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Intracellular optical doppler 
phenotypes of chemosensitivity 
in human epithelial ovarian cancer
Zhe Li1, Ran An2, Wendy M. Swetzig3, Margaux Kanis3, Nkechiyere Nwani3, John Turek4, 
Daniela Matei3 & David Nolte1*

Development of an assay to predict response to chemotherapy has remained an elusive goal in cancer 
research. We report a phenotypic chemosensitivity assay for epithelial ovarian cancer based on 
Doppler spectroscopy of infrared light scattered from intracellular motions in living three-dimensional 
tumor biopsy tissue measured in vitro. The study analyzed biospecimens from 20 human patients 
with epithelial ovarian cancer. Matched primary and metastatic tumor tissues were collected for 3 
patients, and an additional 3 patients provided only metastatic tissues. Doppler fluctuation spectra 
were obtained using full-field optical coherence tomography through off-axis digital holography. 
Frequencies in the range from 10 mHz to 10 Hz are sensitive to changes in intracellular dynamics 
caused by platinum-based chemotherapy. Metastatic tumor tissues were found to display a 
biodynamic phenotype that was similar to primary tissue from patients who had poor clinical 
outcomes. The biodynamic phenotypic profile correctly classified 90% [88–91% c.i.] of the patients 
when the metastatic samples were characterized as having a chemoresistant phenotype. This work 
suggests that Doppler profiling of tissue response to chemotherapy has the potential to predict 
patient clinical outcomes based on primary, but not metastatic, tumor tissue.

The tumor microenvironment plays an essential role in the complex biological and molecular communication 
between cancer cells and the host, determining both tumor progression and response to therapy. The microen-
vironmental influences on the cancer state are associated with mechano-transduction1,2, paracrine signaling, as 
well as immune cell infiltration and endocrine signaling. Chemosensitivity assays3,4 seek to measure the sensitiv-
ity of patient-derived cells to a range of chemotherapies. However, the conventional assays destroy the micro-
environmental influences by disaggregating cells from tumor biopsies and growing them in two-dimensional 
cell culture or as xenografts implanted in host animals. The growth in the environment of the cell culture plate 
or the animal host changes the cellular phenotype, which may no longer represent the phenotype of the intact 
tumor. In consequence, chemosensitivity assays have limited ability to test cancer cells from clinical specimens, 
they lack predictive power for subsequent clinical applications5–7, and they rely exclusively on epithelial tumor 
components. Therefore, a need exists for a phenotypic assay that maintains the three-dimensional microenviron-
ment and tests the functional response of living tissue to selected therapies.

To meet this need, a Doppler fluctuation spectroscopy approach to chemosensitivity testing, called biody-
namic imaging (BDI), was developed as the first coherence-domain imaging technique to use intracellular motion 
as functional image contrast8. Intracellular motion includes molecular-motor-dependent transport of vesicles and 
mitochondria, intranuclear alterations associated with pre- and post-mitotic processes, cytoplasmic streaming, 
cytoskeletal restructuring, active membrane modulations, and cell shape changes 9. These motions range in speed 
from nanometers per second for cell-scale motions to microns per second for organelle and vesicle transport, 
generating Doppler frequency shifts from 10 mHz to 10 Hz, respectively. There has been growing recognition 
of the importance of intracellular dynamics for functional imaging on intact tissue10–16. Biodynamic imaging 
is a form of full-frame optical coherence tomography (FF-OCT)17,18 based on off-axis digital holography that 
uses principles of coherent laser ranging that can quantify the dynamic response of tumors to chemotherapy 
treatment19. Cellular motions are unusual but specific biomarkers of cellular health and response. By penetrat-
ing volumetrically into tissue up to 1 mm deep, BDI maps out heterogeneous tissue layers. BDI has previously 
been applied to drug screening20–22, phenotypic profiling23, and preclinical chemosensitivity testing on ovarian 
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xenografts in mice and canine B-cell lymphoma19,24,25. Light scattering of near-infrared light from living ex vivo 
tissue biopsies displays Doppler frequency shifts caused by intracellular motion9. Chemotherapy agents applied 
to the living biopsies in vitro modify the intracellular dynamics and the associated Doppler frequencies. The 
Doppler frequency shifts and their changes are interpretable through the speeds of intracellular motions affected 
by anti-cancer drugs. In a previous study24, we used biodynamic imaging to assess ovarian xenografts grown 
in mice from human ovarian cancer cell lines whose platinum resistance and sensitivity were associated with 
biodynamic signatures. The work presented here is the first application of BDI to naturally-occurring cancer in 
human patients.

Results
Biodynamic spectra of human ovarian cancer biopsies.  The core optical components of the biody-
namic imaging system are illustrated in Fig. 1a. The system is configured as a Mach–Zehnder interferometer 
with low-coherence digital holography. Fluctuation spectra of a living tissue sample are obtained from time 
series of dynamic speckle images on the digital camera, and changes in the spectra are tracked after a drug treat-
ment is applied to the sample well (described in the Methods section). The time–frequency format of a typical 
drug-response spectrogram is shown in Fig. 1b. Frequency is along the horizontal axis spanning from 10 mHz 
to 10 Hz. Time is along the vertical axis spanning 17.8 h: 5.5 h of baseline followed by 12.3 h after a treatment is 
dispensed into the well. The baseline is used for reference, and the treatment is applied at the time of the horizon-
tal blue line. The shifts in the spectral content caused by the drug action are captured in color in the figure, blue 
representing loss of spectral density and red representing an increase of spectral density. The Doppler frequency 
is related to the intracellular speed through Δω = qv, where q = 4πn/λ0 , λ0 is the free-space wavelength, n is the 
refractive index, and v is the internal speed. For reference, a speed of 1 micron per second produces a Doppler 
frequency shift of 3 Hz at a wavelength of 840 nm in a backscattering geometry. The high-frequency region cor-
responds to the organelle transport band26. The low-frequency region represents slow membrane rearrangement 
and possible cell motility27,28 (described in Table 2 in Methods).

To generate spectral fingerprints of sensitive versus resistant patients, we partitioned the patient samples 
into sensitive and resistant groups. Platinum-sensitive tumors were defined as those tumors that did not recur 
for more than 6 months, while platinum-resistant tumors were those that progressed in less than 6 months after 
completion of platinum-based therapy. Average drug-response spectrograms in Fig. 1c were obtained for the 
two cohorts averaged over samples immobilized by poly-lysine (see Methods and Supplemental Information for 
sample immobilization methods). The differences of the resistant minus the sensitive spectrograms are shown in 
Fig. 1d with enhanced low frequencies (red shifts) in the resistant samples relative to the sensitive. A so-called 
“red shift” (increased spectral density at low frequencies and decreased spectral density at high frequency) rep-
resents a decrease in average cellular speeds.

Figure 1.   Drug-response spectrograms for poly-lysine-immobilized biopsies treated with carboplatin (25 µM), 
paclitaxel (5 µM) and carboplatin + paclitaxel (25 µM + 5 µM). The axes are the same for all spectrograms. 
(a) A schematic of the biodynamic platform (BDP). The imaging system (including the light source, lenses, 
beam splitters and the CCD) is placed on an optical platform mounted on a motorized stage that moves in the 
horizontal plane. (IP image plane. L1-3 lenses. BS beam splitter. FP Fourier plane. CCD charge-coupled device 
digital camera.) (b) In the spectrogram time–frequency format the Doppler frequency spans three orders of 
magnitude. The spectrogram is the relative change of spectral density relative to the pre-dose baseline. The 
spectral response is monitored for 12 h after the dose. (c) The average spectrograms (DMSO-subtracted) for 
resistant and sensitive phenotypes. (d) The difference of the resistant spectrograms minus the sensitive.
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Association of biodynamic phenotype with patient outcome.  The time–frequency representation 
of the drug-response spectrograms was converted using linear filters into quantitative biomarkers that have 
strong co-dependence. The features are called “biomarkers” by analogy with genetic or proteomic biomarkers 
because they represent distinct behavior of the tissue, but the biodynamic biomarkers have not yet been related 
to specific traditional biomarkers or pathways. Principal component analysis (PCA) was used to find a set of 
orthogonal biomarkers that are linear combinations of the original biomarkers. The principal components of the 
spectrogram-based biomarkers having the largest signal-to-noise ratios that differentiate the resistant/sensitive 
groups are shown in Fig. 2a. The biomarkers are designated by the principal component and by the treatment. 
For instance, BM2tax+carb represents the 2nd principal component in the singular-value decomposition of the 
drug response under combination treatment. The feature vectors shown in Fig. 2a are BM7carb, BM2tax+carb, 
BM4tax+carb, BM7tax+carb and BM1tax. The feature definitions, selection, and the singular value decomposi-
tion (SVD) coefficients of the linear combination of these biomarkers in terms of the original biomarkers are 
given in Methods.

The selected feature vectors of Fig. 2a are the central data structure for all downstream machine learning 
algorithms. The goal is to identify which patients share similarities with each other, and with the sensitive/
resistant phenotypes. For instance, the feature vectors are used to construct the similarity matrix in Fig. 2b. The 
order of the patients was preselected according to their clinical outcomes, separated into resistant, metastatic and 
sensitive groups. Identical vectors have vector contrast near unity (red), opposite vectors have vector contrast 
near negative unity (blue), and independent vectors have vector contrast near zero (white). The similarity matrix 
has an approximately block-diagonal structure. A key observation is that the resistant and metastatic block of 
biopsies share strong similarities with each other, implying that the metastatic tissues have a dynamic phenotype 
that is similar to the resistant primary tumor tissue. Because none of the metastatic data were used in the feature 
selection or training, this resistant phenotype of the metastatic samples is one of the principal conclusions of this 
study. Among the samples from patients who had sensitive clinical outcomes there appear to be two sub-blocks.

Network theory provides analysis techniques for identifying relationships among a set of feature vectors. 
A similarity network for this clinical study is shown in Fig. 2c. Links in the network are assigned according to 
a k-neighbor adjacency matrix with k = 3. The patients are color-coded according to their clinical outcomes. 
Dark red nodes are primary tumors that have resistant clinical outcomes, dark blue nodes are primary tumors 
that have sensitive clinical outcomes, purple are metastatic tissues. The metastatic samples cluster closely with 
the resistant primary samples. The network structure provides direct visualization of the similarity matrix. The 
upper blue group in the network is from the lower right group of sensitive patients in the similarity matrix. The 
similarity matrix and the network structure suggests two general phenotypes: R-class that includes the resistant 
and metastatic samples (defined by tumor location and patient clinical outcome), and S-class that contains the 
sensitive non-metastatic samples.

We used several binary classifier algorithms that were combined to yield an average ensemble chemosensi-
tivity prediction for each patient. These algorithms are: (1) a single-neuron perceptron (logistic regression), (2) 
a continuous-valued recurrent neural network, (3) log-likelihood and (4) a binary network analysis. These are 
combined into an ensemble average to predict the chemosensitivity of a patient by using one-hold-out cross-
validation for the non-metastatic poly-lysine-immobilized samples. The trained algorithm was then used to 
predict independently the test set of agar-immobilized samples as well as the metastatic samples. The ensemble 
average of the classifiers is shown in Fig. 3a. The patient sequence in the figure was pre-ordered into resistant, 
metastatic and sensitive patients and was clustered by similarity within each of those groups. The error bars 

Figure 2.   Associating biodynamic features with patient clinical outcomes. (a) Feature vectors selected using 
SVD that show the strongest correlation with clinical outcomes. The patients are partitioned into a resistant 
group of patients, a metastatic group and a sensitive group. (b) The similarity matrix generated from the feature 
vectors. The matrix is approximately block diagonal. (c) The similarity network constructed from the similarity 
matrix. The sensitive group (blue) tends to split into two sub-phenotypes. The metastatic samples share strong 
similarity with the resistant phenotype, even if the patient was sensitive to treatment.
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are the standard errors obtained from alternative training subsets (described in the Supplemental Material (see 
Fig. S4)) that included agar-immobilized training samples as well as the poly-lysine.

A continuous-valued probability distribution function (PDF) is generated from the means and standard errors 
by generating a Gaussian mixture model composed of Gaussian probabilities assigned the mean and standard 
deviation from each patient. The resulting PDF is shown in Fig. 3b showing a clear separation between the R-class 
and the S-class patients. The mean separation is 0.77 with confidence interval (0.59–0.95). The receiver operating 
characteristic (ROC) curve is generated from the Gaussian mixture model and is shown in Fig. 3c with an area 
under the curve (AUC) of 97%. By using the continuous-valued Gaussian mixture to generate the ROC instead 
of the discrete values, the ROC is less sensitive to threshold selection. Two decision points (thresholds) on the 
ROC are shown that relate to two thesholds: one (blue) at the preset threshold between positive and negative 
prediction values, and the other (red) at the optimal separation between the two classes. The accuracy is approxi-
mately 90% for either decision point. For the optimal threshold, the sensitivity is 93%, the specificity is 89%, the 
positive likelihood ratio (PLR) is 8.6, the negative likelihood ratio (NLR) is 0.08, the positive predictive value 
(PPV) is 89%, and the negative predictive value (NPV) is 93%.

Discussion
The work presented in this paper is the first application of biodynamic imaging to human tissue samples. This 
study included 23 specimens collected prospectively from 20 patients with ovarian cancer. Seven specimens were 
derived from metastatic tumors and sixteen were from primary tumors. There were three patients from which 
matched metastatic implant and primary tumor were collected and analyzed. All patients in the study received 
carboplatin-based therapy, but additional therapies administered to some patients were not tested using BDI, 
which is one limitation of the current study.

As shown in Fig. 1c,d for the poly-lysine-immobilized specimens, resistant biopsies responding to the car-
boplatin and paclitaxel monotherapies display a spectral red shift feature that is absent from the sensitive phe-
notype. However, when the treatments are applied as a combination, there is broadband inhibition for both the 
sensitive and the resistant cohort (loss of spectral density across all frequencies represented by a blue color on 
the spectrogram) indicating the non-additive character of the combination therapy.

Two strong biodynamic phenotypes emerged from the analysis, as shown in the similarity matrix of Fig. 2b 
and the network of Fig. 2c. The resistant and the metastatic specimens share a common phenotype that is dis-
tinct from the sensitive specimens. In Fig. 2c, marginal members of the subgroups are the patients hov5, hov17, 
hov18b and hov20. These four patients share some features of both phenotypes either because they display a rare 
phenotype, or because of measurement error.

In Fig. 3a, all five ovarian tissues that had resistant clinical outcomes have resistant biodynamic signatures. Of 
the 7 metastatic samples, all have resistant biodynamic signatures. In the 3 cases where primary and metastatic 
materials were obtained from the same patient (hov8/hov8b, hov18a/hov18b and hov20a/hov20b), the metastatic 
tissue always displayed a resistant phenotype even when the primary tumor displayed a sensitive phenotype 
(hov18a/hov18b and hov20a/hov20b), although hov18b did not achieve a significant prediction. In Fig. 3b,c the 
Gaussian mixture and the corresponding ROC yield an accuracy of 90% for prediction of the two phenotypes 
whether the threshold is fixed prior to prediction (threshold at zero) or is adjusted to optimize sensitivity and 
specificity. Based on these findings, a metastatic sample does not predict patient clinical outcome. Therefore, 
one limitation of this technique, if it is to be used to predict patient outcomes, is the necessity to acquire pri-
mary tumor tissue for the assay. When considering only the 16 primary tumor tissues in this study by excluding 
the metastatic specimens, the accuracy is 92% with sensitivity = 0.93, specificity = 0.88, PLR = 8.1, NLR = 0.08, 
PPV = 0.95 and NPV = 0.85.

The drug-response spectrograms, capturing changes in intracellular motions caused by the applied thera-
pies, are generally able to discriminate between the two phenotypes associated with patients who were resist-
ant or sensitive to platinum-based chemotherapy. Our findings support that BDI has the potential to predict 
chemotherapy outcome and warrants future testing. In ovarian cancer patients, new predictive biomarkers, 
such as BDI profiles, could be particularly helpful for selecting second and later lines of treatment. Because the 
six metastatic specimens displayed a resistant phenotype, even though the patients themselves were clinically 
sensitive to platinum, it is possible that metastatic implants have resistant behavior, but this possibility must be 
studied with a larger trial size.

Methods
Patient enrollment and sample collection.  Eligible patients were those with suspected ovarian cancer 
who were undergoing standard-of-care cytoreductive surgery and who were willing to allow tissues to be col-
lected for research, if available. Forty-eight patients enrolled in the study between June 2016 and November 
2018. Twenty-eight patients were withdrawn, and twenty patients who passed all selection criteria were included 
in the final analysis. The most common reason for withdrawal was the inability to collect sufficient tumor tissue 
for research at the time of surgery. A total of twenty-three biospecimens were collected and used for analysis. 
Of these, sixteen were primary tumors and seven were metastatic tumors. Three of the metastatic implants were 
collected from patients who also had primary tumors collected, allowing a direct comparison of the response of 
primary versus metastatic lesions to chemotherapy treatment in the chemosensitivity assay.

Patients eligible for the study were age ≥ 18 years, planning to undergo surgery or biopsy as a standard-of-
care treatment for suspected ovarian cancer, with subsequent histologic confirmation of ovarian, fallopian or 
primary peritoneal cancer. All histological types and stages were eligible for enrollment. The study was approved 
by the Northwestern University Institutional Review Board (protocol # STU00202733), and all patients provided 
written informed consent. Tissue was deidentified before processing. Enrolled patients underwent cytoreductive 
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surgery followed by a platinum-based chemotherapy regimen, as indicated by the treating physician, per standard 
of care. Patients were followed for up to 18 months for clinical outcomes. Given that most patients underwent 
surgery with removal of tumor bulk, response to treatment (i.e., platinum sensitivity versus resistance) was deter-
mined based on time to progression (i.e., calculated from the platinum-free interval), using standard criteria29. 

Figure 3.   Chemosensitivity prediction with hold-out cross-validation for the training-set samples using 
an ensemble of algorithms trained on samples immobilized using poly-lysine. (a) Ensemble predicted 
chemosensitivity. Error bars are standard errors on the ensemble averages (calculated from Fig. S4). R-Class are 
the resistant and metastatic specimens, and S-Class are the sensitive specimens. (b) Gaussian mixture model 
of the chemosensitivity prediction probability density functions (PDF) for R-Class and S-Class specimens. The 
vertical dashed lines represent two possible decision points: a pre-fixed threshold at zero (blue) and for optimum 
sensitivity and specificity performance (red). (c) Receiver operator curve (ROC) by integrating the Gaussian 
PDFs. The two decision points are shown. The prediction accuracy is approximately 90% when distinguishing 
between the two phenotypic signatures.



6

Vol:.(1234567890)

Scientific Reports |        (2020) 10:17354  | https://doi.org/10.1038/s41598-020-74336-x

www.nature.com/scientificreports/

Platinum-sensitive tumors were defined as those tumors that did not recur for ≥ 6 months, while platinum-
resistant tumors were those that progressed within < 6 months after completion of platinum-based therapy. All 
methods were carried out in accordance with relevant guidelines and regulations. A table of enrolled patients is 
given in Table 1. Some patients received neoadjuvant chemotherapy prior to surgery.

Sample preparation and immobilization.  The samples were dissected to approximately 1 mm3 pieces 
and immobilized in 36 wells of two 96-well plates for a total of 72 wells. Two different immobilization meth-
ods were used to keep the samples fixed during measurements. Eight samples (hov5, hov7, hov8, hov8b, hov9, 
and hov10, hov11 and hov12) were placed in a layer of agarose covered with culture medium, while the other 
samples were immobilized on poly-lysine coated plates. The switch from agar to poly-lysine was undertaken 
partway through this trial because poly-lysine is more effective at attaching a sample to the bottom of the plate 
with minimal effect on the drug response (see Fig. S1 for systematic effects of each immobilization approach). 
Each sample received one of four treatments: carboplatin, paclitaxel, carboplatin + paclitaxel and negative con-
trol (0.1% dimethyl sulfoxide (DMSO) in RPMI-1640 growth medium).

Biodynamic spectroscopy.  Living biopsy materials from human epithelial ovarian cancer patients were 
shipped in cold-packs overnight to the measurement facilities at Animated Dynamics, Inc., where the samples 
were dissected into approximately 72 samples of approximately 1 mm3 volume and immobilized in wells of a 
96-well plate. Two immobilization methods were used: soft agar (low-gel temperature agarose at 1% concentra-
tion in serum-free RPMI-1640 medium.) and poly-D lysine. Treatments of 25 µM carboplatin, 5 µM paclitaxel 
or 25 µM carboplatin + 5 µM paclitaxel combination were applied to individual samples in individual wells and 
were monitored using the biodynamic imaging system for up to 12 h. The drug concentrations were chosen near 
the IC50 (in vitro 50% response) for each single-agent therapies, and these concentrations were maintained in 
the combination. The well replicate numbers were 17 for negative control (0.1% DMSO dimethyl sulfoxide in 
RPMI-1640 medium), 18 for paclitaxel, 18 for carboplatin, and 18 for carboplatin + paclitaxel. The time-course 
of the experiment is a 5.5-h baseline with the system successively sampling each of 36 wells in a repeating cycle 
that takes 82 min to measure all 36 wells before repeating. The drug is administered by withdrawing approxi-
mately100 μL of old growth medium and gently pipetting 100 μL of treatment volume at twice the target con-
centration. The drugs are dissolved in DMSO and diluted into RPMI-1640 growth medium. The system acquires 
data for 12.3 h after the drugs are applied.

Table 1.   Enrolled patients. C = carboplatin, CT = carboplatin + paclitaxel, CGT = carboplatin + paclitaxel, 
gemcitabine, CG = carboplatin + gemcitabine , CD = carboplatin + docetaxel, Cyclophos = cyclophosphamide. 
*Patient hov7 is clear cell carcinoma which is resistant to platinum therapy.

No Tissue Pathology Treatment Neoadj Response Cell Immobilization

1 Primary Papillary serous carcinoma CT No Sensitive hov5

Agar

2 Primary Clear cell carcinoma CT No Sensitive* hov7

3 Primary
Serous carcinoma

CGT​ Yes
Resistant

hov8

4 Metastatic CGT​ Yes hov8b

5 Metastatic Serous carcinoma CT Yes Sensitive hov9

6 Primary Serous carcinoma CT Yes Sensitive hov10

7 Peritoneum Serous carcinoma CT, Taxotere
Bevacizumab No Sensitive hov11

8 Metastatic Serous adenocarcinoma CT, Niraparib,
Cisplatin Yes Sensitive hov12

9 Primary Serous carcinoma CGT​ Yes Sensitive hov13

Poly-lysine

10 Primary Clear cell adenocarcinoma CT No Resistant hov14

11 Primary Serous adenocarcinoma CG Yes Sensitive hov15

12 Primary Carcinosarcoma C, Pembrolizumab Yes Resistant hov16

13 Primary Serous carcinoma CG Yes Resistant hov17

14 Primary
Serous carcinoma

CG No
Sensitive

hov18a

15 Metastatic CG No hov18b

16 Primary
Serous carcinoma

CT No
Sensitive

hov20a

17 Metastatic CT No hov20b

18 Primary Serous carcinoma C Yes Sensitive hov22

19 Primary Serous carcinoma CD Yes Sensitive hov23

20 Primary Endometrioid adenocarcinoma C, Cyclophos No Sensitive hov25

21 Metastatic Serous adenocarcinoma C, Taxol, Cisplatin No Sensitive hov26

22 Primary Serous carcinoma C, Taxol Yes Sensitive hov30

23 Primary Serous carcinoma CT Yes Sensitive hov31
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BDI measurement and drug treatment.  Sample imaging was carried out on the biodynamic platform 
(BDP) (Animated Dynamics Inc, Indianapolis). The imaging system is placed on a motorized optical platform 
that moves on the horizontal plane, while the plate is on a fixed mount keeping it stationary during the entire 
measurement. The BDI system is a Mach–Zehnder interferometer using off-axis digital holography, as shown in 
Fig. 1a. The light source is a low-coherence superluminescent diode (20 mW power 50 nm bandwidth centered 
on 840 nm) that illuminates the sample at an oblique angle. The scattered light is collected through a Fourier 
imaging system that projects the Fourier transform of the tissue speckle onto the camera plane. A delay stage is 
placed in the reference arm to modify the optical path length of the arm to achieve depth-selective coherence 
gating of the sample. The optical tissue section is reconstructed through a 2D FFT of the digital hologram. The 
frame rate of the camera is 25 frames per second with a Nyquist sampling frequency of 12.5 Hz. The time series 
of the intensity fluctuations are Fourier transformed to a frequency spectrum which is averaged over the sample. 
When a drug is applied to the tissue, the motions change, which are captured by shifts in the Doppler spectrum. 
These shifts are represented as drug-response spectrograms that track shifts in spectral density as a function of 
time.

The drug-response spectrograms are generated by creating a series of logarithmic fluctuation power spectra 
at successive times and subtracting the average baseline. The resulting spectrograms display the shift in Doppler 
spectral content of the sample over the 17.8-h assay. Details of tissue dynamic spectroscopy are given in previous 
publications19, 24. The baseline spectrum S(ω,0) is defined as the last 4 loops prior to the treatment. The drug-
response spectrogram is defined as D(ω, t) = log S(ω, t)− log S(ω, 0) , where the time index t represents the 
loop number. A spectrogram is generated for each well for a given patient and a given treatment. An algorithm 
assigns a data quality factor (DQ) for each well based on multiple quality control criteria such as a sudden jump 
in brightness/intensity (indicating immobilization shift) or low cell activity. The value is initialized at unity and is 
reduced by a factor of 2 for each violation of a criterion. Typical data qualities are around 0.25. The spectrograms 
are averaged over the replicate numbers for the treatment weighted by the DQ. A patient is thus represented by 
an average spectrogram for each treatment.

Biomarker definition and feature extraction.  There are approximately 5 spectral bands that can be 
defined in the drug-response spectrograms. These are defined in Table 2 with their presumed biophysical origins 
(See Ref. 9 for biophysical origins). The time–frequency representation of the drug-response spectrograms are 
converted into 18 quantitative biomarkers through linear filters. Additional biomarkers represent sample pre-
conditions and changes in these conditions caused by the applied drug.

The time–frequency spectrograms are converted into feature vectors using parts or patterns of the spectro-
grams. In addition to spectrogram-based features, there are also preconditions (such as sample brightness and 
dynamic range, etc.) as well as drug-induced changes in these preconditions. All the raw biomarkers are defined 
in Table S3. The time–frequency decomposition is approached globally and locally. Global patterns are generated 
as low-order Legendre polynomials. These polynomials are taken as an inner product over the spectrograms 
to generate Legendre coefficients that represent the global features of the spectrograms. Orders 0, 1 and 2 are 
used along the frequency and time axes to generate 9 global features. Local patterns are simply low, mid, and 
high-frequency bands with average, linear and quadratic time dependence for 9 local features. The precondition 
biomarkers are NSD, BSB, NCNT, DR, NY, KNEE, HW, S, SF that represent properties such as sample speckle 
contrast, brightness, sample size, dynamic range of the signal, the spectral density of the Nyquist floor, the 
knee frequency, the half-width of the Doppler spectrum, and the slope of the roll-off above the Doppler knee 
frequency, respectively. (Note that NCNT, KNEE, and S are subject to fitting errors and are down-selected as 
features.) Each precondition is changed by the drug treatment, providing additional features that are the changes 
in the preconditions from baseline to endpoint of the assay. There are 27 drug-response features for a given drug: 
18 are based on spectrograms and 9 are drug-induced changes in preconditions. These 27 features are concat-
enated for each drug to create a feature vector of 27 × 3 = 81 elements. The 9 global and 9 local time–frequency 
filter masks are shown in Fig. 4a,b, respectively. The decomposition into the 18 spectrogram-based biomarkers 
generates strong covariance among the biomarkers. Therefore, singular-value decomposition (SVD) is used to 
find orthogonal time–frequency biomarkers that are linear combinations of the original biomarkers. Linear 
combinations of the spectrogram-based biomarkers with the largest signal-to-noise (also called the z-factor, 
which is the mean difference divided by the standard deviation) for the resistant/sensitive groups are shown 
in Fig. 4c. The biomarkers are designated by the level of the orthogonal component and by the treatment. For 
instance, BM7tax+carb represents the 7th principal component in the singular-value decomposition of the drug 
response under Taxol + carboplatin treatment.

Table 2.   Spectral Bands (Backscattering geometry with λ  = 840 nm).

Band name Frequency range Speed range Biophysics origins

Cell Motility Band < 10 mHz < 3 nm/s Crawling

Rheology Band 10 mHz–100 mHz 3–30 nm/s Shape change

Mid Band 100 mHz–1 Hz 30–300 nm/s Membrane/nuclear

High Band 1–10 Hz 300 nm/s–3 μm/s Organelle transport

Nyquist Band 12.5 Hz > 4 μm/s Vesicle transport



8

Vol:.(1234567890)

Scientific Reports |        (2020) 10:17354  | https://doi.org/10.1038/s41598-020-74336-x

www.nature.com/scientificreports/

Machine learning methods.  The similarity matrix measure that we selected is correlation contrast that 
equals the correlation coefficient when the magnitudes of the vectors are similar, but down-weights the correla-
tion if there is a mismatch in vector magnitude. This down-weights similarities when the amplitudes of the two 
feature vectors are not matched. The motivation for this metric is the fringe contrast in interferometric measure-
ments. The metric is

where β is the amplitude ratio of the two vectors. This metric is used to construct the similarity matrix in Fig. 2b. 
The similarity matrix is the central data structure for all down-stream machine learning methods. For instance, 
the similarity network in Fig. 2c is constructed using a k-neighbor algorithm that connects each node to k nodes 
to which it shares the highest similarity. The network in Fig. 2c used k = 3.

The ensemble approach to patient chemosensitivity prediction used 4 binary classifiers and averaged the 
results: (1) a single-neuron perceptron (logistic regression), (2) a continuous-valued recurrent neural network, 
(3) log-likelihood and (4) a binary network analysis. Logistic regression minimizes the cost function 30 using 
ridge regularization

where yp =  ± 1 is the objective classification of the p-th patient, fT
p is the feature vector for the p-th patient, b and 

w are adjusted to minimize the squared error, and λ = 0.1 is the regularization parameter. Once the parameters 
are trained, the predicted chemosensitivity Pj of hold-out or non-training feature vectors are predicted as

The continuous-valued recurrent neural network uses Gibbs sampling31 and sequential updating of the j-th 
feature vector from the set of inner products where the probability of selecting the p-th feature vector as the 
update is

 and where the updating is performed at each iteration on a single randomly-selected feature of the p-th feature 
vector. The sampling is iterated to convergence to the updated feature vector f′j, and the similarity of the updated 
feature vector is calculated to each of the training features and used as the weighting factor on the objective 
classification yp. The predicted chemosensitivity Pj of hold-out or non-training feature vectors are predicted as
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Figure 4.   Time–frequency biomarker masks. (a) Global biomarker filters are low-order Legendre polynomials 
along the time and frequency axes. (b) Local biomarker filters are low, mid- and high-frequency bands with 
0, 1 and 2nd-order polynomial time dependence. (c) The 4 dominant singular-value decomposition (SVD) 
biomarkers represented as time–frequency patterns. The numerical values are the z-factors for each biomarker.
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The log-likelihood prediction constructs a Gaussian mixture model to construct probability distribution func-
tions L−1,1 of the features among the training set31. In the binary classifier, each PDF has a classification index. 
The predicted chemosensitivity Pj of hold-out or non-training feature vectors are predicted as

The network binary classifier uses the adjacency matrix A(j,l) constructed by the k-neighbor algorithm 
from the similarity matrix. The predicted chemosensitivity Pj of hold-out or non-training feature vectors are 
predicted as

where lp is the target node of the p-th link to the j-th node. The ensemble learning takes the ensemble average 
over the four binary classifiers to yield the average predicted chemosensitivity of Fig. 3. The error bars are the 
standard error of the ensemble values added in quadrature for the root-variance of the training sub-sets of Fig. S4.

Data availability
The data and codes that support the findings of this study are available at GitHub from https​://githu​b.rcac.purdu​
e.edu/nolte​/SciRe​p2020​-Data-and-Files​ or from the corresponding author upon reasonable request.

Received: 13 May 2020; Accepted: 21 September 2020

References
	 1.	 Ingber, D. E. Cellular mechanotransduction: putting all the pieces together again. Faseb J. 20, 811–827 (2006).
	 2.	 Wozniak, M. A. & Chen, C. S. Mechanotransduction in development: a growing role for contractility. Nat. Rev. Mol. Cell Biol. 10, 

34–43 (2009).
	 3.	 Kornblith, P. et al. In vitro responses of ovarian cancers to platinums and taxanes. Anticancer Res. 23, 543–548 (2003).
	 4.	 Andreotti, P. E. et al. Chemosensitivity testing of human tumors using a microplate adenosine triphosphate luminescence assay: 

clinical correlation for cisplatin resistance of ovarian carcinoma. Cancer Res. 55, 5276–5282 (1995).
	 5.	 Cree, I. A. Chemosensitivity and chemoresistance testing in ovarian cancer. Curr. Opin. Obstet. Gynecol. 21, 39–43 (2009).
	 6.	 Markman, M. Counterpoint: chemosensitivity assays for recurrent ovarian cancer. J. Natl. Comp. Cancer Netw. 9, 121–124 (2011).
	 7.	 Neubauer, H. et al. Predicting resistance to platinum-containing chemotherapy with the ATP tumor chemosensitivity assay in 

primary ovarian cancer. Anticancer Res. 28, 949–955 (2008).
	 8.	 Yu, P. et al. Time-dependent speckle in holographic optical coherence imaging and the state of health of tumor tissue. Opt. Lett. 

29, 68–70 (2004).
	 9.	 Li, Z. et al. Doppler fluctuation spectroscopy of intracellular dynamics in living tissue. J. Opt. Soc. Am. Opt. Image Sci. Vis. 36, 

665–677 (2019).
	10.	 Tan, W., Oldenburg, A. L., Norman, J. J., Desai, T. A. & Boppart, S. A. Optical coherence tomography of cell dynamics in three-

dimensional tissue models. Opt. Express 14, 7159–7171 (2006).
	11.	 Joo, C., Evans, C. L., Stepinac, T., Hasan, T. & de Boer, J. F. Diffusive and directional intracellular dynamics measured by field-based 

dynamic light scattering. Opt. Express 18, 2858–2871 (2010).
	12.	 Farhat, G., Mariampillai, A., Yang, V. X. D., Czarnota, G. J. & Kolios, M. C. Detecting apoptosis using dynamic light scattering 

with optical coherence tomography. J. Biomed. Opt. 16, 070505 (2011).
	13.	 Lee, J., Wu, W. C., Jiang, J. Y., Zhu, B. & Boas, D. A. Dynamic light scattering optical coherence tomography. Opt. Express 20, 

22262–22277 (2012).
	14.	 Oldenburg, A. L. et al. Inverse-power-law behavior of cellular motility reveals stromal-epithelial cell interactions in 3D co-culture 

by OCT fluctuation spectroscopy. Optica 2, 877–885 (2015).
	15.	 Apelian, C., Harms, F., Thouvenin, O. & Boccara, A. C. Dynamic full field optical coherence tomography: subcellular metabolic 

contrast revealed in tissues by interferometric signals temporal analysis. Biomed. Opt. Express 7, 1511–1524 (2016).
	16.	 Arezza, N. J. J., Razani, M. & Kolios, M. C. Dynamic light scattering optical coherence tomography to probe motion of subcellular 

scatterers. J. Biomed. Opt. 24, 025002 (2019).
	17.	 Hyde, S. C. W. et al. Depth-resolved holography through turbid media using photorefraction. IEEE J. Sel. Top. Quantum Electron. 

2, 965–975 (1996).
	18.	 Beaurepaire, E., Boccara, A. C., Lebec, M., Blanchot, L. & Saint-Jalmes, H. Full-field optical coherence microscopy. Opt. Lett. 23, 

244–246 (1998).
	19.	 Choi, H. et al. Biodynamic digital holography of chemoresistance in a pre-clinical trial of canine B-cell lymphoma. Biomed. Opt. 

Express 9, 2214–2228 (2018).
	20.	 Jeong, K., Turek, J. J. & Nolte, D. D. Fourier-domain digital holographic optical coherence imaging of living tissue. Appl. Opt. 46, 

4999–5008 (2007).
	21.	 Nolte, D. D., An, R., Turek, J. & Jeong, K. Tissue dynamics spectroscopy for phenotypic profiling of drug effects in three-dimensional 

culture. Biomed. Opt. Express 3, 2825–2841 (2012).
	22.	 An, R. et al. Phenotypic profiling of raf inhibitors and mitochondrial toxicity in 3D tissue using biodynamic imaging. J. Biomol. 

Screen. 19, 526–537 (2014).
	23.	 Sun, H. et al. Biodynamic imaging for phenotypic profiling of three-dimensional tissue culture. J. Biomed. Opt. 22, 016007 (2017).
	24.	 Merrill, D. et al. Intracellular doppler signatures of platinum sensitivity captured by biodynamic profiling in ovarian xenografts. 

Nat. Sci. Rep. 6, 18821 (2016).
	25.	 Custead, M. R. et al. Predictive value of ex vivo biodynamic imaging in determining response to chemotherapy in dogs with 

spontaneous non-Hodgkin’s lymphomas: a preliminary study. Converg. Sci. Phys. Oncol. 1, 015003 (2015).
	26.	 Shtridelman, Y. et al. In vivo multimotor force-velocity curves by tracking and sizing sub-diffraction limited vesicles. Cell. Mol. 

Bioeng. 2, 190–199 (2009).
	27.	 Betz, T., Lenz, M., Joanny, J.-F. & Sykes, C. ATP-dependent mechanics of red blood cells. Proc. Natl. Acad. Sci. USA 106, 15320–

15325 (2009).

Pj =
Nf
∑

a=1

[

L1

(

f aj

)

− L−1

(

f aj

)]

Pj =
∑k

p=1 ypA
(

j, lp
)

∑k
p=1 A

(

j, lp
)

https://github.rcac.purdue.edu/nolte/SciRep2020-Data-and-Files
https://github.rcac.purdue.edu/nolte/SciRep2020-Data-and-Files


10

Vol:.(1234567890)

Scientific Reports |        (2020) 10:17354  | https://doi.org/10.1038/s41598-020-74336-x

www.nature.com/scientificreports/

	28.	 Turlier, H. & Betz, T. In Annual Review of Condensed Matter Physics, Vol. 10, (eds. S. Sachdev & M.C. Marchetti) 213–232 (Annual 
Reviews, Palo Alto, CA, 2019).

	29.	 Coleman, R. L., Monk, B. J., Sood, A. K. & Herzog, T. J. Latest research and treatment of advanced-stage epithelial ovarian cancer. 
Nat. Rev. Clin. Oncol. 10, 211–224 (2013).

	30.	 Watt, J., Bohrhani, R. & Katsaggelos, A. K. Machine Learning Refined: Foundations, Algorithms, and Applications (Cambridge 
University Press, Cambridge, 2016).

	31.	 Murphy, K. P. Machine Learning: A Probabilistic Perspective (MIT Press, Cambridge, MA, 2012).

Acknowledgements
This work was supported by grants NSF 1911357-CBET and NIH 1RO1EB016582 and is affiliated with the 
Purdue Center for Cancer Research.

Author contributions
Z.L. and R.A. contributed equally to the data collection. Z. L. and D. N performed the data analysis and wrote 
the main manuscript text and prepared the figures. J.T. provided the sample handling protocols for biodynamic 
imaging. W. S., M. K., N.N. and D.M. provided all clinical samples, performed clinical data collection and analy-
sis. All authors reviewed and edited the manuscript.

Competing interests 
David Nolte, John Turek and Ran An have a financial interest in Animated Dynamics Inc. which is licensing 
biodynamic imaging technology from the Office of Technology Commercialization of Purdue University. Zhe Li, 
Wendy M. Swetzig, Margaux Kanis, Nkechiyere Nwani, and Daniela Matei declare no potential conflict of interest.

Additional information
Supplementary information is available for this paper at https​://doi.org/10.1038/s4159​8-020-74336​-x.

Correspondence and requests for materials should be addressed to D.N.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2020

https://doi.org/10.1038/s41598-020-74336-x
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Intracellular optical doppler phenotypes of chemosensitivity in human epithelial ovarian cancer
	Results
	Biodynamic spectra of human ovarian cancer biopsies. 
	Association of biodynamic phenotype with patient outcome. 

	Discussion
	Methods
	Patient enrollment and sample collection. 
	Sample preparation and immobilization. 
	Biodynamic spectroscopy. 
	BDI measurement and drug treatment. 
	Biomarker definition and feature extraction. 
	Machine learning methods. 

	References
	Acknowledgements


