment 3: Predicting cognitive status in cognitively older adults 109 

To predict whether older adults were cognitively normal (CN) or had mild cognitive impair-110 

ment (MCI) using the MST, the same 46 adults over the age of 60 from experiments 1 and 2 111 
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were used for older adults who are cognitively intact (n = 46, age=71.33±6.4, 28F). A further 10 112 

individuals (age=76.30±6.78, 5F) who were diagnosed with amnestic MCI were also included. 113 

Individuals with MCI were diagnosed by the UCI Alzheimer’s Disease Research Center 114 

(ADRC). All individuals with MCI had a CDR global rating of 0.5, a memory complaint and im-115 

paired memory function on neuropsychological testing. Final diagnosis of amnestic MCI was 116 

reached by neurologists and neuropsychologists at clinical consensus conferences within the UCI 117 

ADRC. All participants had no history of neurological or psychiatric disorders, head trauma with 118 

loss of consciousness, drug abuse or dependency. 119 

2.4. Experiment 4: Predicting biomarkers of Alzheimer’s disease in cognitively normal 120 

older adults 121 

Experiment 4 used previously published data (Trelle et al., 2021), collected as part of the 122 

Stanford Aging and Memory Study (SAMS). 133 older adults (age = 68.8±5.8, 83F) were admin-123 

istered the MST and underwent a lumbar puncture to quantify AD biomarkers. All individuals 124 

had normal or corrected-to-normal vision/hearing, were right-handedness, were native English 125 

speakers, and no history of neurologic or psychiatric disease. Further, each participant had a 126 

Clinical Dementia Rating (CDR) global score of zero and performance within the normal range 127 

on a standardized neuropsychological test battery. Lastly, all participants were deemed cogni-128 

tively normal during a clinical consensus meeting consisting of neurologists and neuropsycholo-129 

gists. The previously derived Aβ42, Aβ40, and p-tau181 levels were used in the present analyses 130 

(see Trelle et al., 2021 for details). 131 

2.5. Mnemonic Similarity task 132 

The MST is a widely used cognitive task that is thought to critically tax hippocampal pattern 133 

separation (Fig 1A; Stark et al., 2013, 2019). Both data sources used the traditional version of the 134 

MST, which consists of an incidental encoding phase and an explicit test phase. During the en-135 

coding phase, individuals made successive indoor/outdoor judgments for 128 images (2s each, 136 

0.5 ISI, color objects on a white background) via a button press. Immediately following the en-137 

coding phase, participants were given instructions for a recognition memory test where they were 138 

told to identify objects as either “Old” (the exact same picture as before), “Similar” (indicating 139 
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this is similar to, but not identical to the studied item – e.g., a different exemplar, a rotation, etc.), 140 

or “New” via a button press. Here, participants saw 192 images (2s each, 0.5 ISI) and responded 141 

to each of these images. Images consisted of 64 exact repeats from the encoding phase (targets), 142 

64 completely novel images (foils) and 64 images that were similar, but not identical to images 143 

seen during encoding (lures).  144 

Multiple behavioral metrics were extracted from the MST (Table 1), including the traditional 145 

recognition memory (REC) and Lure Discrimination Index (LDI) scores. REC is a commonly 146 

used measure of recognition memory and is the probability of “Old” responses given to the target 147 

items minus the corresponding probability of “Old” responses given to the foils (to correct for 148 

response bias). To quantify ability to discriminate between similar lures, the LDI is the differ-149 

ence between the probability of giving a “Similar” response to lure items and the probability of 150 

giving a “Similar” response to the foils to account for any bias individuals may have in using the 151 

“Similar” response overall. For a follow-up analysis, we also quantified the rate of “Old” re-152 

sponses for target trials (hits), rate of “Similar” responses for lure trials (correct rejections of 153 

lures) and rate of “New” responses for foil trials (correct rejections of foils). Further, we at-154 

tempted to get a readout of guessing by calculating the rate of “Old” responses on foil trials, the 155 

rate of “Similar” responses on foil trials, and the rate of “New” responses on target trials.  156 

2.6. Cognitive modeling 157 

 Cognitive modeling provides a useful tool for inferring latent psychological variables be-158 

yond traditional measurements. Previously, we used cognitive modeling to model subject-level 159 

performance on the MST in young adults (Lee and Stark, 2023) using the multinomial pro-160 

cessing tree (MPT) framework, a common approach for cognitive modeling of recognition 161 

memory tasks. The MPT framework assumes that cognitive processes can be divided into dis-162 

crete categories or decision points (Fig 1B). Briefly, when a repeated item appears, we assume 163 

there is a probability (r) that the item is successfully matched with memory in at least a basic 164 

gist or “familiarity” form, leading to an “old” response. Failing that, we assume that guess is 165 

made with unique probabilities (response biases) for each of the three responses. Similarly, when 166 
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an unrelated foil is present, there is a probability (y) that that the lack of a match to memory is 167 

sufficiently clear that a “no” response is made and, failing that, a three-choice guess is made.  168 

When a similar lure is presented, there is an initial decision point involving recognizing some 169 

degree of match between the object presented and the memory of one previously encountered, 170 

based on the same r as above. This level of match is modeled to reflect a simpler, item-, gist-, or 171 

familiarity-based match (for both lures and repeated items). If this is unsuccessful a 3-choice 172 

guess happens as before. If successful, there is a second decision point based on a set of similar-173 

ity-based probabilities (δ) capturing whether the memory retrieval contains the richer details re-174 

quired to reject the item as only being similar to the studied item. If successful, a “similar” re-175 

sponse is made and if unsuccessful, an “old” response is made. 176 

Posterior distributions for metrics within MPT models were estimated at the subject level 177 

from trial-by-trial data experimental data using JAGS. We used posterior means as point esti-178 

mates for multiple metrics of interest (Table 1). These metrics include r, which reflects the prob-179 

ability of remembering items, λ , based on δ and designed to capture the ability to discriminate 180 

remembered items from lures, y, the probability of remembering that an item was not studied, gO 181 

(probability of guessing old), gN (probability of guessing new) and gS (probability of guessing 182 

similar). 183 

Table 1: 184 

Metrics Type Definition 

REC Traditional Recognition memory score 

LDI Traditional Reflects ability to discriminate between similar lures 

p(Old|Repeat) Traditional Probability of responding old for repeats 

p(Sim|Lure) Traditional Probability of responding similar for lures 

p(New|Foil) Traditional Probability of responding new for foils 

p(Old|Foil) Traditional Probability of responding old for foils 

p(Sim|Foil) Traditional Probability of responding similar for foils 

p(New|Repeat) Traditional Probability of responding new for repeats 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2024. ; https://doi.org/10.1101/2024.03.07.584012doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.07.584012
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

𝜌 Modeled probability of remembering items at a gist level 

l Modeled ability to discriminate remembered items from lures 

𝜓 Modeled probability of remembering that an item was not studied 

𝛾o Modeled probability of guessing old 

𝛾S Modeled probability of guessing similar 

𝛾N Modeled probability of guessing new 

 185 

2.7. Statistical analyses: 186 

All analyses were done in Python. Logistic regressions were run using statsmodels (Seabold 187 

and Perktold, 2010) to predict age group, clinical status, biomarker status, etc. from various sets 188 

of metrics. Areas under the curve (AUC) measures were derived from ROC curves of the logistic 189 

regressions. To compare model fits, we calculated the Bayesian Information Criteria (BIC) of 190 

each model (Raftery, 1995). Absolute differences in BICs of greater than 2 were considered reli-191 

able. Importantly, the logistic regressions differed in the number of variables used as predictors 192 
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and it is reasonable to assume that there will be shared variance between model based and tradi-193 

tional metrics. Therefore, to identify how each variable acts in conjunction with the others, we 194 

performed an 8-choose-4 combinatorial analysis and quantified the number of times each metric 195 

appeared in the top third of AUCs from 8-choose-4 analyses. Independent sample t-tests were 196 

used to examine group differences in traditional and model-based metrics (Student, 1908). To 197 

investigate group changes in guessing strategies, Kolmogorov–Smirnov tests were used because 198 

data was proportioned and therefore not normally distributed. For all analyses, p < 0.05 was con-199 

sidered reliable. 200 

 
Figure 1. Cognitive modeling of the MST. A) Sample stimuli used during the incidental 
encoding phase and the subsequent Old/Similar/New recognition task B) Probability tree 
diagrams of the MPT model, demonstrating the decision-making process utilized within 
the Old/Similar/New version of the MST. 

 

repeat foil
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3. Results: 201 

Previously, we demonstrated that the traditional REC correlated with r, while LDI correlated 202 

with λ (Lee and Stark, 2023, previously denoted as τ). Our first goal was to assess the relation-203 

ship among the traditional and modeled metrics in the two datasets (Stark et al., 2013; Trelle et 204 

al., 2021). Like the prior work, we found strong correlations between these variables in in both 205 

 
Figure 2. Comparison of traditional (blue) to cognitive modeling (red) performance in Experiments 
1-3. ROC curves (top) frequency of presence in the top-30 AUCs in the n-choose-4 combinatorial 
analyses (bottom) are shown. A) Comparison of age group predictions showing no significant 
difference between traditional measures and cognitive model-based measures. LDI emerges as the 
most frequent metric in the top third of AUCs. B) Metrics derived from cognitive modeling better 
predict performance high- vs. low- performing older adults. The gist-based recognition memory 
signal metric (ρ) is the predominant metric in the n-choose-four analysis for predictive accuracy. C) 
Cognitive modeling metrics were superior at identifying healthy vs. MCI. Within the n-choose-four 
analysis, gO is the leading metrics for MCI prediction. 

 

Age group Memory ability Healthy vs. MCIA) B) C)
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datasets (Stark et al., 2013; REC vs r: r = 0.73, LDI vs λ : r= - 0.90, Trelle et al., 2021; REC vs 206 

r: r = 0.77, LDI vs λ: r = - 0.90). These results demonstrate that the model-based metrics derived 207 

here are similar to prior findings. With this, we conducted four separate experiments to assess if 208 

traditional or model-based metrics were superior in identifying individuals at risk for AD.  209 

3.1. Experiment 1: Traditional metrics and model-based metrics of the MST equally pre-210 

dict age group status 211 

Given that extensive work has demonstrated that older adults are impaired on the MST, we 212 

assessed whether cognitive modeling could enhance the ability to differentiate younger and older 213 

adults (Stark et al., 2013, 2019). Considered individually, There was no reliable difference in 214 

REC between age groups, while LDI was significantly lower in older adults (REC: t(71) = 1.19, 215 

p = 0.28, LDI: t(71) = 5.71, p < 0.0001). When examining modeled metrics individually, ρ 216 

showed no reliable age differences, while ψ and l were lower in older compared to younger 217 

adults (ρ: t(71) = 0.22, p = 0.83 ψ: t(71) = 2.62, p < 0.05, l: t(71) = -5.69, p < 0.0001). A multi-218 

ple logistic regression using the traditional LDI and REC as predictors achieved an AUC of 0.86 219 

(Fig. 2A, p < 0.0001). Model-based metrics, with r, y,t, along with guessing strategies (gO gN 220 

and gS) as predictors, yielded a similar AUC of 0.84 (Fig. 2A, top, p < 0.0001), suggesting that 221 

model-based metrics did not outperform traditional metrics in predicting age group.  222 

Considering metrics in isolation and considering them in combination with other metrics 223 

from the same approach does allow for direct comparisons across the techniques. However, as 224 

shown above, the metrics are not independent of each other, and the two approaches differ in the 225 

number of variables considered. To appreciate better the impact each variable might have in con-226 

junction with the others, we performed an 8-choose-4 combinatorial analysis and identified how 227 

often each factor occurred in the top third of resulting AUCs. This revealed that the LDI was the 228 

most common metric in distinguishing younger and older adults, appearing in virtually all the 229 

top- performing models and almost twice as often as the most frequent cognitive model-based 230 

metric (Fig. 2A, bottom). Thus, when considering the simpler task of predicting age group mem-231 

bership, we found no evidence that cognitive modeling was superior to the traditional approach.  232 
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3.2. Experiment 2: Model-based metrics better identify memory ability older adults  233 

Differing cognitive ability in older adults can be informative of future decline. Therefore, we 234 

next asked if performance on the MST along with cognitive modeling could aid in dissociating 235 

across levels of cognitive function in healthy adults by discriminating NMD versus AMD. Con-236 

sidering each variable individually, REC and LDI levels were similar in NMD and AMD (REC: 237 

t(44) = 0.22, p = 0.22, LDI: t(44) = 1.72, p = 0.09). When measuring model-based metrics, ρ was 238 

significantly higher in NMD compared to AMD individuals with no difference in ψ or l (ρ: t(44) 239 

= 3.10, p < 0.01; ψ: t(44) = 1.248, p = 0.22; l: t(44) = -0.31, p = 0.76). When combining LDI and 240 

REC, a multiple logistic regression did not successfully distinguish NMD versus AMD (AUC = 241 

0.65, p = 0.13, Figure 2B). However, a multiple logistic regression with model-based metrics 242 

were able to stratify NMD from AMD with an AUC of 0.80 (p < 0.05). When assessing combi-243 

nations of traditional and model-based metrics in an 8-choose-4 combinatorial analysis, ρ 244 

emerged as the most consistent metric in the top-performing models with LDI appearing as a dis-245 

tant 4th most consistent (Fig. 2B, bottom). This suggests that cognitive modeling provides a more 246 

accurate identification of memory ability in older adults than traditional metrics, but that this is 247 

driven heavily by the model’s estimate of how well individuals remember at least the gist of an 248 

item. 249 

3.3. Experiment 3: Model-based metrics better predict MCI status 250 

We next investigated whether cognitive modeling of the MST could better identify individu-251 

als with MCI compared to traditional metrics. We found that individuals with MCI had signifi-252 

cantly lower REC performance compared to cognitively normal older adults, but there were no 253 

differences between groups in LDI scores (REC: t(52) = 4.73, p < 0.0001; LDI: t(52) = 0.77, p = 254 

0.44). We also found that ρ decreased in individuals with MCI, but no difference in groups for ψ 255 

or l (ρ: t(52) = 5.51, p < 0.0001; ψ: t(52) = 0.99, p = 0.33; l: t(52) = -0.16, p = 0.87). In the mul-256 

tiple logistic regression, we found that the combination of REC and LDI could classify MCI sta-257 

tus with good accuracy (AUC = 0.81, p < 0.001, Figure 2C). However, cognitive model-based 258 

metrics offered superior predictive power, achieving an AUC of 0.94 (p < 0.0001). Permutation 259 

analysis found that gO was the most influential metric, appearing in all the top third of models 260 
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(Fig. 2C, bottom). This suggests cognitive modeling is superior at detecting MCI over traditional 261 

metrics largely due to the ability to derive differences in guessing strategy on the task. 262 

3.4. Experiment 4: Model-based metrics can better predict Aβ and Tau status in cogni-263 

tively normal older adults  264 

We next evaluated whether cognitive modeling of the MST could detect Aβ status in cogni-265 

tively healthy older adults, classified as Aβ+ or Aβ- via CSF Aβ42/Aβ40 ratios. Aβ+ individuals 266 

had decreased REC scores but equivalent LDI performance compared to Aβ- counterparts (REC: 267 

t(131) = 2.68, p < 0.01; LDI: t(131) = 0.33, p  = 0.74). Further, ρ was lower in Aβ+ compared to 268 

Aβ- older adults with no group differences in ψ and l (ρ: t(131) = 2.54 , p < 0.05; y: t(131) = 269 

1.11, p = 0.27; l: t(131) = -0.53, p = 0.60). A multiple logistic regression with traditional metrics 270 

could modestly predict amyloid status (AUC = 0.64, p < 0.05, Fig. 3A). On the other hand, a 271 

multiple logistic regression with model-based metrics better predicted amyloid status (AUC = 272 

0.73, p < 0.05). When conducting an 8-choose-4 combinatorial analysis to investigate the impact 273 

each variable might have in relation with the others, gO was the most predictive metric among the 274 

top third of AUCs. Interestingly, gO was represented in nearly all the top models and twice as of-275 

ten as both traditional metrics (Fig. 3A, bottom). Cognitive modeling thus better identifies 276 

asymptomatic individuals with elevated amyloid burden due to its ability to derive differences in 277 

guessing old. 278 

While both Aβ and pTau are biomarkers for AD, pTau has a stronger link to cognitive de-279 

cline and may better predict disease progression. Somewhat surprisingly, cognitively normal 280 

older adults with elevated pTau levels did not differ on either traditional or model-based metrics 281 

(REC, LDI, ρ, ψ and l) compared to those with normal pTau levels (all ps > 0.10). Likewise, a 282 

multiple logistic regression with REC and LDI failed to predict pTau status (AUC = 0.50, p = 283 

0.91, Fig. 3B). Importantly, the logistic regression with the model-based metrics did predict pTau 284 

status (AUC = 0.71, p < 0.05). When conducting an 8-choose-4 combinatorial analysis, the sin-285 

gle clearly most reliable metric was gO, appearing more than twice as much as the next most im-286 

portant metric (ψ) (Fig. 3B, bottom). Further, every metric from cognitive modeling were more 287 

represented than REC and LDI in the top third of models. Overall, cognitive modeling 288 
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outperformed traditional metrics in predictive accuracy, suggesting its effectiveness in early AD 289 

screening. 290 

 
Figure 3. Utilization of Cognitive Modeling in the MST for Predicting AD Biomarker Status. A) 
Both traditional and cognitive modeling-derived metrics can predict Aβ status with cognitive 
model-based metrics showing superior predictive accuracy. The metric gO is identified as the most 
frequently occurring metric in the top results from n-choose-four analyses for predicting Aβ status. 
C) Cognitive modeling, but not traditional measures can successfully predict pTau status. D) The 
metric gO is again highlighted as the most common metric in the top 30 AUCs from a n-choose-four 
analysis for predicting pTau status. For panels A-B, Traditional measures are in blue, while 
cognitive model-based metrics are in red. 

 

Amyloid status pTau statusA) B)

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2024. ; https://doi.org/10.1101/2024.03.07.584012doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.07.584012
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

3.5. Changes in model-derived guessing strategies with age, cognitive impairment, and 291 

biomarker status 292 

Given that modeling guessing probabilities were informative for predicting AD biomarker 293 

status and cognitive status, we took a deeper dive into guessing strategies. We first explored how 294 

model-based guessing strategies change across age groups. Cognitive modeling suggested that 295 

younger adults tended to guess "similar" more frequently and "new" less frequently than older 296 

adults (Kolmogorov–Smirnov test; gS: D = 0.37, p < 0.05; gN: D = 0.38, p < 0.05), without any 297 

significant age-related differences for guessing "old" (gO: D = 0.25, p = 0.20). This pattern sug-298 

gests an age-related shift from guessing "similar" to "new." Interestingly, however, no significant 299 

differences in guessing strategies were found between healthy older adults with and without 300 

memory deficits (Kolmogorov–Smirnov test: all p > 0.10). In contrast, older adults with MCI 301 

were more inclined to guess "old" and less likely to guess "similar" or "new" compared to cogni-302 

tively healthy older adults (Kolmogorov–Smirnov test; gO: D = 0.6318, p < 0.01; gN: D = 0.4910, 303 

p < 0.05; gS: D = 0.5318, p < 0.05). These results underscore that aging and MCI distinctly affect 304 

guessing strategies. 305 

We next investigated how guessing strategies on the MST varied with AD biomarker status 306 

in older adults. Cognitive modeling suggested that those with elevated amyloid displayed a ten-307 

dency to guess "old" more frequently than their counterparts without elevated amyloid, but this 308 

failed to reach significance, Further, there were no significant differences in biases towards 309 

guessing "similar" or "new" (Kolmogorov–Smirnov test; gO: D = 0.24, p = 0.08, gS: D = 0.21, p = 310 

0.18, gN: D = 0.13, p = 0.75). We next investigated whether guessing strategies changed as a 311 

function of pTau status. We observed that individuals with elevated pTau levels were more likely 312 

to guess "old" and less likely to guess "similar," with no change in the likelihood of guessing 313 

"new" (Kolmogorov–Smirnov test; gO: D = 0.32, p < 0.05; gS: D = 0.34, p < 0.05, gN: D = 0.19, p 314 
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= 0.34). These differences in predicted guessing strategies further highlight the benefits of cogni-315 

tive modeling of the MST.   316 

3.6. Addition of raw metrics of guessing do not match model-based metrics 317 

Given the differences in guessing across performance ability, impairment level, amyloid and 318 

pTau status in older adults, we next asked whether we could derive guessing strategies based on 319 

response patterns. Specifically, we used the proportion of trials an individual responded “old” on 320 

foils as a measure of guessing old, the proportion of trials an individual responded ‘similar’ on 321 

foils as a measure of guessing similar, and the proportion of trials an individual responded ‘new 322 

on repeats as a measure of guessing new. REC and LDI incorporate these metrics in their calcu-323 

lations as part of their difference scores, intended to factor out differences in guessing rates. Any 324 

baseline shift in the probability of guessing “old” or “similar” would presumably affect both 325 

components of the difference metrics, removing what the model-based analyses suggest could be 326 

highly informative. Therefore, we also added the raw proportion of trials people responded New 327 

 
Figure 4. Influence of Age, memory ability, cognitive status, and AD Biomarker Status on modeled 
guessing strategies in the MST. A) Compared to younger adults, older adults exhibit a higher likelihood 
of guessing new and a lower tendency to guess similar. B) Among older adults, those with no age-
related memory deficits show no significant differences in guessing strategies when compared to 
individuals with age-related memory deficits. C) Individuals with MCI demonstrate a greater bias 
towards guessing old and are less inclined to guess similar or new relative to cognitively healthy older 
adults. D) There are no differences in guessing strategies between Aβ- and Aβ+ older adults. E) Older 
adults with elevated pTau levels display a marked shift from guessing similar towards guessing old 
compared to pTau negative older adults. For panels A-E, the metric for guessing old (gO) is represented 
in yellow, for guessing similar (gS) in pink, and for guessing new (gN) in blue. 

 

*
*
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for Foil trials, the proportion of trials an individual responded ‘old’ on repeats and the proportion 328 

of trials an individual responded ‘similar’ on lure trials. Using these six new metrics, we asked 329 

whether these metrics could increase the predictive value of the MST to the same level as that 330 

provided by cognitive modeling.  331 

We first asked whether these new behavioral metrics could predict whether cognitively nor-332 

mal older adults exhibited memory deficits. In a multiple logistic regression, we found that while 333 

the raw AUC appeared elevated, this model could still not reliably predict performance level 334 

(AUC = 0.78, P = 0.21, Fig. 5A). We also investigated whether these differing models better fit 335 

the data by examining their respective BIC which is a metric that reflects goodness-of-fit of a 336 

model (Wagenmakers and Farrell, 2004). Using this measure, we found that the cognitive model-337 

based metrics better fit the data compared to the probability based traditional metrics (Cognitive 338 

modeling BIC: 76.49, Raw traditional BIC: 81.86) suggesting that, despite the addition of the 339 

raw traditional metrics, cognitive modeling better predicts memory ability. Next, when assessing 340 

whether these new probability-based metrics helped with prediction of MCI status, we found that 341 

a multiple logistic regression with these raw traditional metrics significantly bolstered the predic-342 

tive accuracy of the MST yielding an AUC of 0.95 (p < 0.0001, Fig. 5B), which aligns with the 343 

Figure 5. Additional raw-derived measures may improve upon traditional metrics, but do not match 
the cognitive model-based metrics. A) Adding raw metrics of guessing fail to predict memory 
ability, in contrast to cognitive modeling measures. B) In cases of overt cognitive impairment, such 
as MCI, raw-derived guessing measures show comparable predictive value to that of cognitive 
modeling. C) Additional raw metrics fail to match cognitive modeling in predicting Aβ status. D) 
While the additional raw measures improve the predictive ability of traditional approaches for pTau 
status, their performance does not exceed chance levels. For panels A-D, traditional measures are 
depicted in purple, and cognitive model-based metrics are illustrated in red. 

 

A) B) C) D)Amyloid status pTau statusMCI StatusMemory ability
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predictive strength of cognitive modeling and actually provided a better fit of the data than 344 

model-based metrics (Cognitive model-based BIC: 49.77, Raw traditional BIC: 45.12).  345 

We next evaluated whether raw traditional metrics could match cognitive modeling in pre-346 

dicting amyloid status. A multiple logistic regression with these metrics did not match the pre-347 

dictive capacity of model-based metrics (AUC = 0.68, p = 0.22, Fig. 5C). Moreover, when com-348 

paring model fits using the BICs, model-based metrics better fit the data (Cognitive modeling 349 

BIC: 167.18, Raw traditional BIC: 177.12). We next asked if the new probability-based metric 350 

could predict pTau status. These new metrics did show a qualitative improvement in predicting 351 

pTau status, but this was not statistically reliable (AUC = 0.70, p = 0.08, Fig. 5D) Further, 352 

model-based metrics better fit the data compared to probability-based metrics (Cognitive model-353 

ing BIC: 161.95, Raw traditional BIC: 167.52), reinforcing the superiority of cognitive modeling 354 

in predicting amyloid and pTau status. 355 

4. Discussion:  356 

The MST is a widely-used memory test that assesses changes in hippocampal integrity in 357 

various conditions including age-related cognitive decline and Alzheimer's disease (Stark et al., 358 

2019). Given that this task is resistant to practice effects and can be easily performed remotely, it 359 

has emerged as an ideal candidate for clinical use as a digital biomarker for AD. However, work 360 

investigating whether performance on the MST exceeds traditional neuropsychological tests in 361 

stratifying individuals with and without cognitive impairment has yielded mixed results (Belliart-362 

Guérin and Planche, 2023; Kim et al., 2023). We have previously demonstrated that cognitive 363 

modeling can be applied on the MST and shown how multiple cognitive metrics can be inferred 364 

from these models, but we did not know whether these new metrics would aid the predictive 365 

value of the MST. In this study, we used data from multiple studies of aging, MCI, and AD bi-366 

omarkers, to compare the predictive value of traditional metrics versus model-based metrics. We 367 

found that cognitive modeling enhances the ability of the MST in identifying older adults at risk 368 

of developing AD prior to cognitive decline. This work demonstrates that the MST is well-suited 369 

to enhance early diagnosis in AD thereby enabling earlier intervention strategies to treat this dis-370 

ease. 371 
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4.1. Cognitive Modeling of the MST identifies differing cognitive capacity in older 372 

adults  373 

A large body of work has demonstrated that advancing age is associated with significant im-374 

pairment on the LDI metric of the MST, while REC remains stable with age (Yassa et al., 2010; 375 

Stark et al., 2013; Gellersen et al., 2021). Similarly, we found that traditional behavioral metrics 376 

of the MST predicted age group with high proficiency (AUC = 0.85) and cognitive modeling did 377 

not increase the high predictive value of the MST. Further analyses showed that the most im-378 

portant metric is LDI, appearing in nearly all top performing models in a permutation analysis 379 

and almost twice as much as all other measures. This further reaffirms that age-related impair-380 

ments on the MST are due, in part, to deficits in pattern separation and is consistent with a hippo-381 

campal contribution to age-related impairments. 382 

While age-related impairments are seen on many cognitive tests, there is typically significant 383 

heterogeneity within the aging population with a subset of healthy older adults exhibiting age-384 

related memory deficits while others show young-like performance (e.g., “SuperAgers” or “Aged 385 

unimpaired).  Our analyses showed that traditional measures of MST performance did not readily 386 

distinguish these two, but that the cognitive modeling approach could. Notably, the most predic-387 

tive metric from our cognitive modeling was ρ, a metric indicative of memory retention that we 388 

hypothesize to be analogous to REC.  Intriguingly, unlike ρ, REC did not differentiate between 389 

older adults with and without memory deficits, suggesting that ρ may be a more nuanced and 390 

sensitive measure of subtle memory differences. Critically, future work will be needed to under-391 

stand the neural mechanisms that account for these changes in memory capacity. 392 

We next explored the potential of the MST to identify individuals with MCI, often consid-393 

ered a precursor to or risk factor for AD and other dementias. The diagnosis of MCI is frequently 394 

missed, with perhaps only ~8% of those affected accurately identified (Mattke et al., 2023; Liu et 395 

al., 2023). Closing this diagnostic gap is therefore crucial. We demonstrated that, like previous 396 

work, performance on the MST is a reliable predictor MCI with an AUC of 0.81 (Kim et al., 397 

2023, Belliart-Guérin et al., 2023). However, the predictive accuracy was significantly improved 398 

to an AUC of 0.94 when cognitive modeling techniques were applied. This substantial increase 399 
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in discriminative power suggests that cognitive modeling of the MST has the potential to be an 400 

effective tool in clinical practice, enhancing the identification of cognitive impairment and po-401 

tentially mitigating the current underdiagnosis of MCI. 402 

4.2. Cognitive Modeling of the MST predicts AD biomarker status in cognitively 403 

healthy older adults  404 

Recent studies have utilized comprehensive cognitive batteries to identify individuals at 405 

higher risk of AD (Lim et al., 2016; Papp et al., 2020; Macdougall et al., 2024), with longitudinal 406 

cognitive testing used to identify healthy adults with elevated Aβ and pTau levels (Lim et al., 407 

2016; Jutten et al., 2022; Papp et al., 2023). Critically, the cognitive battery used in this study in-408 

cluded a shortened version of the MST (there, called the BPSO) and longitudinal changes on the 409 

MST could better predict memory impairment over three months compared to baseline neuropsy-410 

chological scores. Importantly, none of the other tasks within the cognitive battery could exceed 411 

baseline neuropsychological scores. Despite these advancements, the ideal cognitive test for AD 412 

would be one that is quick, easily accessible, and capable of being completed in a single clinic 413 

visit or at home, all while reliably predicting AD biomarker status. The development of such a 414 

task could significantly enhance early diagnosis and intervention strategies for Alzheimer's dis-415 

ease. 416 

Cerebral Aβ deposition is present up to 20 years before clinical cognitive symptoms are de-417 

tected, highlighting the need for more sensitive tasks (Sperling et al., 2011; Li et al., 2024). A re-418 

cent study demonstrated that combining performance on multiple versions of the MST could 419 

modestly predict amyloid status in cognitively normal older adults (Kim et al., 2023). We found 420 

that, like this work, performance on the MST could modestly predict Aβ status (AUC=0.64). 421 

Critically, however, cognitive modeling enhanced the ability of the MST to predict Aβ status 422 

reaching an AUC of 0.73. Together, our results reaffirm that performance on the MST is related 423 

to Aβ status and extends prior findings by demonstrating that the addition of inferred cognitive 424 

mechanisms enhances the predictive value of the MST. 425 

Aβ buildup is known to drive pTau accumulation, yet it is pTau that exhibits a stronger con-426 

nection to cognitive decline and that amyloid accumulation, in the absence of pTau, does not 427 
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correlate with cognitive impairment (Desikan et al., 2012). Conversely, pTau has been impli-428 

cated in hippocampal hyperactivity, widespread neurodegeneration, and the transition to demen-429 

tia (Berron et al., 2019; Ossenkoppele et al., 2022). Further, a prior study demonstrated that ele-430 

vated pTau within the medial temporal lobe correlates with impairments in pattern separation 431 

(Maass et al., 2019). However, it is not known if increased pTau levels can be predicted from 432 

performance on the MST. Interestingly, MST performance alone was not able to predict elevated 433 

pTau levels. However, with the integration of cognitive modeling, we were able to predict pTau 434 

status with an AUC of 0.71. This suggests that, even though individuals with elevated pTau sta-435 

tus did not differ from age-matched controls on traditional metrics, the cognitive mechanisms in-436 

ferred from cognitive modeling distinguished these individuals. This highlights the nuanced de-437 

tection capabilities of cognitive modeling, emphasizing its potential in identifying early markers 438 

of cognitive decline associated with AD pathology. 439 

4.3. Changes in guessing strategies as a function of cognitive impairment, and biomarker 440 

status 441 

When applying cognitive modeling to predict AD biomarker and cognitive status, one critical 442 

emerging theme was the role of guessing strategies. Guessing strategies, or response biases, 443 

change in amnestic patients and individuals with dementia, therefore it is worthwhile to investi-444 

gate how they change in people at risk for AD . Notably, individuals with increased biomarker 445 

levels tended to shift their guessing bias from "similar" to "old" and this shift became more pro-446 

nounced among those with MCI, suggesting a continuum of change. This shift towards guessing 447 

“old” aligns with other work demonstrating that MCI is associated with more liberal response bi-448 

ases on recognition memory tasks (Budson et al., 2000, 2001). One plausible explanation is that 449 

individuals build up gist, or low-resolution representations, during a task and, unlike younger 450 

adults, cannot rely on item-level detail memory. Thus, without high fidelity memory for details, 451 

individuals with MCI may over rely on gist and therefore exhibit a more liberal response bias 452 

(Budson et al., 2001; Deason et al., 2012). On the MST, this would cause as a shift towards 453 

guessing “old”, which is what we observe. Therefore, this supports that looking at the changes in 454 

response biases is important when identifying individuals at risk for AD. Important to note, these 455 

changes were more reliably seen when employing cognitive modeling compared to the addition 456 
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of raw traditional metrics. These outcomes underscore the superiority of cognitive modeling in 457 

recognizing individuals at risk of AD, validating its utility as a digital biomarker for early detec-458 

tion of the disease. 459 

4.4. Conclusion  460 

Here, we asked if cognitive modeling of the MST could be utilized as a digital biomarker for 461 

identifying individuals at risk for AD. We demonstrated that, in addition to predicting memory 462 

deficits and MCI, cognitive modeling of the MST could predict both amyloid and pTau status in 463 

older adults with AUCs of greater than 0.7 in older adults without signs of cognitive decline. 464 

This suggests that cognitive modeling of the MST holds significant potential as a non-invasive, 465 

efficient screening tool within the clinical setting. 466 
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