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Abstract

To investigate the effect of image preprocessing, in respect to intensity inhomogeneity

correction and noise filtering, on the robustness and reproducibility of the radiomics fea-

tures extracted from the Glioblastoma (GBM) tumor in multimodal MR images (mMRI).

In this study, for each patient 1461 radiomics features were extracted from GBM subre-

gions (i.e., edema, necrosis, enhancement, and tumor) of mMRI (i.e., FLAIR, T1, T1C, and

T2) volumes for five preprocessing combinations (in total 116 880 radiomics features).

The robustness and reproducibility of the radiomics features were assessed under four

comparisons: (a) Baseline versus modified bias field; (b) Baseline versus modified bias

field followed by noise filtering; (c) Baseline versus modified noise, and (d) Baseline ver-

sus modified noise followed bias field correction. The concordance correlation coeffi-

cient (CCC), dynamic range (DR), and interclass correlation coefficient (ICC) were used

as metrics. Shape features and subsequently, local binary pattern (LBP) filtered images

were highly stable and reproducible against bias field correction and noise filtering in all

measurements. In all MRI modalities, necrosis regions (NC: n ̅ ~449/1461, 30%) had the

highest number of highly robust features, with CCC and DR >= 0.9, in comparison with

edema (ED: n ̅ ~296/1461, 20%), enhanced (EN: n ̅ ~ 281/1461, 19%) and active‐tumor

regions (TM: n ̅ ~254/1461, 17%). The necrosis regions (NC: n ~ 449/1461, 30%) had a

higher number of highly robust features (CCC and DR >= 0.9) than edema (ED:

n ~ 296/1461, 20%), enhanced (EN: n ~ 281/1461, 19%) and active‐tumor (TM:

n ~ 254/1461, 17%) regions across all modalities. Furthermore, our results identified

that the percentage of high reproducible features with ICC >= 0.9 after bias field correc-

tion (23.2%), and bias field correction followed by noise filtering (22.4%) were higher in

contrast with noise smoothing and also noise smoothing follow by bias correction. These

preliminary findings imply that preprocessing sequences can also have a significant

impact on the robustness and reproducibility of mMRI‐based radiomics features and

identification of generalizable and consistent preprocessing algorithms is a pivotal step

before imposing radiomics biomarkers into the clinic for GBM patients.
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1 | INTRODUCTION

Glioblastoma (GBM) is the most aggressive malignant type of brain

tumor, commonly occurs (de novo). Regardless of the progressions in

treatment, the prognosis of GBM remains poor (median overall sur-

vival is 14 months) mainly due to the fact that GBM is remarkably

heterogeneous over time and across patients.1

Nowadays, there is arisen interest to characterize tumor hetero-

geneous and phenotypes based on the high‐throughput quantified

features extracted from the clinical standard of care image for pro-

viding image‐based biomarkers relating to the pathologic, genomic,

proteomic, and clinical data, which is wellknown as radiomics.2

It is expected that radiomics takes an essential role in the current

clinical oncology workflow, given that can be acquired noninvasively,

and with no extra cost at any time of the treatment procedure.3

However, the main issue and challenging for the clinical applicability

of the radiomics is the reliability and repeatability of the radiomics

features4 across multi‐centers. Radiomics features, reliability and

reproducibility can be affected by various aspects of radiomics pro-

cessing (e.g., image acquisition parameters and protocols, image pre-

processing algorithms, tumor segmentation, and software used for

processing and feature extractions). Major of radiomics studies by

concerning a different aspect of radiomics reproducibility and

repeatability issue was done in computed tomography (CT) and PET

modalities for limited cancer types,5,6 and a few studies have been

reported in MRI.7

Magnetic resonance imaging (MRI) is generally used for standard

clinical care of GBM patients (i.e., Diagnoses, monitor tumor progres-

sion, and treatment response assessment). Given that MRI undergoes

of various inherent acquisition artifacts and noises such as lack of

standard intensity for inter‐ and intra‐scanner variability even for the

same protocol, body region, and patient; intensity non‐uniformity as

a result of reduced radio frequency, coil uniformity, nonlinear fields,

gradient field, magnetic field, and etc.; image preprocessing method

suchlike intensity normalization, bias field correction, and noise

smoothing can facilitate quantitative MRI analysis and make the

radiomics results more repeatable and comparable.8,9 Currently,

many attentions of the GBM mMRI‐based radiomics studies were

drowned to prognosis and prediction model, while they have not

used a pre‐specific image preprocessing pipeline. For an instant, in a

mMRI radiomics study10 co‐registration, resampling (1mm3), and his-

togram intensity normalization, in other work11 registration, skull

stripping, bias field correction, and intensity normalization, and in

Ref. [12] skull stripping, registration, bias field correction and his-

togram matching, were implemented in mMRI preprocessing steps.

Also, in Ref. [13] noise reduction, bias field correction, skull stripping,

rigid registration, and intensity normalization, in another study14 co‐
registration, noise smoothing, bias field correction, and skull strip-

ping, in Ref. [15] co‐registration, resampling (1 mm3), skull stripping,

noise smoothing, and intensity normalization, was used as prepro-

cessing steps in their mMRI GBM radiomics researches. MRI prepro-

cessing can have a considerable impact on the whole radiomics

analysis.

In this study, the effect of various MRI preprocessing sequences

was investigated on the reliability and reproducibility of the radio-

mics features extracted from multi‐regional GBM tumor (i.e., Edema,

Enhancement, Necrosis, and Tumor) of mMRI (FLAIR, T1, T2‐
weighted (T2), and T1C), by focusing on intensity inhomogeneity

correction and noise smoothing. To this end five different prepro-

cessing cohorts were performed, and four comparisons were

assessed, including (a) Baseline versus modified bias field, (b) Baseline

versus modified bias field followed by noise smoothing, (c) Baseline

versus modified noise reduction, and (d) Baseline versus modified

noise followed bias field correction. The effect of bias field correc-

tion and noise filtering on the reproducibility of each extracted

radiomics feature were quantified using concordance correlation

coefficient (CCC), dynamic range (DR), and interclass correlation

coefficient (ICC). The schematic of our workflow was depicted in

Fig. 1. Experimental results have demonstrated that various prepro-

cessing and sequences have affected the reproducibility and robust-

ness of radiomics features, and identify a generalizable preprocessing

step is crucially needed for providing clinical radiomics biomarkers. It

is expected that our results can support researchers to select more

reliable and repeatable MRI preprocessing sequences and radiomics

features.

2 | MATERIAL AND METHODS

2.A | Data collection

Data were downloaded from the Cancer Genome Atlas Glioblastoma

Multiform (TCGA‐GBM)16 series, which is publically available in the

Cancer Imaging Archive (TCIA)17 at Data Portal at [https://wiki.cance

rimagingarchive.net/display/Public/TCGA-GBM]. The TCGA‐GBM
series consisted of the pre‐operative and in some cases follow up

MR images of 262 GBM patients and provided the pathological,

genetic, and Clinical data of patients. These image sets collected

from eight research centers with various scanners modalities, manu-

facturers, and acquisition protocols. All data were without a patient

identifier, so not required for approval of the institutional review

board.

In this research, 65GBM patients (40 males and 25 females with

an average age of 60 yr) were selected from TCGA‐GBM series

based on the availability of pre‐operative mMRI included fluid‐atten-
uated inversion recovery (FLAIR), T1‐weighted, T2‐weighted, and

post‐contrast T1‐weighted (T1C) image sets and survival time. Fur-

ther, information regarding the scanners and demographic data of

these subsets of patients can be found in Table 1.

2.B | Preprocessing

Preprocessing is a series of the transformation applied to an initial

image for improving the image quality and making statistical analysis

more repeatable and comparable. However, for the brain MRI, there

is not any pre‐specified analytic format for preprocessing and

depends on the condition may diversify.
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In this investigation, co‐registration, resampling, skull stripping,

and intensity normalization was applied as the baseline preprocess-

ing pipeline, based on the crucial role of these methods in facilitating

the radiomics analysis and accurate quantitative comparison across

multi‐modal MRI volumes.18 An example of our baseline preprocess-

ing pipelines on mMRI of a GBM patient was shown in Fig. 2.

Co‐registration is the process of the mapping between two images

to the reference coordinate system. Resampling19 is commonly per-

formed to standardize the voxel size of the database with a unique

voxel resolution (e.g., 1 mm3) and to correct for the differences of the

scanner, pixel size, and slice thickness within single or multi‐center
cohort studies. Skull stripping20 is accomplished to remove extra cere-

bral tissue from brain volume and increase speed and precision of sub-

sequent MRI processing and establishing a robust normalized result.

Variation in the brain MRI intensity distribution21 because of the

difference in inter‐ and intra‐scanners sensitivity and acquisition

parameters leads to complicated in image quantitative analysis, even

for the same protocol, tissue, patient, and scanner. Consequently,

intensity normalization is essential for providing the same tissue

intensity scale in brain MR images across all observations to facilitate

radiomics analysis9 and accurate quantitative comparison between

MRI volumes as is expressed by Eq. (1), gR and gI are reference image

and the original image intensity respectively, LR and HR are respec-

tively the low and high reference image intensity range.

gR ¼ Q
gIj j
ZhR
lR

Hg;I qð Þdq (1)

Image preprocessing may also apply to correct other important

inherent MRI acquisition artifacts such as intensity non‐uniformity and

Gaussian noise. Intensity non‐uniformity, or intensity inhomogeneity,

or bias of magnetic field manifests as a low‐frequency signal on MRI as

a result of various causes such as fluctuation of the magnetic field.22

This artifact can cause variation in the intensities of the cerebral tissue

regions such as gray matter, white matter, or cerebral‐spinal fluid in

the different location within the brain MRI volume.

Noise is presented as high‐frequency, intensity variations in the

image. Noise filtering23 is commonly conducted to increase the sig-

nal‐to‐noise ratio (SNR) while preserving the high‐spatial‐frequency
information of the underlying image.

Various preprocessing pipelines were provided in different vol-

umes to investigate the interplay between image preprocessing

sequences, concerning intensity inhomogeneity correction and noise

filtering, for mMRI on reproducibility and reliability of radiomics fea-

tures. All original MRI volumes were converted to NIFTI format by

using MRIcron through the dcm2nii and then were subjected to the

following preprocessing pipelines.

ACo‐registration, resampling, skull stripping, and intensity normaliza-

tion (baseline preprocessing pipeline).

I. Original Image

FLAIR                         T1                               T2                       T1C

II. Image Pre-processing
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III. Tumor Segmentation

Histogram Matching

A

N4Bias Correction

Histogram Matching

Histogram Matching

Histogram Matching

B N4Bias Correction

C
SUSAN Denoise Histogram Matching

D

SUSAN Denoise

E
SUSAN Denoise N4Bias Correction

FSL

N4Bias Correction

FLIRT

IV. Feature Selection

Shape Features

PyRadiomics

Wavelet

Laplacian of Gaussian (LOG)

First order Features

Textural Features

Local Binary Pattern (LBP)

Square

Square root

Image Filters

V. Feature Selection

Reproducible Metrics

F I G . 1 . The workflow of radiomics study. Multimodal magnetic resonance images (FLAIR, T1, T2, and T1C) were subjected to several
preprocessing pipelines (A, B, C, D, and E). Glioblastoma (GBM) tumor was segmented. Feature extraction was performed on multi‐regional
GBM tumor by Pyradiomics. The reproducible radiomics features were selected based on reproducible metrics. FLAIR = fluid‐attenuated
inversion recovery, T1C = post contrast T1 weighted
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BCo‐registration, resampling, skull stripping, bias field correction, and

intensity normalization.

CCo‐registration, resampling, skull stripping, bias field correction,

noise reduction, and intensity normalization.

DCo‐registration, resampling, skull stripping, noise reduction, and

intensity normalization.

ECo‐registration, resampling, skull stripping, noise reduction, bias

field correction, and intensity normalization.

Co‐registration was performed by using T1 mapping24 from

SRI24 atlas25 image as the reference image for matching each mMRI

(FLAIR, T1, T2, and T1C) volume. All images were resampled to

1 mm × 1 mm × 1 mm isotropic voxels. Skull stripping was done

based on the ITK filter; the reference atlas and its relevant reference

brain mask were specified by SRI24 atlas.25 ITK histogram matching

filter26 was implemented to adjust the intensity scales among the

patients studied to the corresponding high‐quality modality of a

patient as a reference image. SUSAN (Smallest Univalue Segment

Assimilating Nucleus), the low‐level image processing, was used for

noise filtering. The rule of SUSAN noise filters is simple,27 which

only takes an average over the values of contiguous pixels in uni-

form intensity regions is presented in Eq. (2).

S a; bð Þ ¼ ∑ i;jð Þ≠ 0;0ð Þ I aþ i; bþ jð Þe�
ffiffiffiffiffiffiffiffiffi
i2þj2ð Þ

p� �2
2σ2

� I aþi;bþjð Þ�I a;bð Þð Þ2
σ2

∑ i;jð Þ≠ 0;0ð Þ e
�

ffiffiffiffiffiffiffiffiffi
i2þj2ð Þ

p� �2
2σ2

� I aþi;bþjð Þ�I a;bð Þð Þ2
σ2

(2)

N4ITK,28 a well‐known intensity inhomogeneity correction, was

to correct intensity non‐uniformity. The model of image structure in

this bias correction method in MR is considered to be the form of

Eq. (3), where C is the corrupted image, I is the uncorrupted image,

B is bias field, and n is the Gaussian noise.

C xð Þ ¼ I xð ÞB xð Þ þ n xð Þ (3)

The image model can become, Ĉ ¼ Îþ B̂ by taking the logarithm

(̂I ¼ log I) of both sides of the Eq. (3). The proposed scheme for

N4ITK is developed of the original N3 (non‐parametric non‐unifor-
mity normalization) algorithm. In this model, B‐spline fitting is

improved, and the iterative component of the algorithm is optimized

as described by Eq. (4), S� 0f g is a modified B‐spline estimator, and

B̂n
r is the measured remaining bias field at the nth reiteration.

În ¼ În�1 � B̂n
r ¼ În�1 � S� În�1 � E½̂In ĵIn�1�

n o
(4)

FMRIB Software Library (FSL)29 was used for co‐registration
(FLIRT)30 as well as for resampling. Skull‐stripping and de‐noising
approach (SUSAN) was applied by Cancer Imaging Phenomics Toolkit

(CaPTK).31 FSL and CaPTK are publicly available through the https://

fsl.fmrib.ox.ac.uk, and https://www.nitrc.org/projects/captk, respec-

tively. N4 bias field correction and histogram matching filter were

performed respectively by the N4ITK and ITK (Histogram Matching

Image Filter) with the 3D slicer version 4.8.1.

2.C | Tumor segmentation

In radiomics studies, tumor segmentation is also a common source

of variation in quantitative image analyzing because of intra‐ and

inter‐reader and software variability. To minimize the effects of

tumor segmentation on our radiomics reproducibility analyze, the

results of previously published work,15 publically accessible through

TCIA, were used for tumor segmentation labels. GLISTR boost, the

modified version of GLISTR (GLioma Image SegmenTation and Regis-

tration) software, was applied for tumor segmentation based on a

hybrid generative‐discriminative model.

To segment the brain images into normal and tumor tissue labels,

concomitant registration, the atlas of normal brain scans to brain

scans with GBM tumors, and segmentation approaches based on an

Expectation‐Maximization (EM) framework using the tumor growth

model were applied (a generative part, i.e., GLISTR).

To provide more reliable and accurate tumor labels, gradient boost-

ing multi‐class classification was implemented according to the informa-

tion of the multi patients (a discriminating part). Tumor segmentation

TAB L E 1 Demographic characteristics of 65 Glioblastoma patients and type of scanners were provided in this study from TCGA‐GBM series

TCGA ID Ages (yr) Sex(n) Scanner (strength in T)

TCGA‐02 Ranges 18–74
Mean 54.3

Male: 10

Female 9

GE: Genesis Signa, Signa Excite

TCGA‐06 Range 40–84
Mean 62.47

Male 14

Female 6

GE (1.5, 3): Genesis Signa, Signa Excite

TCGA‐08 Range 30–76
Mean 61.8

Male 6

Female 3

GE (1.5, 3): Genesis Signa, Signa Excite

TCGA‐12 Range 46–75
Mean 64.6

Male 4

Female 2

GE (1.5): Genesis Signa, Signa HDx,Signa

ExciteSiemens (1.5, 3): Avanto, Trio, Symphony

TCGA‐14 Range 59

Mean 59

Male 1

Female 0

Philips (1.5): InteraSiemens (1.5, 3): Avanto, Trio

TCGA‐19 Range 51–74
Mean 63.7

Male 2

Female 2

Siemens (1.5, 3): Avanto, Symphony, Verio

TCGA‐76 Range 50–66
Mean 59.7

Male 3

Female 3

Philips (1.5, 3): AchievaSiemens (1.5): Magnetom Vision
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was completed and further modified by establishing a probabilistic Baye-

sian approach based on the statistical intensity of the patient‐specific
from the multi‐MRI modalities. In comparison with GLSTR, which relies

on a single tissue‐seed point for each brain label, GLISTR boost can more

accurately segment tumor, by model the intensity distribution of multi-

ple seed points for each brain tissue label.

Three tumor labels were outlined include edema, enhancement,

and necrosis subregions. The edema region is described as a hyper‐
intensity signal on FLAIR and T2 images. The enhancement area bio-

logically occurs because of blood‐brain barrier disruption leading

leakage of contrast and can be identified as the high‐intensity part

of the tumor in T1C in comparison with T1voume. The necrosis

region is a hypo‐intensity precinct of the tumor core in T1C, as

necrotic cells do not react with the contrast agent. Tumor region

comprised of enhancement and necrosis area.32 Here, MATLAB

(MATLAB 2017b, commercial software package) was applied on each

manual correction segmented label of each patient, in order to

extract tumor labels.

2.D | Feature extraction

Radiomics features categorize into four classes, including the first

order features, shape features, texture features, and image filtered

feature. Texture features were implemented in this research include

gray level co‐occurrence matrix (GLCM),33 gray level run length

matrix (GLRLM),34 gray level size zone matrix (GLSZM),35 neighbor-

ing gray tone difference matrix (NGTDM),36 and gray level depen-

dence matrix (GLDM).37 Image filtered types applied were wavelet

transformation, Laplacian of Gaussian (LoG), square, square root, and

local binary pattern (LBP). First order and texture features were

obtained from the original image and also filtered images. Shape fea-

tures as an indicator of ROI (region of interest) morphology were

only extracted from original images.

Wavelet transform38 is a powerful tool for multiscale feature

extraction, represents images hierarchically based on a scale (s) and

resolution (b) as is given in Eq. (5).

Wf s; cð Þ ¼ 1ffiffi
s

p
Z1
�1

ψ
t� c
s

� �
f tð Þdt (5)

It analyzes high‐spatial frequency phenomena localized in space,

thus it can effectively extract information derived from localized

high‐frequency signals. Wavelet transform was calculated per eight

decomposition levels applying either a high pass filter or a low pass

filter in the original volumes.

Laplacian of Gaussian (LoG)39 filter is the process of two steps,

firstly smooth image by using a Gaussian filter, then applying the

Laplacian to find edges (areas of gray level rapid change) as is calcu-

lated by Eq. (6), (a, b) is the spatial coordinates of the image pixel,

F I G . 2 . An example of our baseline
preprocessing steps on a single slice of
multimodal magnetic resonance imaging
(MRI) (FLAIR, T1, T2, T1C) glioblastoma
patient. FLAIR = fluid‐attenuated inversion
recovery, T1C = Post contrast T1 weighted
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and σ is the kernel size of the Gaussian filter. In this study, the LoG

filter was implemented by two kernel size values (σ = 1, and 2 mm).

LoG a; bð Þ ¼ � 1
πσ4

1� a2 þ b2

2σ2

� �
e�

a2þb2

2σ2 (6)

Square and square root image filter are tagged as Gamma modi-

fiers. The square filter is accomplished by taking the square of image

intensities (gI) is given by Eq. (7), and the square root filter by taking

the square root of the absolute value of image intensities is pre-

sented in Eq. (8), then the results are modified into the original

image intensity range.

Square gIð Þ ¼ gIffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max gIj jp

 !2

(7)

Squareroot gIð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max gIj jgI

p
gI>0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�max gIj jgI
p

gI<0

	
(8)

Local Binary Pattern (LBP)40 relies on labeling a binary value to

each pixel of the image by thresholding the neighboring pixels based

on the central pixel value, the histogram of these labels considers as

texture features.

LBP can be represented in the form of Eq. (9), P denotes the sur-

rounding pixel sampling in the circle neighbors of the radius r, and

2p various binary patterns are generated is corresponding to the size

of the histogram. The f ip � icð Þ, is defined as presented in Eq. (10), ic

is the intensity of the central pixel, ip is the intensity of the neigh-

boring pixel.

LBP P; rð Þ ¼ ∑p�1
p¼0f ip � icð Þ2p (9)

f ip � icð Þ ¼ 1 ifip ≥ ic
0 fip< ic

	
(10)

The radiomics features classes implemented in this study can be

found in Table 2. PyRadiomics, as a standard open‐source Python

package, was employed for implementing a streamlined and repro-

ducible standard tested platform for the radiomics features extrac-

tion task.

2.E | Statistical analysis

In this study, the concordance correlation coefficient (CCC) and the

intraclass correlation coefficient (ICC), the most popular indices for

assessing agreement between continuous variables in reproducibility

studies, alongside the dynamic range (DR) were employed to evalu-

ate the stability and reproducibility of the radiomics features.

The Pearson correlation coefficient is usually used for assess-

ing the linear correlation between pairs of quantitative variables,

however, it is inappropriate for agreement measuring. Agreement

and correlation indicate the different concepts of relationship. An

excellent correlation between two variables does not support that

these two observers can produce the same outcome insomuch

correlation fails in identifying the systematic variations between

observers, whereas agreement regarded whether various mecha-

nisms, raters or methods, produce identical results of the calcu-

lated responses.

TAB L E 2 Different radiomics features classes analyzed in this study. GLCM = gray‐level co‐occurrence matrix, GLDM = gray level
dependence matrix, GLRLM = gray‐level run‐length matrix, GLSZM = gray‐level size‐zone matrix, NGTDM = neighboring gray tone difference
matrix

Category Radiomic features

Shape

features

1‐Elongation, 2‐ Flatness, 3‐ LeastAxisLength, 4‐ MajorAxisLength, 5‐ Maximum2DDiameterColumn, 6‐ Maximum2DDiameterRow, 7‐
Maximum2DDiameterSlice, 8‐ Maximum3DDiameter,9‐ MeshVolume, 10‐MinorAxisLength, 11‐SurfaceArea, 12‐ VoxelVolume,13‐
SurfaceVolumeRatio, 14‐ Sphericity

First order 1‐Energy ,2‐ Entropy, 3‐ InterquartileRange, 4‐ Kurtosis, 5‐ Maximum,6‐ MeanAbsoluteDeviation, 7‐Mean 8‐ Median, 9‐ Minimum, 10‐
RobustMeanAbsoluteDeviation, 11‐ RootMeanSquared, 12‐ Skewness, 13‐ TotalEnergy, 14‐ Uniformity, 15‐ Variance, 16‐
10Percentile, 17‐ 90Percentile, 18‐Range

GLCM 1‐Autocorrelation, 2‐ClusterProminence, 3‐ClusterShade, 4‐ClusterTendency, 5‐Contrast, 6‐Correlation, 7‐DifferenceAverage, 8‐
DifferenceEntropy, 9‐DifferenceVariance, 10‐Id, 11‐Idm, 12‐Idmn, 13‐dn, 14‐Imc1, 15‐Imc2, 16‐InverseVariance,17‐JointAverage, 18‐
JointEnergy, 19‐JointEntropy, 20‐MCC, 21‐MaximumProbability, 22‐SumAverage, 23‐SumEntropy, 24‐SumSquares

GLRLM 1‐GrayLevelNonUniformity, 2‐GrayLevelNonUniformityNormalized, 3‐GrayLevelVariance, 4‐HighGrayLevelRunEmphasis, 5‐
LongRunEmphasis, 6‐LongRunHighGrayLevelEmphasis, 7‐LongRunLowGrayLevelEmphasis, 8‐LowGrayLevelRunEmphasis, 9‐
RunEntropy, 10‐RunLengthNonUniformity, 11‐RunLengthNonUniformityNormalized, 12‐RunPercentage, 13‐RunVariance, 14‐
ShortRunEmphasis, 15‐ShortRunHighGrayLevelEmphasis, 16‐ShortRunLowGrayLevelEmphasis

GLSZM 1‐GrayLevelNonUniformity, 2‐GrayLevelNonUniformityNormalized, 3‐GrayLevelVariance, 4‐HighGrayLevelZoneEmphasis, 5‐
LargeAreaEmphasis, 6‐LargeAreaHighGrayLevelEmphasis, 7‐LargeAreaLowGrayLevelEmphasis, 8‐LowGrayLevelZoneEmphasis, 9‐
SizeZoneNonUniformity, 10‐SizeZoneNonUniformityNormalized ,11‐SmallAreaEmphasis, 12‐SmallAreaHighGrayLevelEmphasis, 13‐
SmallAreaLowGrayLevelEmphasis, 14‐ZoneEntropy, 15‐ZonePercentage, 16‐ZoneVariance

NGTDM 1‐Busyness, 2‐Coarseness, 3‐Complexity, 4‐Contrast, 5‐Strength

GLDM 1‐DependenceEntropy, 2‐DependenceNonUniformity, 3‐DependenceNonUniformityNormalized, 4‐DependenceVariance, 5‐
GrayLevelNonUniformity, 6‐GrayLevelVariance, 7‐HighGrayLevelEmphasis, 8‐LargeDependenceEmphasis, 9‐
LargeDependenceHighGrayLevelEmphasis, 10‐LargeDependenceLowGrayLevelEmphasis,11‐LowGrayLevelEmphasis,12‐
SmallDependenceEmphasis, 13‐SmallDependenceHighGrayLevelEmphasis,14‐SmallDependenceLowGrayLevelEmphasis
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The CCC calculated as described with 95% confidence intervals

to test the agreement between raters41 by Eq. (11), μ is a mean

value, and σ refers to the standard deviation, related to this work it

was between the respective values of the baseline and modified pre-

processed images.

CCC b;mð Þ ¼ 1� μb � μmð Þ2þσ2b þ σ2m � 2δbδm

μb � μmð Þ2þσ2bσ
2
m

(11)

Besides, for assaying inter‐rater reliability intraclass correlation

coefficient (ICC) is an appropriate index,42 which evaluates both sides

of the correlation and agreement among raters, is given by Eq. (12).

ICC 1;1ð Þ ¼ σ2b
σ2b þ σ2e

¼
MSB�MSW

K
MSB�MSW

K þMSW
(12)

Albeit the ICC and CCC values are equivalent or similar in partic-

ular cases, they differ in two important respects; (a) The ICC is

defined for fixed or random observers, whereas the CCC is usually

proposed for fixed observers; and (b) The ICC indexes are required

in the assumption of the ANOVA model, different versions of ICCs

can give different results depending on the chosen ANOVA models,

in contrast, the CCC is assessed without assuming the ANOVA

model.

The entire physiological range of feature values observes across

patients can also impact the reliability and stability of the features.

The dynamic range (DR)43 is used as an explanation of the physio-

logical characteristics to determine the reliability and informative

radiomic features. The DR is calculated for the baseline and modified

sample population with the Eq. (13), b denotes the baseline group, m

indicates the modified collection, n is the number of patients, and j

is the case index for the ith features.

DRi b;mð Þ ¼ 1� 1
n
n∑j¼1

b jð Þi�m jð Þi


 



Maxðrange b;mð Þi
� ��Minðrange b;mð ÞiÞ

(13)

The range of DR is between 0 and 1, and features with the DR

values closer to one, have more inclination to be considered as

robust features against perturbation and hold comparatively reliable

information.

In this study, radiomic features with CCC and DR > 0.9 were

considered as robust and reproducible features; and the Intraclass

correlation coefficient (ICC) with 95% confident intervals, higher

than 0.9 and between 0.75–0.9 considered as excellent and good

reproducible cohorts, respectively.44

Statistical analysis was implemented with R software; version

3.5.1, including “EPIR” and “IRR” packages, were used for calculating

CCC and ICC respectively.

3 | RESULTS

The effect of MRI image preprocessing including or excluding inten-

sity inhomogeneity correction and noise filtering on the reproducibil-

ity of the radiomics features was evaluated by four comparisons as

follows: (a) Baseline versus modified bias field; (b) Baseline versus

modified bias field followed by noise filtering; (c) Baseline versus

modified noise reduction, and (d) Baseline versus modified noise fol-

lowed bias field correction.

In this study, for each patient 1,461 radiomics features were

extracted from GBM sub‐regions (i.e., edema, necrosis, enhancement,

and tumor) of mMRI (i.e., FLAIR, T1, T1C, and T2) volumes for five

preprocessing combinations (in total 23 376 radiomics features). Sta-

tistical analysis was computed over all of the possible measure-

ments.

In Table 3, the total numbers of radiomics features and their

percentage with high robustness (CCC >= 0.9 and DR >= 0.9)

across all MRI sequences for each GBM phenotype, was summa-

rized. Overall, the total number of high robustness features was

extracted from the necrosis region (NC: ∑16
i¼1ni = 7173; 30.6%)

were higher than the number of features were extracted from

edema regions (ED: ∑16
i¼1ni = 4730; 20.2%), enhancement regions

(EN: ∑16
i¼1ni=4490; 19.2), and active tumor regions (TM:

∑16
i¼1ni = 4066; 17.3%) overall cohorts of comparisons and mMRI

modalities.

In addition, the average number of highly reproducible features

(ICC >= 0.9) for baseline comparison with modified bias field (cohort

I:n ~339/1461, 23.2%), were higher than cohort II (n ~329/1461;

22.5%), cohort III (n ~313/1461, 21.4%), and cohort IV (n ~298/

1461; 20.4%). In Table 4., the number of radiomic features extracted

from FLAIR images with ICC greater than 0.9 (excellent group), and

between 0.75 and 0.9 (good cohort), for all measurements were pre-

sented.

TAB L E 3 Total number (∑4
i¼1ni) of features and their percentage (∑

4
i¼1ni

4�1461%), where ni refers to the number of features with high robustness
(CCC& DR >= 0.9) extracted from each GBM sub‐regions of each mMRI (FLAIR, T1, T1C, and T2) volumes. The percentages of features
extracted from necrosis regions across all cohorts and MRI modalities were higher than the other phenotypes

GBM phenotype

I (Base vs modified bias
field)

II (Base vs modified bias
field &noise)

III (Base vs modified
noise)

IV (Base vs modified
noise& bias field)

∑4
i¼1ni Percent (%) ∑4

i¼1ni Percent (%) ∑4
i¼1ni Percent (%) ∑4

i¼1ni Percent (%)

Edema 1258 21.5 1116 19 1273 21.7 1083 18.5

Enhancement 1236 21.1 1222 20.9 977 16.7 1055 18

Necrosis 1915 32.7 1849 31.6 1734 29.6 1675 28.6

Active tumor 1012 17.3 1072 18.3 1020 17.4 962 16.4
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Furthermore, the percentage of radiomics feature extracted from

multiregional GBM in T1, T1C, and T2 sequences with excellent

reproducibility (ICC >= 0.9) was shown in Figs. 3–5 respectively.

4 | DISCUSSION

Glioblastoma (GBM) is the most aggressive malignant type of pri-

mary brain tumor. The prognosis of the GBM remains poor, mainly

since it is remarkably heterogeneous over time and across

patients.1

The promising evidence of MRI‐based radiomics, confirms that

GBM radiomics can non‐invasively and cost‐effectively depict GBM

tumor heterogeneity,2 and predict patients’ outcomes.10,11 However,

the critical issue for adoption of radiomics features in the routine

clinical oncology workflow as validating biomarkers is their robust-

ness and reproducibility.

Magnetic resonance images undergo of some intrinsic acquisi-

tion artifacts, and different scanners with various acquisition

parameters, and protocols, severely impeded the multicenter appli-

cability of MRI‐based radiomics,8 the image preprocessing takes an

essential part in the facilitating quantification analysis and make

more repeatable and comparable results. However, the lack of

pre‐specific image standardization methods in the mMRI‐based
radiomics analysis may also affect the reproducibility and reliability

of the features.

This investigation was designed to assay the impact of various

image preprocessing combinations on the robustness and repro-

ducibility of mMRI‐based radiomics in GBM tumor. The high

throughout radiomics features were extracted by using PyRadiomics

TAB L E 4 The total number (∑4
i¼1fi) of features and their percentage (∑

4
i¼1fi
n�4 %), where fi reflect the number of features with ICC >= 0.9

(excellent) or 0.75 <= ICC < 0.9 (good) extracted from multi‐regions of GBM (edema, enhance, necrosis, and active tumor) in FLAIR modality,
and n, refer to the number of each feature category. ICC = Intraclass correlation coefficient, LBP = local binary pattern, LoG = Laplacian of
Gaussian

Image type Feature category (n) ICC

I (Base vs modified
bias field)

II (Base vs modified
Bias field &noise)

III (Base vs modified
noise)

IV (Base vs modi-
fied noise & bias
field)

∑4
i¼1fi Percent (%) ∑4

i¼1fi Percent (%) ∑4
i¼1fi Percent (%) ∑4

i¼1fi Percent (%)

Original Shape (14) ICC>=0.9 56 100 56 100 56 100 56 100

0.75<=ICC < 0.9 0 0 0 0 0 0 0 0

First order (18) ICC>=0.9 5 6.9 2 2.7 9 12.5 2 2.7

0.75<=ICC < 0.9 18 25 17 23.6 16 22.2 15 20.8

Texture (75) ICC>=0.9 42 14 25 8.3 57 19 37 12.3

0.75<=ICC < 0.9 98 32.6 70 23.3 91 30.3 105 35

Wavelet First order (144) ICC>=0.9 60 10.4 73 12.6 51 8.8 34 5.9

0.75<=ICC < 0.9 205 35.6 206 35.7 172 29.8 182 31.6

Texture (600) ICC>=0.9 501 20.8 444 18.5 303 12.6 344 14.3

0.75<=ICC < 0.9 806 33.5 875 36.4 667 27.8 790 33

LBP First order (30) ICC>=0.9 58 48.3 59 49.1 51 42.5 59 49.1

0.75<=ICC < 0.9 55 45.8 41 34.1 50 41.6 44 36.6

Texture (208) ICC>=0.9 573 68.8 582 70 579 69.5 571 68.6

0.75<=ICC < 0.9 86 10.3 77 9.2 82 9.8 84 10

LoG First order (36) ICC>=0.9 7 4.8 6 4.1 5 3.4 7 4.8

0.75<=ICC < 0.9 22 15.2 24 16.6 21 14.5 24 16.6

Texture (150) ICC>=0.9 82 13.6 49 8.1 106 17.6 73 12.1

0.75<=ICC < 0.9 159 26.5 91 15.1 165 27.5 158 26.3

Square First order (18) ICC>=0.9 2 2.7 3 4.1 12 16.6 4 5.5

0.75<=ICC < 0.9 27 37.5 27 37.5 31 43 27 37.5

Texture (75) ICC>=0.9 20 6.6 12 4 46 15.3 31 10.3

0.75<=ICC < 0.9 118 39.3 98 32.6 126 42 101 33.6

Square root First order (18) ICC>=0.9 5 7 3 4.1 5 7 2 2.7

0.75<=ICC < 0.9 12 16.6 11 15.2 10 13.8 11 15.2

Texture (75) ICC>=0.9 49 16.3 44 14.6 53 17.6 44 14.6

0.75<=ICC < 0.9 92 30.6 71 23.6 85 28.3 89 29.6
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a standard open‐source platform,45 provide more comparable and

reproducible results for other research centers. We expected that

our investigation would have great potential to support the research-

ers for selecting more stable mMRI‐based radiomics features of

GBM patients.

Our results revealed that necrosis features were more stable,

and less sensitive to the intensity inhomogeneities and noise, in

comparison with the features derived from other GBM phenotypes.

Necrosis features were used efficaciously in different radiomics stud-

ies and demonstrated that features such as necrosis pattern and

F I G . 3 . Bar plot of percent radiomics features extracted from various Glioblastoma phenotypes (a) edema, (b) enhancement, (c) necrosis, and
(d) active tumor) of T1 images with ICC>= 0.9. Feature extracted from LBP filtered image and necrosis region were very reproducible.
LBP = local binary pattern, LoG = Laplacian of Gaussian

F I G . 4 . Bar plot of percent radiomics features extracted from various Glioblastoma phenotypes (a) edema, (b) enhancement, (c) necrosis, and
(d) active tumor) of post contrast T1 weighted images with ICC> =0.9. Feature extracted from LBP filtered image and necrosis region were
very reproducible. LBP = Local Binary Pattern, LoG = Laplacian of Gaussian
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necrosis volume were remarkably associated with GBM survival and

mutations.46

Besides, our results reconfirmed that shape features are less

influenced by bias field and noise artifacts. This can be easily inter-

preted due to shape features are not or less correlated to the gray

level intensity distribution. Shape features reproducibility were pre-

dominantly reported by multiple radiomics studies, mostly in CT

modality5 and in the limited literature for MR images.47,48

Furthermore, the stability of LBP‐filtered was substantially higher

than the other filtered (i.e., wavelet, LoG, square, and square root)

volumes. In contrast, square‐filtered images were the most sensitive

to the intensity inhomogeneity and had the least number of repro-

ducible features.

Local binary pattern (LBP) is a practical texture feature with

excellent image descriptor ability,40 it provides local‐level feature

extraction to identify small gray level differences. Although there is

plausible evidence of the outstanding performance of LBP filter in

various aspects, it has been rarely used in radiomic studies.6

Moreover, the total numbers of reproducible features for bias

field correction and bias filed correction followed by noise

smoothing, were higher than noise reduction or noise smoothing

followed by bias field correction over MRI sequences. This finding

is consolidated by previous literature, which indicated that bias

field correction preceded noise reduction more improving the MR

image quality than noise filtering followed by bias field correc-

tion.49,50

Even though the qualities of our findings are robust, the repro-

ducibility and repeatability of radiomics features were investigated

on only five popular preprocessing combinations. Further validation

is needed to identify the optimum and more generalizable image pre-

processing method for MR image standardization in GBM patients.

5 | CONCLUSION

In conclusion, four critical issues were deduced from our findings.

Firstly, radiomics features extracted from necrotic regions were the

most robust in comparison with other GBM phenotypes (edema, and

enhancing active tumor) independent of MRI sequences. Secondly,

shape features were the most robust and reproducible in all MRI

sequences and GBM phenotypes. Thirdly, the LBP‐filtered images

were less sensitive to intensity inhomogeneity, and noise artifacts,

and had better reproducibility features in comparison with the other

image types (i.e., original, Wavelet, LoG, square, square root). Finally,

if researchers are interested in modifying intensity inhomogeneity

and noise simultaneously, bias field correction followed by noise fil-

tering introduce more stable and reproducible radiomics features

than noise filtering followed by bias field correction. For future work,

we will explore the added value of these features, along with the

prognostic model for GBM patients.
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