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Abstract: One of the most important problems of data transmission in packet networks, in particular
in wireless sensor networks, are periodic overflows of buffers accumulating packets directed to a
given node. In the case of a buffer overflow, all new incoming packets are lost until the overflow
condition terminates. From the point of view of network optimization, it is very important to know the
probabilistic nature of this phenomenon, including the probability distribution of the duration of the
buffer overflow period. In this article, a mathematical model of the node of a wireless sensor network
with discrete time parameter is proposed. The model is governed by a finite-buffer discrete-time
queueing system with geometrically distributed interarrival times and general distribution of
processing times. A system of equations for the tail cumulative distribution function of the first
buffer overflow period duration conditioned by the initial state of the accumulating buffer is
derived. The solution of the corresponding system written for probability generating functions
is found using the analytical approach based on the idea of embedded Markov chain and linear
algebra. Corresponding result for next buffer overflow periods is obtained as well. Numerical study
illustrating theoretical results is attached.

Keywords: buffer overflow; discrete time; packet loss; Quality of Service (QoS); wireless sensor
network (WSN)

1. Introduction

Capacities of buffers accumulating incoming packets in computer and telecommunication network
nodes, e.g., wireless sensor network (WSN) nodes or LAN routers, are limited. As a consequence,
one of typical phenomena of packet processing by a network node, especially when the traffic is heavy,
is buffer overflows resulting in packet losses. As long as the accumulating buffer is overflowing,
all incoming packets are lost. This causes deterioration of key service parameters, like packet loss ratio,
end-to-end delay and mean energy consumption [1,2]. Obviously, as one can say, when a network
sensor is turned on and the traffic is small, the problem of energy saving appears since we have
long idle times. From the other side, sensor nodes are equipped typically with very small buffers,
so during a “catastrophic” period, when large data amount arrives at the sensor node, buffer overflows
and packet losses occur. Hence [3], reducing the power consumption during the “normal” period
and reducing buffer overflow durations during the “catastrophic” period are equally important.
In single-hop wireless sensor networks the sensor measurement is sent directly to the base station
(sink node). However, in multi-hop topology the information is transferred from sensor to sensor
to the sink node collecting the traffic, using a multi-hop protocol [2]. Unexpected buffer overflows
occurring on the route (at intermediate nodes) generate packet losses and significantly reduce the
Quality of Service (QoS). In fact, in the literature, one can find many available schemes of the buffer
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management dedicated to traditional wireless networks. However [4], they cannot be directly used in
wireless sensor networks due to strong limitations in power supply and the memory.

The problems and challenges described above are the motivation for the in-depth analytical
study of the buffer overflow phenomenon and its probabilistic nature. In particular, the analysis of
the probability distribution of a single buffer overflow duration as a function of the buffer capacity,
the intensity of packet arrivals and the processing speed is desirable.

In this paper, we consider a mathematical model of the node of a wireless sensor network with
discrete time parameter. The model is based on a finite-buffer discrete-time queueing system with one
processing station. As it seems, queueing systems with finite capacities of waiting rooms accumulating
the incoming packets (customers, cells, jobs, etc.) have far greater potential practical applications
compared to systems with infinite ones. Indeed, the enqueueing process of data packets arriving at
nodes of computer or telecommunication networks (like IP routers or nodes of WSNs) or jobs occurring
in the production process assumes a finite buffer (magazine) capacities. In consequence, a natural
phenomena of a buffer overflow may appear, during which the “qualification” of new customers for
the processing is timely suspended due to no place for waiting. Since during the buffer overflow all the
entering customers are usually rejected without service, the knowledge of the probabilistic distribution
of the duration of successive buffer overflow periods is essential from the point of view of the system
control and optimization in order to ensure a proper level of the Quality of Service.

One can find analytical results for probability distributions of buffer overflow durations for
the finite- and infinite-buffer M/G/1-type queueing models in [5–8]. In [9], an M/G/1/N-type
system with a single vacation mechanism is analyzed. A compact-form representation for the Laplace
transform (LT for short) of the first buffer overflow duration cumulative distribution function (CDF)
is found there. Hence, the formula for the LT of next such periods is derived. The generalization
of these results for the case of a multiple vacation policy and for the compound Poisson arrival
stream can be found in [10,11], respectively [12,13]. Analytical results for the CDF of the time to
the first buffer overflow are obtained, e.g., in [14,15], where the multiple vacation policy and an
unreliable server subject to breakdowns are assumed, respectively, in the finite-buffer model with
Poisson arrivals. As a tool for avoiding the risk of a buffer overflow, active queue management (AQM)
is often applied. The representation for the queue-size distribution in a model with Poisson arrivals,
AQM-type dropping function and finite buffer capacity is obtained, e.g., in [16].

In [17–23], wireless sensor networks are modeled applying queueing theory. In [24], the problem
of congestion control and processing management is investigated using Markov chains. One can
find a novel approach based on matrix-analytic method in studying discrete-time queues in [25].
In [26], the representation for the line-length distribution in the general-type discrete queue is obtained.
Corresponding result for the case of a Batch Markovian Arrival Process (BMAP) in the discrete case
can be found in [27]. Cost analysis for sensor network nodes accepting two different classes of packets
is done in [28] basing on the finite-buffer Geo/G/1/K-type model with vacations. Distribution of
queueing delay in discrete-time model is studied in [29].

As one can observe, most of analytical results relate mainly to performance measures of the
stationary state of the system. However, transient (time-dependent) analysis is sometimes desired
or even necessary, e.g., in the case of the observation of the system just after its restarting after a
breakdown, or simultaneously with the implementation of a new control mechanism. In addition,
in some practical situations, the queue-length behavior may be destabilized by different “outside”
phenomena (like e.g., fade-out or interference occurring in wireless telecommunication).

In this paper, we study the model of a WSN node based on a finite-buffer discrete-time queueing
system in transient state. The time axis is divided into fixed-length periods (called slots) and numbered
by 1, 2, etc. Such an approach is usually used in modeling different real-life systems, for example in
the analysis of telecommunication traffic. The in-depth analysis of various discrete-time queueing
models can be found, e.g., in books [30–32]. Discrete-time queueing model with correlated arrivals and
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constant service times is analyzed in [33]. The case of generally distributed service times is investigated
in [34]. In [35], discrete time queueing models and their networks are studied.

In this paper, a system of equations for the tail CDF of the first buffer overflow period duration
conditioned by the initial state of the accumulating buffer is derived. The solution of the corresponding
system written for probability generating functions (PGFs for short) is found using the analytical
approach based on the idea of embedded Markov chain and linear algebra. Corresponding results
for next buffer overflow periods are obtained as well. The numerical study illustrating theoretical
results is attached. Therefore, the first main contribution of the paper is compact-form analytical
results obtained for the transient state of the system, describing its evolution at arbitrary time (slot).
Typically, in queueing modeling, the empty system is assumed initially. Thus, the next contribution of
the paper is in showing an essential dependence (usually ignored) of the buffer overflow duration on
the initial buffer state of the system. The dependence is visible in the formulae and it is illustrated via
numerical results.

The remaining part of the article is organized as follows. In Section 2, we give a precise
mathematical description of the considered queueing model and introduce some nomenclature.
In Section 3, a transient system of equations for the tail CDF of the first buffer overflow period
duration, conditioned by the number of packets accumulated in the buffer before the starting moment,
is built. Moreover, a corresponding system written for PGFs is found there. Section 4 contains the main
analytical result, namely a compact-form solution of the last system obtained in the previous section.
The result for next buffer overflow periods is stated in Section 5. In Section 6, numerical analysis is
provided. A brief summary and conclusion can be found in Section 7.

2. Model Description

In this paper, we consider a discrete-time queueing model in which the incoming packets arrive
according to interarrival times being geometrically distributed with parameter 0 < a < 1 (a binomial
arrival process), so the probability that an interarrival time equals k (time slots) is

ak
de f
= a(1− a)k−1, (1)

where k ∈ {1, 2, ...}.
The probability that an interarrival time exceeds k we denote by ak. Obviously

ak =
∞

∑
i=k+1

ai = (1− a)k, k ≥ 1. (2)

The j-fold convolution of the sequence (ak) with itself is defined as follows:

a1∗
k = ak, k ≥ 1, (3)

and

aj∗
k =

k−1

∑
i=1

a(j−1)∗
i ak−i =

k−1

∑
i=1

aia
(j−1)∗
k−i , (4)

for 2 ≤ j ≤ k.
Processing times are assumed to be of general distribution, where bk stands for the probability that

the service time lasts k time units, where ∑∞
k=1 bk = 1. The maximum system capacity is assumed to be

N, so we have an accumulating buffer with N − 1 places and one place in service station. A natural
processing discipline FIFO (First In First Out) is assumed.
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In a single time slot, at most one job can arrive and one service can be finished. We accept the
so-called arrival-first (AF) regime, at which if the arrival and departure appear at the same time (slot)
an arrival takes precedence over a departure.

In this paper, we use the notation I{A} for the indicator (characteristic function) of the random
event A.

3. Basic Equations for First Buffer Overflow Duration

In this section, we deal with the first buffer overflow duration γ1. We introduce the following
notation for the conditional tail CDF of γ1 :

∆n(k)
de f
= P{γ1 ≥ k |X0 = n}, (5)

where k ≥ 1, n ∈ {0, ..., N − 1} and X0 stands for the number of packets present in the buffer just
before the starting epoch.

Let us start with the case of the buffer being empty before the opening of the system (n = 0).
Note that the corresponding CDFs for n = 0 and n = 1 are equal, i.e.,

P{γ1 ≥ k |X0 = 0} =
∞

∑
r=1

arP{γ1 ≥ k |X0 = 1} = P{γ1 ≥ k |X0 = 1}, (6)

so ∆0(k) = ∆1(k).
Assume now that the system starts the operation with n ∈ {1, ..., N − 1} packets accumulated in

the buffer. Let us denote by i (i ≥ 1) the first departure epoch after the opening of the system at time
0. In addition, if i ≥ 2, let r be the last arrival moment before i. As a result that departure epochs are
Markov moments in the evolution of the considered system (due to memoryless property of geometric
distribution of interarrival times), for fixed n the following random events are mutually exclusive:

• Λ1(n) : the moment r is the arrival time of, at most, the (N − n− 1)th packet and the next packet
enters the system after time i (the buffer does not become saturated before time i);

• Λ2(n) : the moment r is the arrival time of, at most, the (N − n− 1)th packet and the next packet
enters the system exactly at time i;

• Λ3(n) : at time r the (N − n)th packet arrives, so the buffer overflow period begins at time r;
• Λ4(n) : the first packet (after the opening of the system) arrives exactly at time i;
• Λ5(n) : the first packet (after the opening of the system) arrives after time i.

Obviously, from the total probability law we get

∆n(k) =
5

∑
i=1

P{(γ1 ≥ k) ∩Λi |X0 = n}. (7)

Let us note that the following representations are true:

P{(γ1 ≥ k) ∩Λ1 |X0 = n} =
∞

∑
i=2

bi

i−1

∑
r=1

N−n−1

∑
j=1

aj∗
r ai−r∆n+j−1(k), (8)

P{(γ1 ≥ k) ∩Λ2 |X0 = n} =
∞

∑
i=2

bi

i−1

∑
r=1

N−n−1

∑
j=1

aj∗
r ai−r∆n+j(k), (9)

P{(γ1 ≥ k) ∩Λ3 |X0 = n} =
∞

∑
i=2

bi

i−1

∑
r=1

a(N−n)∗
r I{i− r ≥ k}, (10)

P{(γ1 ≥ k) ∩Λ4 |X0 = n} = ∆n(k)
∞

∑
i=1

biai (11)
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and

P{(γ1 ≥ k) ∩Λ5 |X0 = n} = ∆n−1(k)
∞

∑
i=1

biai. (12)

Observe that in the case of (9) (if j = N − n− 1) and (11) (if n = N − 1), according to AF regime,
in fact, degenerated ”zero” buffer overflow periods occur at time i (the (N − n)th packet arrives and
the service completes at this time).

Collecting the right sides of (8)–(12) and referring to (7), we obtain

∆n(k) =
∞

∑
i=2

bi

i−1

∑
r=1

[
N−n−1

∑
j=1

aj∗
r

(
ai−r∆n+j−1(k) + ai−r∆n+j(k)

)

+ a(N−n)∗
r I{i− r ≥ k}

]
+

∞

∑
i=1

bi
(
ai∆n(k) + ai∆n−1(k)

)
, (13)

where n ∈ {1, ..., N − 1}.
Introduce now the following functionals:

b̂j
de f
=

∞

∑
i=2

bi

i−1

∑
r=1

aj∗
r ai−r, (14)

b̃j
de f
=

∞

∑
i=2

bi

i−1

∑
r=1

aj∗
r ai−r, (15)

ĉ
de f
=

∞

∑
i=1

biai, (16)

c̃
de f
=

∞

∑
i=1

biai (17)

and

θn(z)
de f
=

∞

∑
k=1

zk
∞

∑
i=2

bi

i−1

∑
r=1

a(N−n)∗
r I{i− r ≥ k}

=
∞

∑
i=2

bi

i−1

∑
r=1

a(N−n)∗
r

i−r

∑
k=1

zk

=
z

1− z

∞

∑
i=2

bi

i−1

∑
r=1

(1− zi−r)a(N−n)∗
r , (18)

where |z| < 1.
If we define, moreover, the PGF of ∆n(k) as follows:

∆̂n(z)
de f
=

∞

∑
k=1

zk∆n(k), |z| < 1, (19)

then the system of Equation (13) can be rewritten in the following form:

∆̂n(z) =
N−n−1

∑
j=1

(
b̃j∆̂n+j−1(z) + b̂j∆̂n+j(z)

)
+ ĉ∆̂n(z) + c̃∆̂n−1(z) + θn(z), (20)
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where n ∈ {1, ..., N − 1}. In addition (see (6)),

∆̂0(z) = ∆̂1(z). (21)

Putting

τj
de f
=


c̃, j = 0,

b̃1 + ĉ, j = 1,
b̃j + b̂j−1, j ≥ 2,

(22)

the Equation (20) can be transformed as follows:

∆̂n(z) =
N−n−1

∑
j=0

τj∆̂n+j−1(z) + θn(z), (23)

where n ∈ {1, ..., N − 1}.

4. Representation for Solution

In this section, we obtain an explicit solution of the system (21), (23) in a compact form. In [36],
the idea of a potential of a random walk is considered. Namely, if the sequence (Yn) is defined
as follows:

Y0 = 0, Yn =
n

∑
k=1

Xk, (24)

where n ≥ 1, and random variables X1, X2, ... are independent and identically distributed with

τk
de f
= P(Xn = k), k ≥ 0, τ0 > 0, then a sequence (Rk) defined in the following way:

∞

∑
k=0

zkRk =
1

T(z)− 1
, (25)

where

T(z)
de f
=

∞

∑
k=−1

zkτk+1, |z| < 1, (26)

is called the potential of the random walk (Yn). The representation (25) can be used to find successive
terms of the potential (Rk). Indeed, applying Maclaurin’s expansion, we can write

Rk =
1
k!

∂

∂z

( 1
T(z)− 1

)∣∣∣
z=0

. (27)

However, from the other side, successive terms of (Rk) can be found recursively, namely [36]

R0 = 0, R1 =
1
τ0

, Rk = R1

(
Rk−1 −

k−1

∑
j=0

τj+1Rk−1−i

)
, (28)

where k ≥ 2.
The potential has interesting algebraic applications. In [36], the following system of infinitely

many linear equations is studied:
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n−1

∑
j=−1

τj+1δ̂n−j − δ̂n = φn, n ≥ 1, (29)

where (δ̂n) are unknowns and (τn) and (φn) are known sequences. It is proved that each solution of
the system (29) can be represented in the following form:

δ̂n = βRn +
n

∑
k=1

Rn−kφk, n ≥ 1, (30)

where β is a certain constant and (Rk) is the potential corresponding to the sequence (τk).
As it turns out, the idea of the potential can be applied in solving the system (21), (23); however,

firstly, it must be written in another, equivalent, form.
Introduce the following substitution:

δ̂n(z)
de f
= ∆̂N−n(z), n ∈ {1, ..., N}. (31)

Observe that now the Equations (21), (23) can be rewritten as follows:

n−1

∑
j=−1

τj+1δ̂n−j(z)− δ̂n(z) = φn(z) (32)

for n ∈ {1, ..., N − 1}, and

δ̂N(z) = δ̂N−1(z), (33)

where

φn(z)
de f
= δ̂1(z)τn − θN−n(z). (34)

Let us note that (32) has the form similar to (29); however, two essential differences can be observed.
Firstly, the sequences of unknowns and free terms depend on the argument z. Secondly, the number of
equations in the system (32) is finite in comparing to (29). In consequence, the representation (30) for
the solution must be used in a slightly different form, namely

δ̂n(z) = β(z)Rn +
n

∑
k=1

Rn−kφk(z), n ≥ 1, (35)

where β(z) is certain function of variable z and (Rk) is the potential corresponding to the sequence
(τk) defined in (27) or (28). Next, the Equation (33) can be used for finding β(z) explicitly.

Let us start with substituting n = 1 into (35). We get

β(z) =
δ̂1(z)

R1
= δ̂1(z)τ0. (36)

Next, substituting n = N and n = N − 1 into (35) and, moreover, applying (33), we can easily
eliminate δ̂1(z) as follows:

δ̂1(z) =
∑N−1

k=1 (RN−k − RN−1−k)θN−k(z)

∑N−1
k=0 (RN−k − RN−1−k)τk

. (37)
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Returning to ∆̂n(z) (by using the substitution (31)), we have

∆̂n(z) = δ̂N−n(z) = δ̂1(z)τ0RN−n +
N−n

∑
k=1

RN−n−kφk(z)

= δ̂1(z)τ0RN−n +
N−n

∑
k=1

(
δ̂1(z)τk − θN−k(z)

)
RN−n−k

= δ̂1(z)
N−n

∑
k=0

τkRN−n−k −
N−n

∑
k=1

θN−k(z)RN−n−k. (38)

In consequence, referring to (33), (37) and (38), we can formulate the following main result:

Theorem 1. The PGF of the tail CDF of the first buffer overflow duration γ1 in the considered queueing system
can be represented as follows:

∆̂n(z) =
∑N−1

k=1 (RN−k − RN−1−k)θN−k(z)

∑N−1
k=0 (RN−k − RN−1−k)τk

N−n

∑
k=0

τkRN−n−k −
N−n

∑
k=1

θN−k(z)RN−n−k, (39)

where n ∈ {0, ..., N− 1}, and the formulae for θk(z), τk and Rk are given in (18), (22) and (27) (or, equivalently,
in (28)), respectively.

5. The Case of Next Buffer Overflows

Let us denote by γr the rth buffer overflow period duration (r ≥ 2). Observe that the following
representation is true:

P{γr > k} = P{γ1 > k |X0 = N − 1}, (40)

where k ≥ 1.
Indeed, the completion epoch of each buffer overflow period is a Markov moment in the evolution

of the system. Therefore, the process of reaching each next buffer overflow period (beginning with the
second one) is probabilistically identical as the one for the first period but with “initial” number of
jobs accumulated in the buffer equal to N − 1. In consequence, if we put

∆̂?(z)
de f
=

∞

∑
k=1

zkP{γr ≥ k}, (41)

where r ≥ 2 and |z| < 1, then we obtain the following:

Remark 1. The PGF ∆̂?(z) of the tail CDF of the rth buffer overflow duration γr (r ≥ 2) in the considered
queueing system can be expressed as

∆̂?(z) = ∆̂N−1(z), (42)

where |z| < 1 and the formula for ∆̂N−1(z) is given in (39).

6. Numerical Study

In this section, we present the numerical study illustrating theoretical results. In particular, we are
interested in the visualization of the impact on the distribution of the first buffer overflow duration for
the following “input” parameters of the system:

- the offered traffic load $ defined as the quotient of the mean service time and the mean interarrival
time;

- the number of jobs n accumulated in the buffer before the starting moment;
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- the shape of the service (processing) time distribution;
- the buffer size.

In computations, we consider three types of the processing time distribution:

• geometric with fixed parameter b;
• deterministic (constant) of duration B = const;
• bounded discrete distribution, where the service time takes on finite number of possible values;

dealing with the impact of the distribution skewness we analyze separately the following subcases
of this type of distribution:

– symmetric;
– with positive skewness (positive asymmetry);
– with negative skewness (negative asymmetry).

In [37], an algorithm of numerical inversion of probability generating function is proposed.
Namely, if F(z) = ∑∞

k=0 fkzk, where | fk| ≤ 1 and z ia a complex number, then fk for k = 1, 2, ... can be
approximated by f k as follows:

f k =
1

2krk

2k

∑
j=1

(−1)jRe(F(r exp (πij/k))), (43)

where r ∈ (0, 1). Moreover,

| fk − f k| ≤
r2k

1− r2k . (44)

We use the algorithm described above with r = 0.1 to invert the right side of the Formula (39) in
Theorem 1.

6.1. Impact of the Type of Processing Distribution

We investigate the impact of the type of processing distribution on the distribution of the first
buffer overflow duration. Assume that a = 0.25 so the mean interarrival time equals 4, and take
N = 11. Moreover, let us analyze three different processing time distributions with the same mean
equal to 3 (so $ = 0.75 < 1), namely geometric with parameter b = 1

3 = 0.333, deterministic with
B = 3 and bounded discrete distribution defined as

b1 = b2 = b4 = b5 =
1
8

, b3 =
1
2

, bk = 0 otherwise.

In Figures 1–3, conditional probabilities ∆n(k) for k = 1, 2, ..., 6 are presented for n = 0, 5 and 10,
respectively.

In Figures 4–6, the case of $ = 1.00 is visualized. Assuming the same values of a and N, we present
results for three processing time distributions with the same mean equal to 4: geometric with parameter
b = 1

4 = 0.250, deterministic with B = 4 and bounded discrete distribution defined as follows:

b2 = b3 = b5 = b6 =
1
8

, b4 =
1
2

, bk = 0 otherwise.



Sensors 2020, 20, 5772 10 of 18

k

n=0

n=5

n=10

0.0

0.1

0.2

0.3

0.4

Probability

Figure 1. Conditional probabilities ∆̂n(k) for geometric processing distribution, $ = 0.75 and n = 0,
5 and 10.
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Figure 2. Conditional probabilities ∆̂n(k) for deterministic processing distribution, $ = 1.00 and
n = 0, 5 and 10.
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Figure 3. Conditional probabilities ∆̂n(k) for bounded discrete processing distribution, $ = 1.25 and
n = 0, 5 and 10.
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Figure 4. Conditional probabilities ∆̂n(k) for geometric processing distribution, $ = 0.75 and n = 0,
5 and 10.
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Figure 5. Conditional probabilities ∆̂n(k) for deterministic processing distribution, $ = 1.00 and
n = 0, 5 and 10.
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0.4
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Figure 6. Conditional probabilities ∆̂n(k) for bounded discrete processing distribution, $ = 1.25 and
n = 0, 5 and 10.

Finally, the case of $ = 1.25 and the mean service time equal to 5 are presented in Figures 7–9.
We take there geometric distribution with parameter b = 1

5 = 0.200, deterministic with B = 5 and
bounded discrete distribution given by
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b3 = b4 = b6 = b7 =
1
8

, b5 =
1
2

, bk = 0 otherwise.

k

n=0

n=5

n=10

0.0

0.1

0.2

0.3

0.4

0.5

Probability

Figure 7. Conditional probabilities ∆̂n(k) for geometric processing distribution, $ = 0.75 and n = 0,
5 and 10.

k
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0.8
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Figure 8. Conditional probabilities ∆̂n(k) for deterministic processing distribution, $ = 1.00 and
n = 0, 5 and 10.
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Figure 9. Conditional probabilities ∆̂n(k) for bounded discrete processing distribution, $ = 1.25 and
n = 0, 5 and 10.
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Evidently, as k increases, then the probability values

∆̂n(k) = P{γ1 ≥ k |X0 = n}

for fixed n decrease; however, the shape of this relationship depends on the type of processing distribution.
The relationship between the initial buffer state and the processing distribution type is interesting.
Figures 1, 4 and 7 show that there is the biggest difference in the case of geometric distribution, where a
huge disproportion between values obtained for n = 0, 5 and n = 10 can be observed.

6.2. Impact of Skewness Type of the Processing Distribution

In this subsection, we investigate the effect of the statistical shape of the service type distribution
on the tail of conditional distribution of the first buffer overflow duration in the considered model.
Assume, as previously, that a = 0.25, N = 11, and accept a bounded discrete processing distribution.
Consider three different types of this distribution in the case of $ = 1 (so with the same mean), namely

• symmetric distribution of the form

b1 = b2 = b4 = b5 =
1
8

, b3 =
1
2

and bk = 0 otherwise, for which the skewness equals 0;
• distribution with positive skewness (positive asymmetry) of the form

b2 =
7

16
, b3 =

4
16

, b4 =
3
16

, b5 =
2
16

and bk = 0 otherwise, for which the skewness equals 0.629 > 0;
• distribution with negative skewness (negative asymmetry) of the form

b1 =
2

16
, b2 =

3
16

, b3 =
4
16

, b4 =
7
16

and bk = 0 otherwise, for which the skewness equals −0.629 < 0.

Let us note that means are the same and equal to 3.
The values of probabilities ∆̂3(k) = P{γ1 ≥ k |X0 = 3} for k = 1, ..., 6 are presented in

Table 1 and in Figure 10. It is probably a bit surprising that these probabilities are the highest
for a symmetric distribution. In the case of positive and negative skewness for ks greater than or equal
to 3, the probabilities are very close to zero.

Table 1. Impact of skewness type on conditional probabilities ∆̂3(k) for bounded discrete processing
distribution and $ = 1.

k Symmetry Negative Skewness Positive Skewness

1 0.644089 0.409344 0.418129
2 0.361425 0.107254 0.142688
3 0.166121 4.163336 × 10−14 0.030098
4 0.051831 6.938894 × 10−14 0
5 0.013312 5.551115 × 10−13 1.110223 × 10−12

6 3.700743 × 10−11 9.251859 × 10−12 2.312965 × 10−12
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k

symmetry

negative skewness

positive skewness
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0.1
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Figure 10. Impact of skewness type on conditional probabilities ∆̂3(k) for bounded discrete processing
distribution and $ = 1.

6.3. Mean Buffer Overflow Duration in Dependence on Offered Load and Initial Buffer State

Let us study now the impact of the offered load $ and the initial buffer state n on the mean first
buffer overflow duration. Let us note that the mean conditional first buffer overflow duration En(γ1)

can be obtained just from the formula (39), namely

En(γ1) = lim
z→1

∆̂n(z).

Assume that N = 11 and a = 0.25, and analyze three different possibilities in the case of
geometric-type processing distribution, namely b = 0.33 ($ = 0.75 < 1), b = 0.25 ($ = 1.00) and
b = 0.20 ($ = 1.25 > 1). The results are presented in Table 2 and visualized in Figure 11. Note that
the values increase with increasing offered load. For a small and medium level of initial buffer state,
the differences are small. For greater values of n compared to N, the differences are significant.
For example, the average duration of the first buffer overflow period for the value of n = 10 increases
almost twice as compared to the value obtained for n = 9.

Table 2. Mean first buffer overflow duration in dependence on offered load and initial buffer state.

Buffer State n $ = 0.75 $ = 1.00 $ = 1.25

0 0.036321 0.049755 0.038306
1 0.036321 0.049755 0.038306
2 0.037954 0.055577 0.045982
3 0.042496 0.069353 0.062898
4 0.052282 0.094659 0.092465
5 0.071575 0.137233 0.140520
6 0.108269 0.206258 0.216532
7 0.177884 0.318161 0.337882
8 0.313364 0.508249 0.544020
9 0.585439 0.855341 0.925785

10 1.134407 1.511127 1.654884

6.4. Impact of System Size

Finally, in Table 3 and in Figure 12, the impact of the system size N on the duration of the first
buffer overflow is illustrated for geometric processing distribution and system parameters kept the
same as in the previous subsection. Here, n = N− 1 is assumed; therefore, we can illustrate in this case
not only the first buffer overflow but also next ones. Indeed, due to the fact that after finishing each
buffer overflow period the number of accumulated packets equals N − 1, this buffer state becomes an
initial one for the second and next buffer overflow periods. The dependence on the offered load $ is
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similar to that analyzed in the previous case. The buffer overflow duration decreases with the increase
of the declared buffer volume; however, the rate of this change is the most visible for small values of
N. Generally, it shows that a large increase of the buffer capacity does not have an essential impact on
the average number of lost packets, since mean buffer overflow durations do not differ significantly
for large Ns.

ρ=0.75

ρ=1.00

ρ=1.25

2 4 6 8 10
Buffer state

0.5

1.0

1.5

Mean buffer overflow duration

Figure 11. Mean first buffer overflow duration in dependence on offered load and initial buffer state.

Table 3. Impact of system size on the mean first buffer overflow duration for different values of
offered load.

System Size N $ = 0.75 $ = 1.00 $ = 1.25

2 1.682303 2.000242 2.088127
3 1.535842 1.762685 1.818474
4 1.418714 1.639140 1.716005
5 1.327611 1.577548 1.678921
6 1.257000 1.545704 1.664732
7 1.205492 1.528632 1.658915
8 1.171707 1.519536 1.656483
9 1.151613 1.514796 1.655473

10 1.140419 1.512365 1.655056
11 1.134407 1.511127 1.654884

ρ=0.75

ρ=1.00

ρ=1.25

2 4 6 8 10
Buffer state

1.2

1.4

1.6

1.8

2.0

Mean buffer overflow duration

Figure 12. Impact of of system size on the mean first buffer overflow duration for different values of
offered load.
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7. Conclusions

The possibility of probabilistic evaluation of the duration of the buffer overflow period is crucial
in the evaluation of transmission quality and the network optimization process. The article proposes a
probabilistic model for the functioning of a wireless sensor network node based on a queueing system
with discrete time and a limited capacity of the buffer accumulating incoming data packets. Using the
analytical approach based on the concept of the embedded Markov chain, the total probability formula
and linear algebra, a compact representation for the PGF of the tail of the CDF of the first buffer
overflow period is obtained, depending on the initial state of this buffer. As a simple conclusion,
the appropriate formula is also found for the subsequent periods of buffer overflow. The numerical
study examines the sensitivity of the buffer overflow time distribution on the packet arrival intensity,
the type of service time distribution and the buffer filling level at the time of system start.
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Conflicts of Interest: The author declares no conflict of interest.

References

1. Sumathi, K.; Venkatesan, M. A survey on congestion control in wireless sensor networks. Int. J. Comput. Appl.
2016, 147, 6. [CrossRef]

2. Syed, A.S.; Babar, N.; Imran, A.K. Congestion control algorithms in wireless sensor networks: Trends and
opportunities. J. King Saud Univ. 2017, 29, 236–245.

3. Joshi, G.; Dwivedi, S.; Goel, A.; Mulherkar, J.; Ranjan, P. Power and buffer overflow optimization in
wireless sensor nodes. In Proceedings of the International Conference on Computer Science and Information
Technology, Bangalore, India, 2–4 January 2011; pp. 450–458.

4. Shwe, H.Y.; Gacanin, H.; Adachi, F. Multi-layer WSN with power efficient buffer management policy.
In Proceedings of the 2010 IEEE International Conference on Communication Systems, Singapore,
17–19 November 2010.

5. de Boer, P.T.; Nicola, V.F.; van Ommeren, J.C.W. The remaining service time upon reaching a high level in
M/G/1 queues. Queueing Syst. 2001, 39, 55–78. [CrossRef]

6. Chae, K.C.; Kim, K.; Kim, N.K. Remarks on the remaining service time upon reaching a target level in the
M/G/1 queue. Oper. Res. Lett. 2007, 35, 308–310. [CrossRef]
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