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In addition to determining biological sex, sex hormones are known to influence health 
and disease via regulation of immune cell activities and modulation of target-organ 
susceptibility to immune-mediated damage. Systemic autoimmune disorders, such as 
systemic lupus erythematosus, rheumatoid arthritis, and multiple sclerosis are more 
prevalent in females, while cancer shows the opposite pattern. Sex hormones have 
been repeatedly suggested to play a part in these biases. In this review, we will discuss 
how androgens and the expression of functional androgen receptor affect immune cells 
and how this may dampen or alter immune response(s) and affect autoimmune disease 
incidences and progression.
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iNTRODUCTiON

Sex hormones exert their effects on many cellular targets, including cells of the immune system. 
Indeed, sex hormones directly influence immune cell function and development as well as the sus-
ceptibility of cells and tissues to damage from aberrant (autoimmune) processes. In this review, we 
will discuss how androgens and the androgen receptor (AR) affect immune cells and how this may 
dampen or alter immune response(s) to affect disease incidence and progression.

ANDROGeN AND ARs

Androgens
The four androgen hormones, dihydrotestosterone (DHT), testosterone, androstenedione, and dehy-
droepiandrosterone (DHEA), are all synthesized from cholesterol in the gonads and adrenal glands 
(1). DHT is more potent than testosterone, while androstenedione and DHEA exhibit only 10 and 
5% of the potency of testosterone, respectively (1). However, testosterone is the most concentrated 
androgen in adult male serum, with DHT present at one-tenth the concentration of testosterone. 
Testosterone can be converted to androstenedione (and vice versa) and both can be aromatized to 
estrogens by aromatase (2). Aromatase is widely expressed and thus studies in which testosterone 
and androstenedione have been used for in vivo treatment can be difficult to interpret. DHEA binds 
several steroid hormone receptors, including AR and estrogen receptors α and β, albeit with lower 
affinity than their cognate ligands (3). Moreover, DHEA can be reversibly modified to form DHEA-S, 
which can be peripherally metabolized to testosterone (especially in premenopausal women) and 
estrogens (especially in postmenopausal women) (3), further complicating our understanding of 
DHEA-mediated effects. Of the four androgens, only DHT cannot be converted to estrogens and 
thus, studies utilizing DHT are most easily interpreted.
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TAble 1 | Expression of androgen receptor (AR) in hematopoietic  
cells.

Cell type AR expression (method) Reference

Stem cells and progenitor cells
Hematopoietic stem cell Yes (RT-PCR, IF) (33, 34)
Common myeloid progenitor Yes (RT-PCR) (33)
Common lymphoid progenitor Yes (RT-PCR) (33)
Granulocyte-macrophage progenitor ND
Common dendritic cell (DC) 
progenitor

ND

Megakaryocyte-erythroid progenitor ND
Erythroblast Yes (binding assay) (32)
Early T cell progenitor ND

Myeloid-derived cells
Megakaryocyte Yes (IHC, RT-PCR, IF) (37, 38)
Platelet Yes (IF) (38)
Erythroid cell (nucleated and 
enucleated)

Not expressed (IHC) (37)

Monocyte Yes (RT-PCR) (37)
Macrophage Yes (C+NC) (flow, IF, IHC, 

RT-PCR)
(16, 36, 37, 

39)
Myeloid-derived DC Not expressed (WB) (40)
Myelocyte Yes (IHC) (37)
Metamyelocyte Yes (IHC) (37)
Neutrophil (band cell) Yes (IHC) (37)
Neutrophil (segmented) Yes (IHC) (37)
Mature eosinophil Not expressed (IHC) (37)
Basophil ND
Mature mast cell Yes (ImmGold) (35, 41)

lymphoid-derived cells
DN T cell Yes (binding assay) (42)
DP T cell Yes (binding assay) (42)
CD4+ T cell Yes (C+NC) (flow, IF, 

binding assay)
(17, 28, 42)

CD8+ T cell Yes (C+NC) (binding assay) (17, 42)
Plasmacytoid DC ND
Pro-B cell Yes (WB) (43)
Pre-B cell Yes (WB) (43)
Immature B cell ND
Mature B cell Not expressed 

(IHC, WB)
(37, 43)

Other
Thymic epithelial cells Yes (IF) (44)
Bone marrow stromal cells Yes (IHC, WB) (37, 43)

ND, not determined; C, classical; NC, non-classical. ImmGold, ImmunoGold 
staining; RT-PCR, reverse-transcriptase-polymerase chain reaction; WB, western 
blotting; IF, immunofluorescence; IHC, immunohistochemical staining; flow, flow 
cytometry.
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Androgen Receptors
Beyond its required role in the development and expression 
of male phenotypes, the AR regulates immune function via 
modulating the transcription of a number of genes by DNA-
binding-dependent and -independent mechanisms (4). Encoded 
on the X chromosome, the AR is a signal transduction protein 
and transcription factor required for the development and expr-
ession of male phenotypes (4). The AR is bound by heat shock 
proteins and chaperones in the cytoplasm until bound by its 
ligands (5–10). Signal transduction through the classical AR is 
a multi-step process dependent upon receptor dimerization, the 
binding of ligand, interaction with cofactors, and DNA bind-
ing. Upon binding ligand, heat-shock proteins and chaperones 
are exchanged for cofactors, and the receptor:ligand complex 
translocates into the nucleus to bind specific DNA regulatory 
sequences [androgen response elements (AREs)] and regulate 
transcription (4). Due to the differences in binding affinities and 
dissociation constants, AR:DHT complexes remains bound to 
AREs longer than AR:testosterone complexes, further adding to 
the increased potency of DHT (11–13).

In addition to its well-characterized ability to function as a tran- 
scription factor as outlined above, the AR also signals through 
DNA-binding-independent mechanisms and can even signal in 
a ligand-independent fashion (14). Activation of non-classical 
(NC) AR rapidly affects the regulation of other nuclear receptors, 
transcription factors, and cytoplasmic signaling events including 
the release of intracellular calcium and the formation of inositol 
1,4,5-triphosphate (15). NC receptors may be located in the 
plasma membrane, where they are associated with G-protein 
coupled receptors and subject to internalization, or in the cyto-
plasm (16, 17) [reviewed in Ref. (18, 19)]. NC ARs include 
receptors that bind androgen either directly or indirectly via the 
steroid hormone binding globulin (SHBG) (20, 21). Finally, in 
the context of cancer, AR may be activated by a variety of growth 
factors independently of androgens (14).

Polymorphisms in the AR gene, NR3C5, are known to influence 
androgen signaling strength. The most widely studied polymor-
phism affects the number of CAG repeat sequences in exon one 
of the AR gene. Specifically, AR’s transactivational activity dec- 
reases with the presence of longer CAG repeats and vice  versa  
(22, 23). Interestingly, women with shorter CAG repeats (i.e., those  
with more potent AR signaling) exhibit higher androgen levels, 
while men with shorter CAG repeats experience more dramatic 
reductions in testosterone as they age (24, 25), suggesting that 
CAG repeats differentially affect AR signaling in men and women.

The expression of AR in various immune organs and multiple 
immune cells provides some indication of the level at which 
androgens influence immunity (Table  1). For example, T  cells 
are sensitive to androgens throughout development and beyond, 
while B cells are primarily sensitive during development. Indeed, 
thymocytes and thymic epithelial cells express intracellular 
AR (26–28) as do peripheral T  cells, which also express NC, 
membrane associated receptors (17, 28). Bone marrow stromal 
cells and B cell precursors, but not peripheral B cells, express AR 
(29–31). Gene expression studies show that the AR is expressed 
by all myeloid progenitor cells as well as some terminally differen-
tiated cells of myeloid lineage, including neutrophils, monocytes, 

and macrophages (16, 32–36). Thus, there is great potential for 
androgen modulation of the development and function of both 
the lymphoid and myeloid branches of the immune system.

ANDROGeNS AND iMMUNe  
Cell SUbSeTS

There is ample evidence that androgens alter immune cell devel-
opment and immune activation. In the following section, we 
review the effect of androgens on specific immune cell subsets 
and the potential effect this may have on immune responses and 
immune homeostasis in general.
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Myeloid Cells
The innate immune system consists of a number of different cell 
subsets, predominantly of myeloid origin. Most myeloid cells ini-
tiate their track of differentiation from hematopoietic stem cells 
in the bone marrow only to undergo final differentiation at sites 
of infection or inflammation. As mentioned above, all myeloid 
progenitor cells express the classical AR (34, 35) and testosterone 
has been shown to affect early myelopoiesis (45–47). Myeloid 
cell-specific effects of androgens are further discussed below.

Neutrophils
Several lines of evidence suggest that androgens directly promote 
the differentiation of neutrophils from myeloid progenitors. For  
example, both genetically manipulated AR-deficient mice and 
androgen insensitive mice carrying the naturally occurring tes-
ticular feminization mutation (tfm) exhibit neutropenia (45, 46).  
Similarly, androgen-deficient prostate cancer patients and gona- 
dectomized male mice also display neutropenia, prior to androgen- 
replacement therapy/DHT treatment (48, 49). Further support for 
androgen-induced granulopoiesis and neutrophil differentiation 
comes from studies of stanozolol, a testosterone analog, showing 
an increased prevalence of myelocytes and metamyelocytes as 
well as accelerated neutrophil maturation in treated female mice 
(50). Neutrophilia can also be observed in young women with 
hyperandrogenism due to polycystic ovarian syndrome (47). 
Interestingly, treatment with the anti-androgen, flutamide, and 
metformin (known to reduce circulating levels of androgens) 
decreases numbers of neutrophils in these patients (47). Together, 
these studies suggest that androgens drive neutrophil differen-
tiation and/or survival in mice and humans.

Although, less well understood, there is growing evidence that 
androgens might also affect neutrophil function. For example, 
testosterone suppresses both the anti-microbial activity and the 
production of pro-inflammatory cytokines by human neutro-
phils, while promoting the production of the anti-inflammatory 
cytokine IL-10 (51, 52). It is interesting that there are no reports 
of elevated numbers of myeloid cells in athletes taking anabolic 
androgenic steroids (AAS) as performance enhancing drugs, 
although increased production of pro-inflammatory cytokines 
(IL-1β and TNFα) and greater oxidative stress responses in 
PBMCs from AAS users [reviewed in Ref. (53, 54)] do suggest an 
effect on myeloid cell activity. In summary, androgens appear to 
promote neutrophil differentiation in mice and humans and may 
also dampen the inflammatory potential of mature neutrophils.

Monocytes/Macrophages
Both monocytes and macrophages have been found to express 
classical as well as NC AR (16, 37, 39, 41). Testosterone treatment 
was shown to elevate levels of circulating monocytes in a popu- 
lation of type II diabetic men with partial androgen deficiency 
(55), however, whether this effect was due to augmented diffe-
rentiation of monocytes in the BM or altered trafficking pat-
terns remains unknown. Studies evaluating the importance of 
androgens and/or AR in macrophages during wound healing 
have shown that AR deficiency accelerates wound healing, while 
DHT treatment improves the quality of the wound by increasing 

collagen fibers (56, 57). It remains to be determined at which 
stages of wound healing testosterone/DHT binding to the AR 
is required, which may explain these seemingly contradictory 
results. Finally, gonadectomy has been found to drive increased 
TLR4 expression by male murine macrophages leading to eleva-
ted pro-inflammatory responses during infection (58), suggesting 
that one mechanism by which androgens are immunosuppres-
sive is by limiting myeloid cell responsiveness to pathogens. This 
observation is further supported by data showing higher TLR4 
expression, increased phagocytosis, and enhanced oxidative burst 
in female macrophages (59) and a specific downregulation of 
TLR4 expression by testosterone in vitro (58). Interestingly, male 
mice subjected to sepsis fare worse than females (60), although 
whether the outcome is dependent on testosterone-mediated sup- 
pression of myeloid cell activity remains unknown.

At the molecular level, studies have identified the presence 
of plasma membrane-located G-protein receptor coupled NC 
ARs on macrophages. These receptors are capable of binding 
testosterone either directly or bound to SHBG and elicit non-
transcriptional stimulatory effects, such as rapid intracellular 
calcium mobilization and ERK phosphorylation (16, 20, 21). 
More research is needed to fully understand the impact of NC 
AR activation on macrophage function in males and females.

Other Myeloid-Derived Cell Subsets
Mast Cells
Skin residing mast cells have been found to express the AR, how-
ever, neither numbers nor distribution of these cells are affected  
by altering levels of androgens (35, 41). Instead, mast cell function, 
as determined by histamine release, may be regulated by andro-
gens, as histamine levels at some peripheral sites are reduced after 
castration (61). More recently, it was shown that at least under 
some circumstances testosterone directly induces Il33 expression 
by mast cells (62). Interestingly, IL-33 drives the generation of 
both innate lymphoid cells and basophils, known to produce 
Th2-associated cytokines and promote antibody class switch-
ing to IgE; an immunoglobulin found to be increased in young 
males over females in individuals suffering from allergic rhinitis  
(63, 64). Future studies will determine if androgens drive acti-
vation of other mast cell-specific proteins and processes.

Eosinophils
In contrast to neutrophils, numbers of eosinophils increased in 
the periphery and in the bone marrow of gonadectomized male 
mice (65). Castration did not, however, affect eosinophil numbers 
within sites of exposure, as eosinophil counts in nasal mucosa of 
unmanipulated and castrated male mice challenged with phos-
pholipase A2 and Schistosoma mansoni egg antigen were com-
parable (66). Interestingly, testosterone directly reduced human 
eosinophil viability and adhesion properties in  vitro (67), and 
DHEA suppressed eosinophil trafficking to the lung during infec-
tion (68), suggesting that androgens affect eosinophil numbers 
via control of tissue infiltration rather than de novo differentiation 
in the bone marrow. Additional studies evaluating the effect of the 
non-aromatizable DHT are needed to firmly address the role of 
AR and androgens on eosinophil maturation and function.
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Basophils
Basophils are largely unaffected by testosterone treatment (69) 
and expression of AR by these cells has not been determined.

Dendritic Cells (DCs)
At the border of the innate and the acquired immune systems, 
reside DCs. These can originate from either myeloid or lymp-
hoid progenitors. Only few studies have investigated the effect 
of androgens on DC differentiation and function but overall, 
testosterone has been assigned an immunoinhibitory function. 
It remains controversial, however, whether this effect is direct or 
indirect, as at least one study demonstrated a lack of AR expre-
ssion in myeloid-derived DCs (40). Nevertheless, exogenous DHT  
treatment has been found to either downregulate surface levels 
of MHC/HLA and costimulatory molecules or inhibit cytokine 
production in animal models resulting in reduced T cell activa-
tion, proliferation, and differentiation. For example, after LCMV 
infection, infiltrating DCs isolated from the brains of male mice 
were less activated (reduced MHC-II and CD86 expression) than 
cells isolated from females and gonadectomized male mice (70). 
This observation was due to testosterone, as DHT treatment of 
gonadectomized male mice reversed the DC phenotype back to 
that of intact males (70). Similarly, gonadectomy studies have 
shown that removal of testicular testosterone production in male 
mice results in increased expression of MHC and costimulatory 
molecules on DC (71). A similar pattern is found in hypogonadal 
men, in whom DC activation markers are significantly elevated, 
but reversed in response to exogenous testosterone treatment 
(72). The in vivo nature of these experiments and observations, 
however, do not necessarily support a direct effect of androgens  
on DCs, as both MHC and costimulatory molecules are also regu-
lated by cytokines secreted by other cells subject to androgenic 
regulation. Specifically addressing this concern, bone marrow-
derived DCs, exposed briefly to DHT during antigen uptake, 
have been found to be less efficient T cell activators in vitro than 
BMDCs not exposed to DHT (73).

lymphoid Cells
B Cells
It has been known for decades that the average female pro-
duces higher levels of antibodies in response to infections and 
vaccina tions [reviewed in Ref. (74)]. A number of studies have 
found strong correlations between low testosterone and elevated 
numbers of B cells (75–79), and high testosterone levels in men 
correlates with poorer antibody responses to vaccination (80), 
suggesting that androgens inhibit B lymphopoiesis. Recent stud-
ies of B cell subsets in 3- to 8-year-old children identified differ-
ent distributions in males and females (81, 82). Specifically, boys 
demonstrate elevated levels of immature CD5+ B  cells, while 
girls exhibit more memory-type B  cells. Lundell et  al. further 
evaluated levels of DHT in these children and found a positive 
correlation between DHT levels at birth and the frequency of 
immature B  cells. Given the minimal exposure to exogenous 
agents, these data suggest that males and females are subject to 
differential genetic- and/or hormonal-driven gestational regula-
tion of B cell lymphopoiesis.

In mouse studies, gonadectomy of male mice has been found 
repeatedly to drive B  cell lymphopoiesis in the bone marrow,  
with both testosterone and DHT treatment capable of reversing 
this effect (43, 83, 84). Similarly, global AR-deficient mice present 
with elevated B cell precursors in the bone marrow (pro-B stage 
and beyond) and studies of the B cell repertoire in B cell-specific 
AR knockout animals suggest that the lymphopoietic effect of 
testosterone is AR-dependent and intrinsic to the B cell—at least 
at the later stages of B cell development (pre-B cells and beyond) 
(85). However, other studies have suggested that the inhibitory  
effect of testosterone on B lymphopoiesis is dependent on bone 
marrow stromal cells (29, 30). Recently, AR expression by bone 
marrow osteoblasts was found to specifically inhibit early B 
lymphopoiesis resulting in an accumulation of pro-B cells (86). 
Thus, it is likely that the differentiation of pro-B cells from com-
mon lymphoid progenitors is inhibited by AR expression by 
osteoblasts, while further differentiation along the B cell lineage 
is negatively affected by AR expression by the B cell progenitors 
themselves. A possible mechanism of action has been suggested 
based on studies showing that testosterone upregulates TGFβ 
production by bone marrow stromal cells leading to inhibition 
of IL-7 production and suppression of B lymphopoiesis (29, 87). 
In summary, B lymphopoiesis is inhibited by androgens both 
directly and indirectly via effects on bone marrow stromal cells.

T Cells
Thymic size and the selection of developing thymocytes is signi- 
ficantly affected by androgens. Testosterone deficient or insensi-
tive males, due to gonadectomy or AR deficiency, experience 
thymic enlargement (27, 88–93). Thymic size returns to normal 
when gonadectomized males are treated with DHT (91). Studies 
involving AR-deficient bone marrow chimeric mice demon-
strated that androgen signaling through AR in thymic epithelial 
cells mediates androgen’s effects in the thymus (27). A similar 
observation was made in thymic epithelial cell-specific AR−/− 
mice (94). In addition, androgens limit the numbers of CD4+ 
CD8+ and CD4+ CD8− in favor of CD4− CD8+ thymocytes, 
perhaps by suppressing proliferation and accelerating the apop-
tosis of immature thymocytes (88, 90, 95, 96). Finally, androgens 
enhance the negative selection of self-reactive T  cells by upre-
gulating the expression of autoimmune regulator (Aire) in medul-
lary thymic epithelial cells (97). Androgens may also influence 
T cell development in tolerance-promoting ways by enhancing 
TGF-β production in the thymus (98).

Similar to its effect on thymic size, androgens also limit the 
total number of T cells residing in the periphery. Postpubescent 
gonadectomized male mice exhibit larger peripheral lymphoid 
organs housing a greater number of lymphocytes, including both 
CD4+ and CD8+ T cells (92, 99). The expansion of peripheral 
lymphoid organs after the removal of androgens may be related 
to increases in thymic output and/or lessened peripheral T cell 
death, as an in vitro study recently demonstrated that DHT can 
non-selectively induce cell death in peripheral T cells (100).

Androgens are likely responsible for some portion of the effect 
of sex on peripheral T cell responses. Thymocytes and lympho-
cytes isolated from non-autoimmune female mice respond more 
vigorously to exogenous and allogeneic antigens in vitro than cells 
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isolated from male mice (101, 102). Treating female mice with 
testosterone reduces the proliferative T cell response to OVA and 
KLH (101). Similarly, gonadectomized male mice, compared to 
intact male mice, proliferate more vigorously in response to TCR 
stimulation and OVA in vitro and in vivo (92, 99).

Cytokine production evoked by specific antigens are also  
often affected by sex, with male cells favoring Th2 type responses 
and female cells favoring Th1 type responses (92). For example, 
anti-CD3 stimulation provokes the secretion of Th2 cytokines, 
IL-10 and IL-4, from CD4+ T  cells isolated from male expe-
rimental autoimmune encephalomyelitis (EAE)-prone SJL mice, 
but IL-12 from cells isolated from females (26). Interestingly, 
the addition of DHT to T cell cultures is sufficient to upregulate  
IL-10 expression (26). Beyond its ability to enhance the produc-
tion of Th2 cytokines, androgens actively inhibit Th1 differen-
tiation (103, 104), by inhibiting IL-12 and IFN-γ production 
downstream of antigen stimulation (105–109).

Androgens may influence the differentiation and function of  
regulatory T  cells differently in males versus females. In vivo 
androgen supplementation of women with adrenal insufficiency 
and female rats with experimental autoimmune orchitis expands 
the number of regulatory T  cells (104, 110). More specifically, 
when bound to ligand, the AR directly enhances the expression 
of Foxp3 in T cells (regulatory or otherwise) isolated from rats 
or women during the ovulatory phase, but not men (111). Thus, 
androgens are capable of directly converting peripheral T cells 
into regulatory T  cells in women. By contrast, androgens may 
interfere with regulatory T cell function in men, as occurs in a 
mouse model of Sjögren’s syndrome that predominantly affects 
male mice (112).

Overall, androgens directly influence the development of 
lymphoid cells; and at least in mice, lymphoid cells that develop  
in the presence of androgens may retain differential character-
istics even when later placed in an androgen-deficient environ-
ment. Moreover, androgens appear to suppress the inflammatory 
potential of peripheral lymphoid cells. In some cases, such effects 
may be direct, but the absence of AR in peripheral B cells, for 
example, suggests that differences are more likely due to prior 
exposure to androgens during development, or regulation by 
other androgen-sensitive peripheral cells.

ANDROGeNS iN AUTOiMMUNiTY

Many autoimmune disorders are more prevalent in females, 
including autoimmune thyroiditis, systemic lupus erythematosus  
(SLE), Sjögren’s syndrome, multiple sclerosis (MS), and rheu-
matoid arthritis (RA) (113). Both sex hormones and genes ex- 
pressed on the X or Y chromosomes have been proposed to drive 
this bias, as exemplified by the fact that Klinefelter’s patients 
(XXY karyotype) express not only two X chromosomes but also 
reduced levels of androgens, and present with an increased risk 
for most of these disorders (114). Many patients of either sex 
with autoimmune disorders that predominantly affect women 
also demonstrated lower serum concentrations of androgens  
(76, 115, 116). Here, we will discuss the influence of androgens  
on the development and severity of RA, MS, and SLE.

Rheumatoid Arthritis
Rheumatoid arthritis is characterized by synovial inflammation 
and swelling, as well as cartilage and bone destruction. Some 
patients may develop one or more additional systemic sequelae, 
including cardiovascular disease, pulmonary disorders, lym-
phoma, lung cancer, psychological disorders, and osteoporosis 
(117). Like many other autoimmune diseases, RA is 2–4 times 
more frequent in women than in men (113). Most studies have 
concluded that in addition to increased susceptibility, female RA 
patients suffer from a more severe version of the disease, with 
higher disease activity scores, faster progression, more pain, and 
lower remission rates (118–122).

While estrogens likely contribute to the increased female risk 
of RA (123), it has been hypothesized that androgens may also 
offer some protection from the disease. Indeed, serum androgen 
levels tend to be lower in men with RA as compared to healthy 
controls. For example, the incidence of RA increases as andro-
gen production declines in aging men and several groups have 
reported lower serum testosterone concentrations in male RA 
patients as compared to controls (76, 124–130). Furthermore, 
men who experience a dramatic loss of serum androgens with 
age may develop a more aggressive form of RA with earlier onset 
(131–133). In some cases, low serum androgens also correlate 
with increased risk of developing RA. Men with genetic hypo-
gonadism (Klinefelter’s syndrome) and prostate cancer patients 
treated with androgen-ablating therapy are at increased risk of 
developing RA (114, 134).

Interestingly, serum androgen levels are not lower prior to the 
onset of RA in all patients, suggesting that low androgens are not 
universally predisposing to the development of RA (127, 133). 
Instead, as a recent large study reported, men with lower serum 
testosterone levels prior to the onset of RA may be more likely to 
develop a specific subset of RA, characterized as rheumatoid fac-
tor negative (135). It is possible that the correlation of low serum 
androgen levels and RA in men can be explained by inflam-
matory cytokines, such as IL-6, which become elevated during 
the disease process and are known to suppress the secretion of 
adrenal androgens (136). The notion that low serum androgens 
are a consequence of RA, as opposed to a cause in some cases, is 
supported by an inverse correlation between low free testosterone 
and inflammatory markers and disease activity (129, 137), as well 
as the finding that successful treatment of RA correlates with the 
restoration of normal levels of free testosterone (130). To sum-
marize, androgens may protect against the development of RA 
in men in some circumstances; and in others, the inhibition of 
androgen secretion by the RA-inflammatory response is second-
ary to RA, but may still influence the severity of disease in men.

The effect of androgens on RA susceptibility and severity in 
women is less well understood. Androgens may protect against 
RA in some women, but other studies suggest that androgens 
may actually worsen disease severity. As in men, low serum con-
centrations of androgens, particularly DHEA and/or DHEA-S, 
are linked with RA in women (136, 138–140). However, as was 
found in men, serum androgen levels are within the normal range 
10 years prior to the onset of RA and levels of DHEA-S inversely 
correlate with disease duration and severity in women (127, 140). 
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Thus, for most female patients, the inhibitory effect of inflamma-
tion on the secretion of androgens may explain this correlation. 
Two notable exceptions to this include women who inherited 
particular polymorphisms resulting in higher or lower androgen 
levels correlating with protection from disease or exacerbation, 
respectively. First, women predisposed to produce androgens in 
greater concentrations due to inheritance of a polymorphism in 
the CYB5A gene are protected from developing RA characterized 
by RF and antibodies to citrullinated proteins (141); and, second, 
women with lower serum androgens are more likely to develop 
a type of RA that is not responsive to combination therapy 
consisting of nonsteroidal anti-inflammatory drugs, low-dose 
prednisolone, methotrexate, and more than one of several other 
disease modifying anti-rheumatic drugs (142).

In contrast to the above findings, high androgen concentra- 
tions or more potent AR signaling have been reported in some 
women with more severe RA. For example, one small study 
reported normal androgen concentrations in premenopausal RA 
patients, and higher testosterone and DHEA-S in postmenopa-
usal women with RA (143). More strikingly, women with higher 
concentrations of serum androgens due to a low number of 
CAG repeats in the AR developed a more aggressive RA with 
earlier onset, though overall susceptibility to RA was not affected 
(131–133, 144).

Because of the correlation between low serum androgens and 
RA and the known immunosuppressive properties of androgens, 
androgens have been utilized to some extent as a treatment for 
RA. Overall, the administration of androgens to male and female 
patients had a positive effect for both sexes (145–148). However, 
it should be noted that such studies are few in number, with small 
patient populations, short-term treatments, modest improve-
ments, and in some cases, no effect at all.

Animal Models of RA
Several animal models of RA also show increased susceptibility or 
more severe disease in females as compared to males (149–152). 
For example, the incidence of RA is greater or more severe for 
females in collagen-induced arthritis (CIA) in rats, SKG mice 
injected with zymosan, LEW/N rats injected with polysaccharide 
fragments from group A streptococcal bacteria, and BALB/c 
mice with cotton-pellet induced inflammation (149–152). More-
over, androgens have been shown to exert protective effects in 
RA, even in animal models with equal or more severe disease in 
males (150, 153). Gonadectomy of male animals worsens RA in 
CIA-rats and SKG mice; and, the addition of DHT to gonadecto-
mized CIA-rats inhibits disease (149, 152). Male and female rats 
injected with complete Freund’s adjuvant (adjuvant arthritis) do 
not demonstrate a sex bias; however, similar to human studies, 
arthritic males demonstrate lower testosterone levels after dis-
ease induction (153). Finally, the expression of the AR on B cell 
progenitors has been shown to have protective effects in male 
mice with CIA (150).

Cellular and Molecular Targets of Androgens in RA
Regardless of whether serum androgen levels or receptor activity 
is involved in systemic RA etiology, a separate case has been made 
for its involvement in disease pathogenesis within affected joints. 

The synovial fluid of RA patients exhibits elevated levels of free 
estrogens and reduced concentrations of free androgens, possibly 
due to increased local aromatization of androgens to estrogens 
(154). The conversion of androgens to estrogens heightens the 
local inflammatory response, since androgens have been shown 
to inhibit the synthesis and secretion of IL-1 and IL-6, two impor-
tant inflammatory cytokines in RA (155–158). The relationship 
between androgens, inflammatory cytokines, and aromatase 
activity is reciprocal; IL1 and IL6 stimulate aromatase activity, 
while androgens inhibit it (157).

In summary, with some notable exceptions, the correlation bet- 
ween low androgen and RA likely exists because RA-associated 
inflammation dampens serum androgen levels. Improvements in 
our ability to group RA into less heterogenous disease subgroups 
may reveal particular subgroups that are more affected by and-
rogen levels than others.

MS and Androgens
Multiple sclerosis is an autoimmune disorder in which neuronal 
axons are actively demyelinated leading to neuronal damage 
and eventual paralysis. The disease precipitates in patterns of 
relapsing-remitting or progressive-onset. Only the former of 
these shows a sex-bias; relapsing-remitting MS (RRMS) devel-
ops 3–4 times more frequently in females than in males and 
predominantly in individuals of childbearing age, suggesting a 
role for sex hormones [reviewed in Ref. (159)]. In addition to 
higher incidence rates among female RRMS patients, many stud-
ies have also shown that women exhibit higher relapse rates than 
men (160–165), further supporting a gender-bias in this disease. 
Several studies have evaluated levels of sex hormones in MS 
patients, and testosterone, DHEA, or DHEA-S levels have been 
found to be lower in both men and women with MS as compared 
to healthy age-matched controls (115, 165–168). Although it is 
generally thought that testosterone’s protective effect is mediated 
via immune modulation, treatment with testosterone improved 
cognitive performance and slowed brain atrophy (169) and has 
been suggested to increase gray matter in a small cohort of men 
with RRMS, suggesting a direct neuroprotective function of 
testosterone (170).

Multiple sclerosis patients display a chronic inflammatory 
profile characterized by T  cell-derived cytokines (IFNγ and 
IL-17) and circulating antibodies reactive to brain autoantigens 
(171–176). Both T  cell and B  cell differentiation and effector 
functions have been shown to be affected by androgens (as 
mentioned above), however, clinical trials with drugs specifically 
targeting IL-17A (secukinumab) or B cells (rituximab) were only 
somewhat effective (177, 178), and targeting IFNγ via blockade 
of IL-12 (ustekinumab) was not effective (179).

Animal Models of MS
Studies of EAE (animal model of MS) have largely confirmed a pro-
tective role for androgens (180–183). For example, gonadectomy 
of male SJL mice resulted in increased disease susceptibility, while 
treatment with exogenous testosterone or DHT reduced disease 
incidence in both females and males (180, 181). Although C57Bl/6 
male and female mice develop EAE at a similar rate, C57Bl/6 
male mice were also protected by treatment with DHT (181),  
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and similar results have been obtained in EAE-susceptible Dark 
Agouti rats (183). By contrast, Ziehn et al. showed that only tes-
tosterone, not DHT, exerted a direct neuo protective effect (182), 
suggesting that testosterone and DHT may have independent 
effects on cells of the hippocampus and infiltrating immune cells. 
Further studies are needed to thoroughly investigate if AR bind-
ing is required for the protective effect of androgenic treatment.

Cellular and Molecular Targets of Androgens  
in MS/EAE
While most studies support an overall protective effect of tes-
tosterone in MS and EAE, specific immunological targets are  
less well explored. Androgens may affect T cells in at least two 
specific ways. As mentioned above, androgens stimulate the Aire  
promoter, driving increased Aire expression by medullary thy-
mic epithelial cells and increased negative selection (97). As a 
result hereof, male mice or mice treated with DHT are relatively 
protected from EAE (97). Second, EAE is typically driven by T 
helper cells (Th1 and Th17) and is characterized by the presence 
of key signature cytokines such as IFNγ and IL-17 within the 
brain, secondary lymphoid organs, and circulation. A general Th1  
propensity has been observed in female patients with MS and 
EAE animal models (184–187) and it has been suggested that low 
levels of testosterone drive this phenotype. In support hereof, 
ex vivo exposure of encephalomyelitic T cells to testosterone has 
been shown to significantly change the secreted cytokine profile 
(from IFNγ to IL-10) and the pathogenic potential of these T cells 
(180, 188). Furthermore, myelin-basic protein-primed female 
T  cells and T  cells from gonadectimized males express signifi-
cantly higher levels of the VLA-4 integrin β1 subunit and secrete 
higher levels of pro-inflammatory cytokines, such as IL-1β, than 
male-derived cells (189), thereby promoting T  cell infiltration 
into the brain and brain pathogenesis. Although the mechanism 
driving differential T cell activation in males and females is largely 
unknown, Dunn et al. recently described that PPARα was highly 
expressed in male T  cells in a testosterone-dependent manner 
and that deficiency of PPARα specifically worsened EAE in male 
mice (109). Further studies are needed to establish the interre-
lationship between PPARα, Aire, and other DHT-dependent 
immune regulators.

In conclusion, low levels of androgens are observed in patients 
with MS and gonadectomy of male mice increases their suscep- 
tibility to induced EAE. T cells have been found to respond to 
androgens throughout development and recent studies have started 
to unravel molecular mechanisms associated with androgen-
induced T cell suppression.

Androgens in Sle
Systemic lupus erythematosus, a chronic and potentially fatal 
disease with the potential to cause damage in multiple organ 
systems, is nine times more prevalent in women than men 
(190). Physicians commonly see patients with a wide range of 
clinical manifestations, which may spontaneously flare and 
remit. For example, patients with mild lupus may present with 
intermittent skin rash and joint pain and require little medica-
tion, while patients with severe glomerulonephritis may show 
progressive renal deterioration despite treatment with high doses 

of corticosteroids and cytotoxic drugs. Other significant health 
consequences can include central nervous system involvement, 
vasculitis, thrombosis, thrombocytopenia, anemia, fevers, fatigue,  
and heart and lung involvement (190, 191).

Antinuclear autoantibodies (ANAs) are generally considered 
to be a hallmark of lupus (190, 191). A portion of the tissue 
damage in SLE is related to autoantibodies that target cell surface 
antigens. In other cases, such as in the kidney, the deposition, or 
in  situ formation of ANA immune complexes with subsequent 
complement activation and inflammatory cell recruitment are 
responsible for the damage. The damage generated by immune 
complexes is not trivial; SLE is a leading cause of kidney disease, 
stroke, and premature cardiovascular disease in young women 
(192, 193).

A number of reports have suggested that androgens are pro- 
tective in SLE. Although many male lupus patients have normal  
levels of androgens (194), men with hypogonadism are at incre-
ased risk of developing SLE (114, 116, 195) and testosterone sup-
plementation of male lupus patients with genetic hypogonadism 
(Klinefelter’s syndrome) has, in two cases, been beneficial in treat- 
ing lupus (196, 197). However, no large-scale studies involving 
testosterone supplementation in male lupus patients have been 
reported (198). Women with lupus generally have lower andro-
gen levels, including testosterone, DHT, DHEA, and DHEA-S 
(199–201), and demonstrate an accelerated inactivation of tes-
tosterone via oxidation than healthy age-matched controls (202). 
In addition, it has been suggested that inflammatory cytokines  
in affected tissues modulate aromatase activity to locally dampen 
the effects of androgens in favor of estrogens in lupus patients 
(203). Finally, male lupus patients with reduced AR signaling 
produce higher quantities of IgG autoantibodies (204), while 
female lupus patients with the same polymorphism exhibited 
reduced disease (78). It is not clear why reduced androgen sig-
naling is associated with opposite effects on lupus in male and 
female patients. However, recent studies in the BWF1 animal 
model (discussed below) have also identified instances whereby 
androgen-mediated mechanisms of disease suppression are not 
effective in females (48). Together these observations suggest 
that androgens affect lupus pathogenesis differently in males 
and females and that the mechanisms by which androgens limit 
disease may not be immediately applicable as therapies for female 
patients.

Although survival rates of male lupus patients are compara-
ble to survival rates in female lupus patients (205–210), it has 
been reported that the severity of SLE is worse in males than 
in females, suggesting that genetic susceptibility must be more 
potent in men to overcome the protection afforded by androgens 
(211–215). This is supported by reports that male lupus patients 
have an increased frequency of renal involvement (208, 210, 
216–218) and that women with an affected male relative are 3.5 
times more likely to develop renal disease than women without 
an affected male relative (219).

Some effort has been made to treat lupus with androgenic 
compounds. The small numbers of patients included in many of 
the following clinical trials make definitive conclusions difficult. 
However, in general, these studies support an ameliorating role for 
androgens. Danazol, a weakly androgenic synthetic compound, 
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reduced total serum IgG as well as anti-dsDNA autoantibody 
levels in women (220, 221). However, all patients did not benefit 
from therapy and some experienced disease flares (220, 221). Like- 
wise, treatment with a testosterone-like anabolic steroid, nand-
rolone, afforded some patients clinical improvement, but other 
patients saw no improvement and masculinizing side effects 
made this drug a somewhat untenable treatment option for most 
women (202, 222, 223).

Larger clinical trials have been conducted with DHEA, an 
adrenal steroid with mild androgenic activity, in the hopes of 
separating the disease-ameliorating properties of androgens 
from its masculinizing ones. However, as for other androgenic 
drugs, some patients treated with DHEA (also known as pras-
terone) experienced reduced disease activity, improved cognitive 
function, enhanced mental well-being, and a reduced need for 
corticosteroid treatment (224–228), while others experienced 
no improvement (229, 230). Overall, treatment with this agent 
did not meet primary objectives of these studies and it has not 
been approved by the Federal Drug Agency for treatment of 
lupus patients. It should be mentioned that in a recent study, 
female lupus patients with a particular polymorphism in the 
extra-pituitary prolactin gene associated with low serum DHEA 
levels experienced the most dramatic improvements after DHEA 
treatment (201). Thus, genetic differences of particular study 
populations may explain the varied results from different clinical 
trials with DHEA in lupus patients.

Androgens in Mouse Models of Lupus
Inbred mice that spontaneously develop a lupus-like disease 
have been extremely helpful toward elucidating the etiology and 
pathogenesis of lupus. Several spontaneous models of lupus exist 
[reviewed in Ref. (231)]. Here, we focus exclusively on studies 
conducted with the F1 offspring of New Zealand black (NZB) and 
New Zealand white (NZW) mice. The female F1 offspring of NZB 
and NZW mice (BWF1) develop a lupus-like disease character-
ized by high levels of IgG ANAs accompanied by a severe and 
progressive glomerulonephritis in the first year of life (232, 233). 
By contrast, less than half of BWF1 male mice develop severe pro-
teinuria within the same time period (232, 233). As in humans, 
several studies have determined that androgens suppress lupus 
pathogenicity BWF1 mice. For example, prepubescent gonadec-
tomy of BWF1 male mice increases the incidence of proteinuria 
and mortality and accelerates the appearance of ANAs as com-
pared to intact males (233–235). In addition, administration of 
DHT to gonadectomized male mice is sufficient to reduce disease 
development comparable to that observed in intact male mice 
(233–235).

Chemical manipulation of androgens in lupus-prone BWF1 mice 
also generally supports the hypothesis that androgens are protective 
in lupus. For example, treatment of BWF1 females with nandrolone 
decanoate (236–238) and ethylestrenol (239), which are both tes-
tosterone-like anabolic steroids, ameliorated disease. Nandrolone 
decanoate also reduced IgG anti-dsDNA antibody, reduced the inci-
dence of proteinuria, and improved survival (236, 238). Similarly, 
DHEA treatment significantly delayed disease onset, reduced 
IgG anti-dsDNA autoantibodies, and reduced mortality (240). By 
contrast, danazol did not protect BWF1 females from accelerated  

development of disease (241), and treatment of BWF1 females 
with the anti-androgenic drug, flutamide, resulted only in a slight 
decrease in survival, with no noticeable effect on autoantibody 
levels (242). Overall, BWF1 male and female mice recapitulate 
much of the sex bias observed in lupus patients and are a useful 
model for advancing our understanding of the role of androgens 
in lupus-like disease.

Cellular and Molecular Targets of Androgens  
in Lupus
Many autoimmune diseases that are more prevalent in females, 
including SLE, are characterized by increased numbers of B cells 
and circulating autoantibody levels [reviewed in Ref. (243)]. 
Some evidence suggests that androgens may indirectly regulate 
isotype switching from IgM to more pathogenic IgG autoantibod-
ies in BWF1 mice. Serum testosterone levels dramatically drop 
in intact BWF1 males at 9 months of age (234), paralleling the 
time at which autoantibodies in intact males class switch to IgG 
(233, 244). Furthermore, treating 9-month-old BWF1 males 
with physiological levels of DHT greatly decreases mortality, 
prevents IgM anti-polyA antibodies from class switching to 
IgG, and reduces the levels of IgG anti-dsDNA antibodies (234). 
By contrast, DHT treatment in intact BWF1 female mice after 
autoantibody production (6 months) does not affect levels of IgG 
anti-dsDNA autoantibodies, although mortality is reduced (245). 
Though the mechanism by which androgens suppress disease in 
older mice remains unclear, some studies suggest that androgens 
enhance (and estrogens delay) immune complex clearance (246); 
a process frequently associated with the development of SLE 
and lupus in mouse models. For example, androgens have been 
shown to enhance serum levels of complement components C4, 
Slp, C5, C6, and Ss binding protein, which could underlie more 
efficient IC clearance (247–249). More current studies evaluating 
a relationship between androgens and complement has to our 
knowledge not been performed.

As indicated above, androgens have been shown to have dis-
creet effects on B cell function and downstream kidney damage 
in males and females. Androgens also appear to modulate the 
development and function of neutrophils differently in lupus-
prone males and female. We have previously shown that Gr1+ 
CD11b+ cells accumulate in male mice, inhibiting the function 
of T follicular helper cells, germinal center formation, and plasma 
cell differentiation (48, 49, 250). Interestingly, these myeloid cells 
suppress disease in male, but not female, mice. It is intriguing 
to speculate that perhaps the increased frequency of suppressive 
Gr1+ CD11b+ cells in males is a related to CD11b+ cell over-
expression of the DHT-regulated gene, colony-stimulating factor 
3-receptor (Csf3-r) (233). Together with its ligand, G-CSF, CSF3-R 
is involved in maintaining neutrophil homeostasis and also regu-
lates several aspects of neutrophil function (251). Interestingly, 
high doses of G-CSF suppress lupus-like disease in at least one 
animal model (252) and polymorphisms, the Csf3-r gene influ-
ence the development of lupus and RA (253, 254). Thus, it is 
not unreasonable to hypothesize that sex-specific alterations in 
expression of CSF3-R could influence neutrophil phenotype and 
function and thereby differentially influence lupus pathogenesis 
in males and females. Overall, at least in mice, it seems as though 
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lupus pathogenesis may proceed in fundamentally different ways 
in male and female mice.

CANCeR AND ANDROGeNS

Immune cells must be capable of distinguishing modified-self from 
self, and yet, must not become unduly activated against unmodified 
self-antigens. Immune activity outside of these boundaries likely 
risks the development of cancer or autoimmunity and it follows 
that immune systems especially good at protecting against cancer 
may run the risk of triggering autoimmunity (and vice  versa). 
Given that women are more susceptible to many autoimmune 
diseases, one might expect men to be more susceptible to cancer. 
Indeed, a number of epidemiologic studies and meta-analyses have 
recently confirmed that cancer develops more frequently in males 
than in females (255–257). In a meta-study examining mortality 
rates from 1977 to 2006, the male-to-female mortality-rate ratios 
were also found to be increased all malignant cancers, although 
predominantly for cancers affecting the upper gastro-intestinal 
tract and respiratory systems (lip, tongue, hypopharynx, esopha-
gus, larynx, lung, etc.) as well as liver and bladder (255). Many 
factors have been proposed to explain this discrepancy including 
environmental exposures (smoking, obesity, infections) and sex 
hormone levels and signaling (255, 258).

As mentioned above, chronic inflammation can lead to sup-
pression of testosterone. Cancer is known to induce a stage of 
chronic inflammation, and thus in order to study a potential causal 
relationship between testosterone and cancer development, retro-
spective cohort analyses investigating levels of testosterone prior 
to the diagnosis of cancer are necessary. Not many studies of that 
kind have been done. In one study, testosterone levels were found 
to positively correlate with the risk for a subset of epithelial ovarian 
cancers (259). Similarly, higher levels of testosterone correlated 
with an increased risk of breast cancer in women (260). It will be 
interesting to see if this pattern holds for other types of cancer.

Animal Models of Cancer
More direct evidence supporting a tumorigenic role for andro-
gen in cancer development comes from animal studies, where 

susceptibility to cancer in response to chemicals and genetic 
manipulation often depend on sex hormone levels (261). For 
example, gonadectomy of male rats reduced both chemical-
induced pancreatic tumor burden (262) and renal cell carcinoma 
(263), while re-administration of testosterone at least partly 
reversed this effect. Furthermore, injection of prostate cancer 
cells into unmanipulated and gonadectomized nude male mice 
showed reduced tumor growth in gonadectomized mice and 
increased tumor growth upon subsequent testosterone treatment 
(94). It should be noted that whether these effects of testosterone 
were due to inhibition of immune activation or via direct effects 
on tumor cells remains to be tested. In a separate study of induced 
thyroid cancer in male mice, gonadectomy led to an upregula-
tion of tumor-suppressor genes (264). With tumor-suppressor 
proteins present, CCL5 chemokine expression by tumor cells 
increased driving infiltration by inflammatory macrophages and 
CD8+ cytotoxic T cells and subsequently reduced tumor growth. 
Thus, testosterone may be predictive of increased cancer risk, 
warranting further research into the immunosuppressive and 
potential cancer-promoting effects of testosterone during early 
establishment of cancer.

CONClUDiNG ReMARKS

To conclude, sex-specific biases in autoimmunity and cancer 
incidence are associated with many differences in immune cell 
development and function. A significant portion of these differ-
ences are the result of exposure to androgens. Androgen-mediated 
suppression of immune reactivity and inflammation increases 
the threshold for autoimmunity to develop, but likely lowers the 
threshold for cancer. Studies further uncovering immune-specific 
effects of androgens are needed and may lead to the identifi - 
cation of pathways that could be targeted therapeutically to inhibit 
the incidence and progression of autoimmunity and cancer.
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