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Saclay, Orsay Cedex, France, 3 CIAMS, Université d’Orléans, Orléans, France, 4 Centre du Sommeil,
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Abstract

Previous studies have shown that Automatic Positive Airway Pressure devices display

different behaviors when connected to a bench using theoretical respiratory cycle scripts.

However, these scripts are limited and do not simulate physiological behavior during the

night. Our aim was to develop a physiological bench that is able to simulate patient breathing

airflow by integrating polygraph data. We developed an algorithm analyzing polygraph data

and transformed this information into digital inputs required by the bench hardware to repro-

duce a patient breathing profile on bench. The inputs are respectively the simulated respira-

tory muscular effort pressure input for an artificial lung and the sealed chamber pressure to

regulate the Starling resistor. We did simulations on our bench for a total of 8 hours and 59

minutes for a breathing profile from the demonstration recording of a Nox T3 Sleep Monitor.

The simulation performance results showed that in terms of relative peak-valley amplitude

of each breathing cycle, simulated bench airflow was biased by only 1.48% ± 6.80% com-

pared to estimated polygraph nasal airflow for a total of 6,479 breathing cycles. For total

respiratory cycle time, the average bias ± one standard deviation was 0.000 ± 0.288 sec-

onds. For patient apnea events, our bench simulation had a sensitivity of 84.7% and a posi-

tive predictive value equal to 90.3%, considering 149 apneas detected both in polygraph

nasal simulated bench airflows. Our new physiological bench would allow personalizing

APAP device selection to each patient by taking into account individual characteristics of a

sleep breathing profile.

Introduction

Obstructive sleep apnea (OSA) is a sleep disordered breathing (SDB), characterized by repet-

itive narrowing or closure of the upper airway during sleep [1]. This leads to intermittent
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arterial oxygen desaturations [2], and also to increased activations of the sympathetic ner-

vous system, which may result in complications in cardiovascular diseases [3], as well as arte-

rial hypertension [4]. Patients affected by OSA have symptoms like heavy snoring, excessive

diurnal somnolence, and difficulty in concentration and memory, all of which significantly

reduce their quality of life. Depending on severity, moderate and severe syndromes are

largely treated by using continuous positive air pressure (CPAP) devices to maintain open

airways, and prevent the occurrence of adverse breathing events during sleep at night. These

treatments have proven to be efficient by drastically reducing the number of breathing events

[5]. Moreover, they have a clearly beneficial impact on diurnal activities by significantly

reducing sleepiness [5]. However, one of the key issues in treating a SDB patient with CPAP

is the choices of medical device available on the market and of the ventilation mode (con-

stant positive airway pressure or automatic positive airway pressure (APAP)). APAP mode

relies on the use of a dedicated algorithm driving the response of the device to breathing

events such as apneas or a significant reduction of respiratory flow. These algorithms are dif-

ferent from one device to another [6–13] and several setting options [14–16] can be chosen

by users. Because the algorithms are protected by patents, they are like a black box to the

public [17] and cannot be evaluated directly. Most of the time, device functioning can be ret-

rospectively and indirectly observed by recording patient ventilation under APAP [18,19].

This is why there has been some work to develop respiratory benches, as reported in the liter-

ature [6–13], to evaluate miscellaneous devices. Some benches consist of a lung simulator to

mimic the patient’s respiratory airflow [6]. Other benches are additionally connected to an

upper airway simulator by use of either an obstruction valve [9,13] or a Starling resistor

[7,8,10–12], whose resistances are conditioned to pressure changes from APAP devices in

different manners. The mechanical impedance in an obstruction valve is controlled via a pre-

defined computer program, in function of the instantaneous pressure of the APAP. On the

contrary, the resistance of Starling resistor reacts mechanically and automatically to the pres-

sure changes. Bench hardware can be programmed to simulate the artificially composed

respiratory scenarios, which generally contain a string of repetitive disordered breathing

events, i.e. obstructive and central apneas, obstructive and central hypopneas, inspiratory

flow limitation, snoring. Various APAP devices are then connected to the bench simulation.

Their pressure responses to the SDB events are recorded, assessed and compared. However,

all these benches use airflow from a limited database of breathing airflow short segments

recorded in patients and/or artificially designed. Thus, the respiratory scenarios simulated

on bench cannot represent completely the physiological variability and chronology of

human breathing. This is why it is difficult to generalize the bench-observed treatment effi-

ciencies to one individual patient. Furthermore, as APAP manufacturers are adjusting their

algorithm responses as a more and more detailed function of patient physiological breathing

behaviors, this also underlines the needs to adapt the bench testing in a physiological man-

ner. Based on these contexts, Isetta et al. mimicked a full night of one female OSA phenotype

on their bench [13]. However, there still existed a distinction between bench simulated

breathing profile and the one of a specific patient. Thus, a physiological bench, which could

replicate automatically any apneic patient breathing profile by using its polygraph record-

ings, should solve this problem. Thus, the aim of our study was to develop a new approach

for bench testing, which enables the automatic reproduction of a patient nasal breathing phe-

notype, taking into account the central and obstructive characteristics of each respiratory

cycle. To accomplish this, the secondary aim was to develop an algorithm that is able to pro-

cess a patient’s night polygraph data, and to calculate the digital inputs required to control

the hardware of the bench simulation device.

Physiological bench test simulating sleep breathing profiles
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Material and methods

Bench test system design

Our bench system is composed of two parts: signal processing and bench simulation. Our

work mainly focused on designing an algorithm that is able to integrate polygraph data as

inputs, and to return as outputs the necessary digital inputs to control our bench hardware.

This hardware consists of an artificial lung using a piston to mimic patient pulmonary motion

during respiration, driven by simulated respiratory muscular effort pressure (ΔPmus) and a

Starling resistor that mimics upper airway obstruction by varying its resistance. Our algorithm

calculates the level of upper airway obstruction as well as the pressure intensity of the respira-

tory muscular effort to be simulated in each breathing cycle of a patient by analyzing polygraph

data in a way that is most in line with AASM rules [20].

Specifically, to simulate a targeted polygraph nasal airflow ( _Vsource) on our bench (Fig 1),

the resistance of a Starling resistor was increased during an obstructive respiratory event, and

set to minimum during periods of normal breathing as well as central breathing events. The

ΔPmus used to command our artificial lung was calculated based on the breathing airflow issu-

ing from a central ventilation command. We noted this estimated non-obstructed nasal air-

flow, without any obstruction occurring in the upper airways, as _Vcc.

Bench hardware

As shown in Fig 2, the bench hardware used in our study to reproduce the polygraph breathing

profile was derived from a setup described in a previous study from our laboratory [12]. The

hardware consisted mainly of an active lung simulator ASL 5000 (IngMar Medical, Pittsburgh,

USA) and a Starling resistor, in which a rubber tube could collapse as a function of transmural

pressure. The transmural pressure is the difference between the intraluminal pressure at the

upper stream (Pus) and the extra-luminal pressure, which corresponds to the sealed chamber

pressure (Pch). In detail, Pus was set to 4 cmH2O, as the minimal default pressure sent by

APAP devices. Then, the obstructive state in the rubber tube of the Starling resistor was altered

by varying Pch via a pressure control system, which supplied continuous positive or negative

pressures. The adjustment of obstruction level in the Starling resistor was triggered once at

the beginning of each breathing cycle via a transistor-transistor logic (TTL) signal sent by the

active lung simulator.

To simulate ventilatory function, we used a single-compartment model in the active lung

simulator, in which a patient’s lung was modeled as a single compliance C and a single resistor

R connected in series, representing respectively lung compliance and airway resistance with

C = 80 mL/cmH2O and R = 7.25 cmH2O/(L/s). In our case, because we used a Starling resistor

to mimic the upper airway pathophysiology, the airway resistance set in the active lung simula-

tor did not take into account upper airway resistance. The digital input used to command each

breathing cycle in active lung simulator was ΔPmus. There is a relationship between ΔPmus and

non-obstructed breathing airflow _Vcc, dominated by the equation

DPmus ¼ �
Vcc
C
� R � _Vcc; ð1Þ

in which Vcc represents pulmonary instantaneous volume, thus Vcc ¼
R

_Vcc dt.
The flow produced on the bench ( _Vbench) was monitored by a pneumotachograph located

between the source of positive pressure 4 cmH2O and the Starling resistor (Fig 2).

All signals measured on the bench were sampled via a NI USB-6210 card (data acquisition

card, National Instruments, USA) and a custom-developed LabVIEW (National Instruments)
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Fig 1. Signal processing overview from polygraph data to its breathing profile simulated on bench. The signal processing steps

or steps refer to the main steps described in polygraph signal processing section. (a) Polygraph nasal airflow, steps 1 and 2: nasal

airflow ( _Vsource) of period without movement artifact is derived from polygraph raw signals. It represents the target breathing airflow,

which is aimed to be simulated on bench. (b) Sleep disordered breathing events characterization, steps 3, 4 and 5: breathing onset

positions (�) and sleep disordered breathing (SDB) events (orange frames) are identified. SDB events can be obstructive apneas (OA),

central apneas (CA), obstructive hypopneas, central hypopneas. (c) Central command airflow calculation, step 6: the estimated non-

obstructed nasal airflow issuing from central ventilation command ( _Vcc) is calculated by combining information of _Vsource and SDB

events characterization. During normal breathing periods or central SDB events, _Vcc is directly assumed identical to _Vsource, whereas

during obstructive breathing events, the amplitude of _Vcc is hypothesized to be equal to _Vsource amplitude of the pre-event 2-minute

baseline. (d) Muscular effort pressure calculation, step 6: the respiratory muscular effort pressure (ΔPmus) is calculated by taking into
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program at a rate of 20 Hz. Then, they were stored in a personal computer for further offline

analysis.

Polygraph signal processing

The polygraph data used in our study issued from a one-night demonstration recording by a

Nox T3 Sleep Monitor (Nox Medical, Reykjavik, Iceland). On our bench, we reproduced a

total of 8 hours and 59 minutes of this breathing profile by integrating polygraph recordings.

The corresponding apnea-hypopnea index (AHI) of this recording was 22.6 events/h with

apnea index (AI) = 15.5 events/h and hypopnea index (HI) = 7.1 events/h. The signals used in

our study were respectively an acceleration signal sampled at 20 Hz, nasal pressure sampled at

200 Hz, thoracic and abdominal Respiratory Inductance Plethysmography (RIP thorax and

RIP abdomen) sampled at 25 Hz, RIP flow at 25Hz, pulse oximetry (SpO2) sampled at 3 Hz,

and audio volume sampled at 100 Hz.

We developed an algorithm with Matlab (MATLAB, Signal Processing Toolbox and Statis-

tics Toolbox Release 2013b, The MathWorks, Inc., Natick, Massachusetts, United States)

which allowed for interpretation of polygraph signals and calculation of the digital inputs that

account _Vcc as well as the lung compliance and airway resistance set in the active lung simulator. (e) Upper airway obstructive level

calculation, step 6: the sealed chamber pressure (Pch) used to regulate Starling resistor for each breathing cycle is calculated as a

function of _Vcc and _Vsource. (f) Bench airflow simulation: the bench-simulated airflow ( _Vbench) is obtained by controlling the active

lung simulator and the Starling resistor with ΔPmus and Pch.

https://doi.org/10.1371/journal.pone.0225766.g001

Fig 2. Bench hardware diagram. PTG: pneumotachograph; _Vbench: bench airflow measured by a pneumotachograph; Pus: pressure at upstream of

Starling resistor; Pch: sealed chamber pressure in Starling resistor; TTL signal: transistor-transistor logic signal.

https://doi.org/10.1371/journal.pone.0225766.g002
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needed to be integrated into the bench hardware. Concretely, the ΔPmus to drive the artificial

lung and the Pch to regulate the obstructive level in the Starling resistor were used for bench

simulation. Fig 3 describes the six main signal-processing steps implemented in the algorithm.

Each step is then depicted in detail in the following subsections.

Step 1: Signal pre-processing: Resampling and filtering. Nasal pressure, RIP flow, audio

volume, RIP thorax and abdomen were first down-sampled at 20 Hz to homogenize the whole

signal data for further analyses. Then nasal pressure, RIP flow, RIP thorax and RIP abdomen

were smoothed by a Savitzky-Golay filter [21]. In our conditions, the filter was constructed by

fitting successive sub-sets of adjacent data points in 1 second with a third-degree polynomial

function. According to AASM rules [20], the nasal airflow modulation with time _Vsource (20

Hz) was estimated as the square-root transformation of nasal pressure.

Step 2: Automatic segmentation of stable periods by using acceleration signal. The aim

of this second step was to avoid body motion artifacts in the respiratory signals. We chose to

exclude periods with a high probability of artifact occurrence by using the 3D accelerometer

signal (Fig 4(a)), which reflected body movement at night during recording. This signal was

the calculation of the Euclidean norm of 3-axis acceleration.

Stable periods were characterized by low acceleration amplitude segments, in comparison

to periods with movement in the 3D accelerometer signal. To automatically identify stable

periods, our method was based on setting up an adaptive threshold in the energy signal of 3D

acceleration. The energy signal (Fig 4(b)) was calculated in a frame of 5 seconds with an over-

lap of 50%, as shown in Eq (2), in which Sk (i) was the 3D accelerometer signal contained in

Fig 3. Main steps in polygraph signal processing. The checked signals next to each signal-processing step mean that they were directly associated with

this step.

https://doi.org/10.1371/journal.pone.0225766.g003
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the kth frame of 100 data samples, and Ek represented the energy of the signal in the kth frame.

Ek ¼
X100

i¼1
jSkðiÞj

2
ð2Þ

To determine an appropriate energy threshold discriminating between high and low energy

frames, the energy array was sorted by an ascending order in the first step. Then, in order to

decrease the required computing power, the energy array was down-sampled to obtain a new

energy array composed by 1080 samples (Fig 4(c)). To detect the change onset point in the

sorted and down-sampled energy array, we chose to detect the slope change position. Thus, we

calculated the slopes of every six consecutive energy points with a 50% overlap by performing

a linear regression (Fig 4(c)). We obtained a slope array of 359 values. We assumed that the

patient should spend at least 25% of the recording time sleeping with negligible body move-

ment. Accordingly, the slope change position needed to be situated after index 90 (359�25% =

90) of the slope array. To find the slope change position, we divided each slope value situating

from index 90 by the average of its previous slope values. If this ratio was greater than 5.8, a

number that was empirically determined, the corresponding slope was then considered as the

change position in slopes. Consequently, the energy threshold was determined as the median

of the 6 consecutive energy values, from which the corresponding slope was calculated.

At the end, stable frames were combined if they overlapped and were lower than the calcu-

lated energy threshold. All considered signals in the remaining steps of the process were mostly

extracted from these stable periods. Nevertheless, we allowed short periods of movement less

than 2 minutes to maintain congruity of the polygraph signals.

Step 3: Identification of breathing cycles. The proper identification of each breathing

onset from _Vsource is mandatory to simulate corresponding respiratory cycles (Fig 5). As breath-

ing onset positions are difficult to determine directly from _Vsource during highly-reduced

breathing periods, it is necessary to apply a methodology to identify breathing onsets depend-

ing on the amplitudes of the nasal airflow excursion signal. Firstly, we calculated the excursion

of _Vsource. We detected inspiratory peaks and expiratory valleys in a three-minute moving win-

dow by using an automatic multiscale-based peak detection (AMPD) algorithm developed by

Scholkmann et al. [22]. The 3-minute window was chosen in consideration of both computa-

tional time and algorithm performance. Indeed, the AMPD algorithm has an O(n2) complexity

(n: signal length contained in a window), meaning that the smaller the window size is, the

shorter the computational time will be. However, it should also contain enough breathing

cycles so that the AMPD algorithm can capture the periodic pattern. In average, a 3-minute

window contained about 45 (Ttot = 4s) to 72 (Ttot = 2.5s) breathing cycles, of which the

amount was comparable to examples cited in Scholkmann et al’s paper [21]. Moreover, we also

checked whether there were any missed cycle detections, by detecting oscillation around zero

values with respect to amplitude threshold and a temporal threshold compatible with a respira-

tory cycle. These thresholds were established based on knowledge related to the mean ampli-

tude and total respiratory cycle time (Ttot) of previous respiratory cycles without obstruction.

Thus, the upper envelope and lower envelope of _Vsource were obtained by interpolating peaks

and valleys, respectively. Excursion was calculated as the difference between the upper enve-

lope and lower envelope. Based on the excursion values, breathing onsets were then deter-

mined with two distinct methods. Considering periods with high excursion values, breathing

onset positions were determined as the inflection point in _Vsource between expiratory minimal

and inspiratory maximal values respecting the order of two consecutive cycles. However, our

algorithm relied on RIP signals to infer breathing onset positions for low nasal airflow excur-

sion periods.
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Highly reduced excursion criteria were defined as a reduction of nasal airflow excursion

equal or greater than 65% of the two-minute pre-event baseline as well as a duration greater

than four seconds. This airflow reduction threshold was determined with reference to AASM

apnea scoring rules. As nasal airflow was calculated by square-root transformation of nasal

Fig 4. Segmentation of stable periods by analyzing acceleration signal. (a): Example of acceleration signal (20 Hz)

obtained from polygraph. This signal corresponds to the Euclidean norm of three-axis accelerations measured by the

accelerometer installed in the polygraph device. (b): Energy signal—calculated in frames of 5 seconds with 50%

overlap. (c): Determination of frame energy threshold in the resampled increasing frame energy array, represented by

the blue line. The magenta line is the current linear regression line, which fits into six consecutive points in the

resampled increasing frame energy array. The green line’s slope is the average value of all previously calculated slopes.

The black line is a reference horizontal line. The slope of the magenta line is greater than 5.8 times that of the green

line. The energy value of the red asterisk corresponds to the median energy of the six consecutive points fitted by the

magenta line. Thus, the amplitude of the red asterisk is determined as the frame energy threshold.

https://doi.org/10.1371/journal.pone.0225766.g004
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Fig 5. Identification of breath onset positions in polygraph nasal airflow. (a) Polygraph nasal airflow: an example of

polygraph nasal airflow ( _Vsource), of which we need to identify breath onset positions. (b) Reduced excursion segments

identification: _Vsource is segmented in function of its excursion: periods with reduced excursion (pink shade) and

periods without reduced excursion (blue shade). (c) Breath onset determination relying on Respiratory Inductance

Plethysmography (RIP) signals: during periods with reduced _Vsource excursion, as breath onset positions are difficult to

be directly determined from _Vsource, the reference RIP signal’s valleys temporal coordinates are used to indicate the

corresponding breath onset positions in _Vsource. The choice between RIP thorax and RIP abdomen to be the reference

RIP signal is determined by criterion of possessing a higher relative amplitude modulation compared to the other one.

(d) Breath onset determination relying on _Vsource: in segments without reduced _Vsource excursion, breathing onsets can

be directly determined as the inflection point in _Vsource between expiratory minimal and inspiratory maximal values.

(e) Breath onset identification result: all breath onsets in _Vsource are obtained by combining results from (c) and (d).

https://doi.org/10.1371/journal.pone.0225766.g005
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pressure, the nasal pressure reduction threshold (� 90%) used in apnea detection would corre-

spond to a reduction greater than 66.7% in nasal airflow. We used a threshold of 65% very

close to this. The duration criterion of at least four seconds was set up to allow for detecting

any single obstructive or central apneic breathing cycle. A breathing cycle lasted about 3 sec-

onds. Another 1 second was added in order to account for the time delay between the airflow

valley of the last breath before reduced excursion and the start of the reduced excursion.

Considering highly-reduced excursion periods, the breathing onset cannot be identified on

_Vsource by definition. Thus, we collected this information from the RIP signal. We determined

for each period which RIP signal to refer to, namely thoracic or abdominal. This determination

of the reference RIP signal was based on the following requirement: it need be the signal with a

higher relative amplitude modulation during the reduced nasal airflow excursion period. Once

we had decided upon the reference RIP signal, we used valley time coordinates in the reference

RIP signal as the ones of breath onsets for the reduced nasal airflow excursion segments.

Step 4: Detection of apnea events and identification of significant breath attempts.

Apnea events were detected according to AASM recommendations for apnea rules updated in

2012 [20]. The main signal used for apnea detection was _Vsource. We set a maximal apnea event

duration of three minutes to discriminate between reduced breathing and mouth breathing.

Furthermore, apnea events detected by _Vsource were only considered if there was a simultaneous

drop in the thermistance excursion signal or alternatively in the RIP flow excursion signal,

which should be greater than 20% compared to the pre- and post-event baselines. For a given

period, apneas were directly qualified as central apnea if there were no identified breathing

attempts within the RIP signals. Moreover, we checked for the significance of the muscular

effort indirectly represented in RIP signals for each breath attempt contained during the

period of apnea. Significant breath attempts with collapsed upper airways, namely the obstruc-

tive apnea cycles, were then identified; otherwise, they were qualified as central due to a signifi-

cant reduction of respiratory muscular effort modulation.

For each breath attempt, the significance threshold was set as 10% of the thoracic or abdom-

inal RIP excursion baseline. The respiratory effort excursion of each breath attempt within an

apnea was determined as the excursion value, whose time axis coordinate corresponds to this

of the peak position in the RIP signal. The excursion baseline was determined as the within the

one minute pre- and post-event excursion average.

Step 5: Detection and characterization of hypopnea events. Our algorithm detected

hypopnea events according to the scoring rules of AASM updated in 2012 [20]. Similar to

apnea detection, we mainly used _Vsource to detect hypopneas. Our algorithm also assessed RIP

flow excursion or naso-buccal thermistance excursion. A descending tendency of that signal

greater than or equal to 10% in comparison to the one-minute pre- and post-event baseline

was required to exclude the possibility of mouth breathing, which could cause an amplitude

drop in _Vsource as well. Additionally, to assure that this drop in nasal airflow excursion greater

or equal to 30% was not due to sensor displacement, we also set a maximal event duration of

three minutes.

Moreover, we followed the classification rules recommended by AASM [20] to classify

hypopnea events as either obstructive or central hypopneas. Indeed, to consider an obstruc-

tion in the upper airway, one of the three following criteria was required: i) snoring, ii) thora-

coabdominal paradoxical movements, or iii) flattened inspiratory airflow shape specific to

obstruction.

In summary:

i). We evaluated the audio power difference between the inspiratory phase and expiratory

phase to detect snoring.
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ii). To identify the occurrence of thoracoabdominal paradox, the algorithm was based on

the temporal closeness between peak and valley positions in RIP thorax and those in RIP

abdomen. For example, during a given cycle with a thoracoabdominal paradox, the RIP

thorax peak was supposed to be temporally closer to the valley rather than peak in RIP

abdomen.

iii). We were inspired from the methodology proposed by Zhi et al. [23] to detect an inspira-

tory flow limitation in _Vsource. Briefly, we trained a four-layer neural network (7�14�14�1)

with seven features extracted from inspiratory airflow as inputs. The features were peak

numbers, peak amplitude normalized by precedent 2-minute peak amplitude baseline,

scooping index, kurtosis, deviation index, flattening index, skewness.

If none of these three criteria were detected, the candidate hypopnea event was considered

as a central event.

Step 6: Calculation of digital inputs for integration into bench hardware. The active

lung simulator is controlled through the simulated respiratory muscular effort pressure ΔPmus.

The relationship between ΔPmus and _Vcc is modeled by Eq (1). _Vcc was assigned directly to

_Vsource for respiratory cycles included in normal breathing or in central respiratory events; _Vcc

was then estimated by a sinusoidal form, with an amplitude equal to the 2-minute pre-event

baseline for respiratory cycles involved in obstructive events. Inspiratory and expiratory time

of _Vcc in obstructive cycles was calculated with respect to the temporality of _Vsource (for obstruc-

tive hypopneas) and the reference RIP signal (for obstructive apneas).

Due to technical limitations in our bench hardware, inspiratory and expiratory volumes

needed to be equal for each cycle. Consequently, we equilibrated inspiratory and expiratory

airflow with respect to their inspiratory peak and expiratory valley coordinates.

The resistance in Starling resistor is controlled by adjusting the sealed chamber pressure

Pch. Here, the aim was to apply the appropriate Pch to transform the amplitude of _Vcc into the

desired _Vbench in order to simulate _Vsource. Preliminary work allowed us to study the relation-

ship between _Vcc and the resulting flow after application of various Pch, that is to say various

levels of obstruction. This relationship was studied respectively for inspiration and expiration.

This work allowed us to calculate Pch for each obstructive cycle as a function of _Vcc and _Vsource.

Bench simulation performance evaluation

We compared mainly _Vbench with _Vsource to evaluate our bench simulation performance with

respect to two categories: 1. normal and hypopnea breathing; 2. apneas.

For normal and hypopnea breathing, we assessed the agreement between _Vbench and _Vsource

cycle-by-cycle in terms of relative peak-to-valley amplitude (A) and Ttot by means of linear

regression analysis, histogram representation of bias, and Bland and Altman analysis [24]. We

measured the similarity in airflow morphology between _Vbench and _Vsource cycle-by-cycle by cal-

culating a Pearson correlation coefficient (r) for each corresponding pair of cycles respectively

in _Vsource and _Vbench. We assumed that the number of airflow samples in each respiratory cycle

was� 40 and that the distribution was normal. Then we calculated the mean ± one standard

deviation (SD) of r following two separated groups of respiratory cycles: cycles respectively

with obstruction and without obstruction in upper airways.

For apneas, we calculated sensitivity and Positive Predictive Value (PPV) to evaluate the

correspondence between apneas detected in _Vsource and those in _Vbench. To assess apnea onset

time agreement as well as apnea duration agreement between _Vsource and _Vbench, we evaluated
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apnea onset time differences by calculating its mean and SD, and performed linear regression

and Bland and Altman analyses for apnea duration.

Results

Our algorithm allowed us to simulate a breathing profile from polygraph recordings by using a

bench. Fig 6 shows two extracts of the bench simulations. The extracts describe respectively an

Fig 6. Illustration of bench simulation results: Polygraph nasal airflow versus bench airflow. (a) and (b): example of a breathing

profile with obstructive apnea events marked in orange shade. The polygraph nasal airflow ( _Vsource) and bench simulation airflow

( _Vbench) are respectively showed in (a) and (b) with blue curves. The red curve in (b) represents the estimated non-obstructed nasal

airflow ( _Vcc), issuing from a central ventilation command. (c) and (d): example of a breathing profile without disordered breathing

events. The _Vsource and _Vbench are respectively showed in (c) and (d) with blue curves. The magenta points in all graphs represent the

breath onsets.

https://doi.org/10.1371/journal.pone.0225766.g006
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obstructive SDB period and another breathing period without disordered breathing events.

There is a graphical correspondence in signal amplitude and breathing events between the

bench and the polygraph signals.

Concerning bench simulation performance for normal breathing (5,476 cycles) and

hypopnea breathing (1,003 cycles), the average bias (M) in A between _Vsource and _Vbench was

1.48% with a SD of 6.80% (Fig 7). Taking into account the 95% percent of cycles distributed

around M, the SD of their biases decreased to 4.12%, whereas the M remained more or less

unchanged (1.88%). The M in Ttot for each corresponding pair of respiratory cycles respec-

tively in _Vsource and _Vbench was approximately 0, with a SD equal to 0.288 seconds (Fig 8).

Considering the 95% percent distributed around the M in Ttot, the M ± one SD was

-0.001 ± 0.139 seconds. The similarity assessed by Pearson correlation coefficient between

each pair of respiratory cycles respectively in _Vsource and _Vbench was 0.98 ± 0.08 considering all

the normal and central hypopnea respiration cycles, and 0.87 ± 0.22 among all the obstruc-

tive hypopnea respiration cycles.

As for apnea events, simulation sensitivity and PPV were respectively equal to 84.7% and

90.3% by taking into account 149 apneas occurring correspondingly both in _Vsource and _Vbench.

Concerning the precision of apnea onset time, the average difference between apnea onset

time in _Vsource and _Vbench is equal to 0.19 seconds with a SD of 4.71 seconds (Fig 9). Concerning

apnea event duration, the average bias is 0.12 seconds with a SD of 5.11 seconds, comparing

the corresponding pair of apneas occurring in _Vsource and _Vbench (Fig 10).

Fig 7. Linear regression, histogram, Bland and Altman plot analyzing similarity in relative amplitude between polygraph nasal airflow and bench

airflow for 6,479 normal and hypopnea breathing cycles. (a1): Linear regression between polygraph estimated nasal airflow cycle relative amplitude

(Asource) and bench airflow cycle relative amplitude (Abench). Red line: the linear regression line. Black line: the identity line. Magenta points: breathing

cycles with the difference between Abench and Asource (Abench − Asource) greater than 97.5 percentile. Blue points: breathing cycles with Abench − Asource

between 2.5 percentile and 97.5 percentile. Green points: breathing cycles with Abench − Asource lower than 2.5 percentile. (b1): histogram analysis of

difference between Abench and Asource. Green cyan and magenta dashed line: their x-axis coordinates represent respectively 2.5 percentile (-15.5%),

median (2.7%) and 97.5 percentile (10.1%) of Abench − Asource. (c1): Bland-Altman plot analyzing the agreement between Abench and Asource. Magenta,

blue and greens points represent the same breathing cycles as described in graph (a1). Graphs (a2), (b2), (c2): the same analyses as in graphs (a1), (b1)

and (c1) except that the cycles taken into account are those whose Abench − Asource is between the 2.5 percentile and 97.5 percentile.

https://doi.org/10.1371/journal.pone.0225766.g007
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Fig 8. Linear regression, histogram, Bland and Altman plot analyzing similarity in total respiratory cycle time between polygraph nasal airflow

and bench airflow for 6,479 normal and hypopnea breathing cycles. (a1): Linear regression between polygraph nasal airflow cycle time (Tsource) and

bench airflow cycle time (Tbench). Red line: the linear regression line. Black line: the identity line. Magenta points: breathing cycles with the difference

between Tbench and Tsource (Tbench − Tsource) is greater than 97.5 percentile. Blue points: breathing cycles with Tbench − Tsource between the 2.5 percentile

and 97.5 percentile. Green points: breathing cycles with Tbench − Tsource lower than the 2.5 percentile. (b1): Histogram analysis of the difference between

Tbench and Tsource. Green cyan and magenta dashed line: their x-axis coordinates represent respectively 2.5 percentile (-0.600 seconds), median (0

seconds) and 97.5 percentile (0.600 seconds) of Tbench − Tsource. (c1): Bland-Altman plot analyzing the agreement between Tbench and Tsource. Magenta,

blue and greens points represent the same breathing cycles as described in graph (a1). Graphs (a2), (b2), (c2): the same analyses as in graphs (a1), (b1)

and (c1), except that the cycles taken into account are those whose Tbench − Tsource is between the 2.5 percentile and 97.5 percentile.

https://doi.org/10.1371/journal.pone.0225766.g008

Fig 9. The relationship between apnea-onset time difference and apnea duration for apneas detected correspondingly in both

bench airflow and polygraph nasal airflow (149 apneas). Tapnea-bench: duration of apneas detected in bench airflow ( _Vbench).

Tapnea-source: duration of apneas detected in polygraph nasal airflow ( _Vsource). Tonset-bench: the apnea onset time of apneas detected in
_Vbench. Tonset-source: the apnea onset time of apneas detected in _Vsource.

https://doi.org/10.1371/journal.pone.0225766.g009
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Discussion

Findings statement

Our study proposed a physiological method for developing a bench to test different APAP

devices. By processing polygraph data, we derived the digital inputs required to instruct bench

hardware, of which the active lung simulator was driven by ΔPmus, and a Starling resistor was

regulated by Pch to mimic a polygraph nasal breathing profile on the bench as similarly as pos-

sible. The bias existing in the airflow peak-valley amplitude can be partly explained by the lim-

its of pressure regulators in terms of dynamic time response to a decreased Pch, corresponding

to breathing cycles represented in green points in Fig 7. Moreover, this is also related to the

incertitude in controlling the resistance effect in the Starling resistor.

Our bench seems to have an excellent performance in cycle period simulation and good

similarity in terms of signal morphology between _Vsource and _Vbench, especially for respiratory

cycles without obstruction in the upper airways. However, as for obstructive breathes, similar-

ity was moderate. This can be explained by the fact that when increasing the resistance in the

Starling resistor, we can no longer control the _Vbench signal shape. We can only make sure that

there are inspiratory flow limitation phenomena occurring among the obstructive breathing

cycles and the amplitudes of these obstructive cycles are very similar to those in _Vsource.

There was satisfactory sensitivity and a good PPV for apnea-event correspondence between

_Vsource and _Vbench. There was some mismatch between bench and polygraph recordings for

apnea onset and duration. These values are perfectible by optimizing the resistance incertitude

in the Starling resistor, thus allowing for the desired reduction in airflow amplitude, as well

as by attenuating the artifact in the airflow. Indeed, the airflow artifact was caused by the

promptly collapsing rubber tube in the Starling resistor during the transition phase from

breathing without obstruction to breathing with obstruction. This artifact was proportional

to the level of obstruction. We did not calculate the specificity because we could consider that

normal and hypopnea breathing periods account for the majority of polygraph recording time.

Fig 10. Linear regression, Bland and Altman analyses of apnea duration determined from respectively bench airflow and polygraph nasal airflow

(149 apneas). Only the apneas detected both in bench airflow ( _Vbench) and in polygraph nasal airflow ( _Vsource) are taken into account. (a): linear

regression analysis between apnea duration determined from _Vsource (Tapnea-source in x-axis) and the one from _Vbench (Tapnea-bench in y-axis). Red line: the

linear regression line. Black line: the identity line. (b): Bland and Altman analysis of agreement between Tapnea-source and Tapnea-bench.

https://doi.org/10.1371/journal.pone.0225766.g010
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The correspondence for normal and hypopnea breathing in _Vsource and _Vbench should always be

near perfect.

Advantages of our new approach

Compared to previous published bench tests, our bench system is able to automatically repro-

duce an apneic patient nasal breathing profile from its polygraph recordings for both obstruc-

tive sleep apnea syndrome and central sleep apnea syndrome. This assures that the bench-

simulated airflow contains the breath-to-breath variability showed in real patient airflow. Our

bench can simulate an unlimited spectrum of disturbed breathing events issuing from apneic

patients of various phenotypes. Moreover, our bench arranges the occurrence of different dis-

ordered breathing events in a physiological order. These depend on many factors related to

patient characteristics such as age, gender, body mass index, craniofacial structure, as well as

night-to-night variation like sleep stage, body position, alcohol or drug use, etc. Furthermore,

the disordered breathing events of the obstructive mechanism simulated on our bench are

capable of reacting to small steps of pressure change delivered by APAP devices by gradually

increasing airflow amplitudes. This is a so-called closed loop.

Limits of the bench

Only one Starling resistor was used in our study, whose geometrical and mechanical property

was unique, such as in the collapsible tube’s ellipticity, wall stiffness, and upstream resistance

at the onset of inspiratory flow limitation [25]. Thus, it may not represent the physical proper-

ties of all apneic patient upper airways. For the critical closing airway pressure, while it can be

set to different values by varying Pch in the Starling resistor, we do not have any information

about a patient’s real critical closing airway pressure from the polygraph examination, nor

regarding an effective treatment pressure. Accordingly, the critical closing airway pressure and

the effective treatment pressure, which were specific to our test bench, could differ from that

of patients. By simulating a patient breathing profile and testing it with different devices on

our bench, we cannot determine the exact pressure range needed by a particular patient. How-

ever, according to the treatment performance that each device demonstrates and the pressure

range used by each device, we can always recommend a suitable device for a particular patient,

despite the fact that we cannot know the real treatment pressure range that the patient needs.

Furthermore, our bench does not take into account patient physiological responses to previous

treated or partially-treated disordered breathing events, like its ventilatory stability [26], which

may influence the occurrence of upcoming disturbed breathing events.

Future improvements

Concerning inspiratory flow limitations in the simulation method, there are two different

modes in our bench according to whether the inspiratory flow limited cycle is contained in an

obstructive disordered breathing event. If it is, the cycle is simulated with a partially closed

rubber tube in the Starling resistor, and the ΔPmus of this cycle is derived from _Vcc. In this case,

the bench-generated limited flow shape may present a difference with the one in polygraph

recordings. Otherwise, it is simulated by integrating the ΔPmus derived directly from the

_Vsource, with a completely opened Starling resistor. This results in more similar inspiratory flow

limitation morphology, however, without a true obstruction in the Starling resistor.

In the near future, we are considering implementing two other versions of algorithms on

our bench, using two different methodologies (version I and version II) to simulate patient

inspiratory flow limitation.
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Version I: all cycles presenting an inspiratory flow limitation would be simulated as

obstructive cycles with the rubber tube in Starling resistor partially collapsed;

Version II: all cycles presenting an inspiratory flow limitation would be simulated in the

same manner as cycles of normal breathing or a central breathing event with the rubber tube

in the Starling resistor fully open.

These two versions are complementary. With version I, we can learn to what extent the

tested ventilation device is able to adapt the treatment pressure to an inspiratory flow limita-

tion, and our bench will react to the pressure change delivered by the device in a closed loop.

With version II, our bench would simulate the exact airflow shape of these cycles with an inspi-

ratory flow limitation. In this way, we can learn whether the test device accurately recognizes

such inspiratory flow limitations.

Conclusion

Our new approach for APAP devices test bench overcomes previous existing constraints in

simulating all kinds of breathing phenotypes in apneic patients by using a bench. This new

physiological bench provides a more detailed characterization of different respiratory devices

responses to a specific patient profile. It can serve as an aid tool for personalized therapy to

facilitate device selection, option settings, etc. This work reproduces the breathing profile at

night during sleep registered in polygraph. The next step would be to further validate this

bench by integrating different patient polygraph recordings in order to evaluate inter-individ-

ual as well as intra-individual variabilities.
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