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Cancer is a major public health problem around the world and the key leading cause of
death in the world. It is well-known that glucolipid metabolism, immunoreaction, and
growth/death pattern of cancer cells are markedly different from normal cells. Recently,
acyl-CoA synthetase long-chain family 4 (ACSL4) is found be participated in the activation
of long chain fatty acids metabolism, immune signaling transduction, and ferroptosis,
which can be a promising potential target and biomarker for anticancer. Specifically,
ACSL4 inhibits the progress of lung cancer, estrogen receptor (ER) positive breast cancer,
cervical cancer and the up-regulation of ACSL4 can improve the sensitivity of cancer cells
to ferroptosis by enhancing the accumulation of lipid peroxidation products and lethal
reactive oxygen species (ROS). However, it is undeniable that the high expression of
ACSL4 in ER negative breast cancer, hepatocellular carcinoma, colorectal cancer, and
prostate cancer can also be related with tumor cell proliferation, migration, and invasion. In
the present review, we provide an update on understanding the controversial roles of
ACSL4 in different cancer cells.

Keywords: acyl-CoA synthetase long-chain family, anticancer biomarker, glucolipid metabolism, ferroptosis,
arachidonic acid

INTRODUCTION

Cancer is a serious chronic disease which becomes the key causes of death and disability in the world.
An analysis of the global burden of cancer 1990–2019 showed that more than 10 million people died
of cancer in 2019, roughly double the number in 1990 (Lin et al., 2021). Using data updated in
2020 from the International Agency for Research on Cancer, it is estimated that there are 19.3 million
new cancer cases and nearly 10 million cancer patients’ death worldwide in 2020 (Sung et al., 2021).

It is well-known that early-prevention, early-diagnosis, and early-treatment is the most effective
strategy for cancer control. Biomarkers refer to substances characterized by production or abnormal
production of malignant tumor cells, or substances produced by the host in response to tumor
stimulation, which can reflect the occurrence and development of tumor and monitor tumor
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response to treatment. Commonly, tumor markers exist in the
tissues, body fluids, and excreta of tumor patients and can be
detected by immunological, biological, and chemical methods.
Consequently, exploring additional molecular markers to surveil
tumors emergence and metastasis has become a hot topic for
scientists.

Fatty acids are one of the main energy sources in mammals and
play essential roles in cell growth and metabolism. They are involved
in cell membrane structure, energymetabolism, and cellular signaling
pathways to maintain cellular physiological functions. The
dysregulated fatty acids metabolism causes excessive synthesis and
catabolism, leading to various diseases, such as type 2 diabetes,
cardiovascular diseases, liver diseases, neurodegenerative diseases,
and cancers (Hosseini et al., 2020). Acyl-CoA synthetase long-
chain family 4 (ACSL4) is a key enzyme that catalyzes long-chain
fatty acids activation, and abnormal expression of ACSL4 is closely
related to various biological responses, including steroidogenesis,
inflammation response, cell death, immune activation response,
and so on (Liao et al., 2022). Specifically, ACSL4 participates in
ferroptosis, a promising target for tumor therapeutics. Moreover,
previous studies found that ACSL4 had certain effects on cancer
progression, recurrence, and prognosis, and was expected to become
an available tumor biomarker and therapeutic target.

This review demonstrates the latest progress in the roles of the
ACSL4 in different tumors. First, we display the structure and
function of the ACSL4. Second, we explore the effect of the
ACSL4 in the pathological mechanisms involved with tumors.
Third, we discuss the relationship between the ACSL4 and
different tumors. Understanding the exact role of ACSL4 in
cancer and the molecular mechanism involved would provide
ideas for finding new targets for cancer diagnosis and treatment
and developing new strategies for therapy.

ACYL-COA SYNTHETASE LONG-CHAIN
FAMILY 4

Long chain fatty acids (carbon chain length >12) are important
nutrients, which can be used as cellular fuel sources, membrane
lipid components, protein post-translational modification
(PTM), signal transduction pathways, energy storage within
adipose tissue, and precursors of bioactive lipid mediators
(Nakamura et al., 2014). Firstly, long chain fatty acids
combine with fatty acid transport proteins (FATP) to
transport into target cells. Then, free long chain fatty acids
converted to their respective acyl-CoA forms and catalyzed by
ACSL. Among the ACSL family enzymes in mammals,
ACSL4 prefers to catalyze several polyunsaturated fatty acids
(PUFAs), such as arachidonic acid (AA) and eicosapentaenoic
acid (EPA). The PUFAs are precursors of bioactive lipid
mediators, and the unique feature of ACSL4 suggests to be
participated in various pathophysiological events, including
lipid metabolism, ferroptosis, and immune response. Recent
studies have shown that ACSL4 expression changes in a
variety of cancers, and targeting at ACSL4 could affect tumor
progression, suggesting that ACSL4 may be a potential tumor
marker and therapeutic target.

Lipid Metabolism
Acyl-CoA synthetase long-chain family (ACSL) is a key enzyme
responsible for lipid metabolism in vivo, mainly catalyzing the
formation of 12–20 carbon chain length fatty acids (Kuwata and
Hara, 2019). ACSL in mammals consists of five ACSL isoenzymes
(ACSL1, ACSL3, ACSL4, ACSL5, and ACSL6), which have specific
tissue localization and different functions (Wu et al., 2009; Lopes-
Marques et al., 2013; Gao et al., 2016; Zhao et al., 2019; Nan et al.,
2021). ACSL1 is highly expressed in major energy metabolism
tissues such as fat, liver and muscle, functioning with fatty acid
intake (Suzuki et al., 1990). ACSL3 is primarily located in the brain,
prostate, and muscle and is responsible for activating
monounsaturated fatty acids (MUFA), thereby competitively
inhibiting PUFA-induced ferroptosis (Fujino et al., 1996; Teodoro
et al., 2017; Ubellacker et al., 2020). ACSL5 is elevated in brown
adipose tissue, small intestine and liver (Mashek et al., 2006).
Moreover, ACSL6 is located in the brain and muscle tissues,
which is responsible for the activation of docosahexaenoic acid
(DHA) (Fernandez et al., 2018).

In 1997, a novel acyl-CoA synthase based on arachidonic and
eicosatetraenoic acids was reported in PNAS (Kang et al., 1997). It
was named ACSL4 and was found in adrenal gland, epididymis,
brain, seminal vesicles, lungs, ovaries, liver, and many other
tissues, with the adrenal gland being the most abundant. Like
other mammalian ACS, ACSL4 consists of five regions: an
NH2 terminus, luciferase-like regions 1 and 2, a linker
connecting the two luciferase-like regions, and a COOH
terminus. The amino acids at the luciferin-like region 2 and
COOH terminal are highly identical in the ACS family,
suggesting that these two regions are critical for the catalytic
reaction of ACSL. ACSL4 lacks 50 amino acids corresponding to
the NH2 which may cause the different response in fatty acids
preference among ACSLs (Kang et al., 1997). The subcellular
localization of ACSL4 is mainly in endosomes (Liu et al., 2014)
and peroxisomes (Lewin et al., 2001) in the secretory pathway
(Ansari et al., 2017). Moreover, ACSL4 transfers to the plasma
membrane (Küch et al., 2014) and the endoplasmic reticulum
regions in contact with the mitochondria, named mitochondrial
associated membranes, which is responsible for fatty acids
synthesis and β-oxidation (Tang et al., 2018).

The substrate specificities of the ACSL enzymes significantly
differ among the five isozymes, and in particular, ACSL4 prefers
PUFAs, such as AA and EPA as its substrate (Kang et al., 1997;
Kuwata and Hara, 2019). ACSL4 mainly catalyzed the long chain
PUFAs (including arachidonic acid 20:4 and adrenic acid 22:4) to
CoA-PUFAs. These products are then esterized into
phospholipids by multiple lysophosphatidylcholine
acyltransferase (LPCAT), facilitating the incorporation of
intracellular long-chain PUFAs into lipids membrane
structures (Jiang et al., 2021). In cancer cells, the uptake and
metabolism of fatty acids are often dysregulated. Fatty acid
activation is a key step that allows these biomolecules to enter
cellular metabolic pathways such as mitochondrial β-oxidation to
produce ATP or adipogenesis pathways. Enhanced expression of
particular ACSL4 was confirmed to be a feature of some more
aggressive cancers and may contribute to the oncogenic
phenotype (Radif et al., 2018).
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Ferroptosis
Ferroptosis is a new type of cell death characterized by a large iron-
dependent accumulation of lethal lipids and reactive oxygen species
(ROS), which is different from apoptosis, necrosis, and autophagy,
first proposed by Dixon in 2012 (Dixon et al., 2012). Commonly,
Ferroptosis is characterized by three basic features 1) Oxidation of
PUFA (containing membrane phospholipids); 2) Iron utilizing
related REDOX activity; 3) Loss of repair ability of lipid
hydroperoxide (LOOH). Specifically, the cell death process is
accompanied by the accumulation of a large number of irons, and
lipid peroxidation, and changes in some genes that regulate iron
homeostasis and lipid peroxidation metabolism. In the microscopic
structure of cells, there are smaller mitochondria than normal cells,
and the mitochondrial membrane shrinks, while the mitochondrial
crest decreases or disappears, and the outer membrane is broken, but
the morphological changes in the nucleus are not obvious (Lei et al.,
2022). Up to now, ferroptosis has been linked to a variety of human
diseases, such as ischemic organ injury, neurodegeneration and
cancer (Su et al., 2020; Li and Huang, 2022).

As shown in Figure 1, canonical pathway of ferroptosis includes
lipometabolic disturbance, glutathione (GSH)-glutathione
peroxidase 4 (GPX4) exhaustion, cystine deprivation and
abnormal iron metabolism. As for anti-ferroptosis pathway,
ferroptosis suppressor protein 1(FSP1)- coenzyme Q (CoQ10)-
Nicotinamide Adenine Dinucleotide Phosphate (NADPH) and
methovalerate pathway are well-studied (Stockwell, 2019).
Importantly, the phospholipid acyl chain remodeling pathway is
the key process to ferroptosis. Specifically, AA and other PUFAs
from lipid bilayer can be metabolized into AA-CoA and AA-PL by
ACSL4 and LPCAT, respectively.

Ferroptosis is tightly associated with lipid peroxidation, in
which enzymes that regulate PUFA metabolism, especially
ACSL4. ACSL4 activates PUFAs and sensitizes cancer cells to
ferroptosis in immunotherapy-related settings. Exogenous
oxygen radicals generated by photodynamic therapy could
peroxidize PUFAs (accompanied with higher expression of
ACSL4) and promote ferroptosis to cancer treatment (Shui
et al., 2021). Suppression ACSL4 by genetic or
pharmacological inhibition could act as a specific anti-
ferroptotic rescue pathway (Kagan et al., 2017). Studies
showed that ionizing radiation induced ferroptosis in cancer
cells by inducing ROS and activating ACSL4 (Lei et al., 2020).
Therefore, ACSL4 could become a promising drug target for
certain tumor treatment via ferroptosis pathway.

Immune Response
Commonly, ACSL4 has a wide range of biological effects, and has
been reported to be involved in inflammation, steroid production,
cell death, and so on. ACSL4 is found in adrenal zonulate and
reticulum zonules, luteal and interstitial luteal cells of ovary, and
interstitial cells of testis, participating in various immune responses.

It is well-known that ACSL4 can activate AA to initial the
production processes of prostaglandin and leukotrienes synthesis.
Then nonspecific immune response is activated through the release
of inflammatory medium. Recently, Liao et al. (2022) demonstrated
ACSL4 could play an essential role in CD8+ T cell (CTL) mediated
specific immune response, correlating with increased
immunosurveillance and responding to checkpoint blockade
(Kepp and Kroemer, 2022). Specifically, Figure 2 shows that
interferon-γ (IFN-γ) secreted by CD8+ T cells, together with AA,
can promote ACSL4-mediated ferroptosis, which is amode of action
for CTL-mediated tumor killing. IFN-γ stimulates ACSL4 and
changes the lipid pattern of tumor cells, thereby increasing the
binding of AA to C16 and C18 acyl-chain phospholipids. Common
C16 and C18 fatty acids palmitic and oleic acid in blood promote

FIGURE 1 | The brief description of canonical ferroptosis pathway.
Cystine enters into cells through the cystine/glutamic acid reverse transporter
(System Xc-) and then reduces to cysteine in the glutathione (GSH). GSH acts
as a cofactor of glutathione peroxidase 4 (GPX4) to promote the
reduction of phospholipid hydroperoxides (PLOOHs) to corresponding
alcohols (PLOHs) in cells. Essential lipid peroxidase acyl-CoA synthase long
chain family member 4 (ACSL4) and lysophosphatidylcholine acyltransferase
(LPCAT) activate PUFA into PUFA-CoA and PUFA-PL, respectively, leading to
lipid peroxidation.

FIGURE 2 | The potential role of ACSL4 in specific immune responses
mediated by CD8+ T cells. IFN-γ secreted by CD8+ T cells stimulates
ACSL4 and alters tumor cell lipid patterns, thereby increasing the binding of
AA in C16 and C18 acyl-chain phospholipids. Lipid peroxidation then
leads to ferroptosis of tumor cells.
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IFN-γ + AA induced ferroptosis of ACSL4-associated tumors.
Interestingly, low doses of AA enhanced tumor ferroptosis and
enhanced spontaneous and immune checkpoint blockade (ICB)
-induced antitumor immunity. ACSL4 activates PUFAs and
sensitizes cancer cells to ferroptosis in immunotherapy-relevant
settings. Late study found genetic deletion of ACSL4 could result
in an impaired antitumor CD8+ T cell responses (Drijvers et al.,
2021). These findings provide insights into how the metabolic and
immune milieu could be used to promote ferroptosis (Friedmann
Angeli et al., 2022).

ACYL-COA SYNTHETASE LONG-CHAIN
FAMILY 4 AND CANCER

Recently, reprogramming of cellular energetics is a hallmark of
cancer attracts researchers’ attention (Pavlova and Thompson,
2016). Fatty acids, on the one hand, provide energy for cells by
replacing glucose with β-oxidation (Park et al., 2016; Manley
et al., 2017) and, on the other hand, drive phospholipid anabolic
metabolism, which increases membrane biosynthesis and induces
the production of signaling proteins in cancer cells (Röhrig and
Schulze, 2016; Tan et al., 2018).

Among the five mammalian ACSL family members,
ACSL1 and ACSL3 are involved in facilitating cancer
progression, while ACSL5 participates in the pro-apoptotic
sensing of cells, acting as a tumor suppressor (Quan et al.,
2021). However, as shown in Table 1 ACSL4 could play
controversial roles being as a tumor accelerator or tumor
suppressor depending on the specific cancer types and tissue
environment. ACSL4 activate long chain fatty acids to initiate a
number of intracellular lipid metabolic pathways (Kuwata and
Hara, 2019; Rossi Sebastiano and Konstantinidou, 2019).
Emerging evidences showed that dysregulated expression of
ACSL4 was tightly associated with various diseases and
especially with cancers (Dattilo et al., 2019; Orlando et al.,
2019; Rossi Sebastiano and Konstantinidou, 2019).
Mechanisms of ACSL4 involvement in tumor development
may include iron-dependent, non-apoptotic, and cell death
pathways (Doll et al., 2017), drug resistance caused by
metabolic recombination (Orlando et al., 2019), arachidonic

acid-dependent tumorigenesis (Orlando et al., 2012), steroid
production (Wang et al., 2019) and activation of intracellular
pro-cancer signaling pathways (Wu et al., 2015). In fact, the
predictive value of ACSL4 in several cancers has been revealed by
a multiple databases analysis (Yu et al., 2022). Specifically,
ACSL4 is positively correlated with immune infiltration in the
tumor microenvironment, which is intensively related to
prognosis in breast invasive carcinoma and skin cutaneous
melanoma. Additionally, ACSL4 point mutations and ACSL4-
associated hypomethylation usually indicated poor prognosis in
generalized carcinoma (Yu et al., 2022). Below, we would like to
introduce the relationship between ACSL4 and different cancers,
respectively.

Acyl-CoA Synthetase Long-Chain Family
4 and Breast Cancer
Breast cancer is one of the most dangerous diseases threatening
women’s/men’s health. New estimates found that nearly
440,000 patients died of breast cancer each year (Wang et al.,
2017). Unfortunately, breast cancer still has no effectively
predictive and prognostic biomarkers. Recent evidences
showed that inducing ferroptosis may enhance the efficacy of
cancer therapy. ACSL4 have been well established as the positive
regulator of ferroptosis and could be served as a novel predictive/
prognostic breast cancer biomarker.

Recently, clinical studies demonstrated that higher
ACSL4 expression was related with enhanced sensitivity to
neoadjuvant chemotherapy in breast cancer, leading to a better
overall survival (Sha et al., 2021). Moreover, nuclear protein Ki-
67, whose function is closely related to mitosis, is considered as a
marker of cell proliferation levels (Denkert et al., 2015). Several
studies have shown that high expression of Ki-67 was
accompanied with higher risk of recurrence, poor prognosis,
and lower survival time. Interestingly, ACSL4 was found be
negatively correlated with Ki-67 expression in breast cancer
patients (Ragab et al., 2018). As for cell studies showed
targeting ACSL4 could improve the response to irradiation
and inhibit migration activities (Kwon et al., 2021). Negar
Dinarvand found the prognostic significance of the expression
of ACSL4 in breast cancer patients, and it was closely correlated

TABLE 1 | Impact of ACSL4 expression in different cancer types.

Target Cancer type Effect References

ACSL4 Breast
cancer

ER
(+)

Overexpression is a predictor of good prognosis of breast cancer Ragab et al. (2018), Dinarvand et al. (2020)

ER
(−)

Overexpression increases the aggressiveness of breast cancer Maloberti et al. (2010), Monaco et al. (2010),
Yu et al. (2022)

Lung cancer Low expression has a poor prognosis in lung adenocarcinoma Zhang et al. (2021)
Colorectal cancer KRAS mutant colorectal cancer cell line shows significant upregulation of ACSL4 Park et al. (2018)
Hepatocellular
carcinoma

OS and DFS time of HCC patients with high ACSL4 expression are significantly shortened Calvisi et al. (2011), Matter et al. (2014), Wang
et al. (2020)

Cervical cancer High expression of ACSL4 promotes the sensitivity of cervical cancer cells to
chemotherapy

Xiaofei et al. (2021)

Prostate cancer Downregulation of ACSL4 inhibits the proliferation, migration, invasion and growth of non-
AR dependent prostate cancer cells

Baron et al. (2004), Currie et al. (2013)

ER, estrogen receptor; OS, overall survival; DFS, disease-free survival.
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with tumor suppressor p53 (Dinarvand et al., 2020). In
conclusion, these results suggested that higher expression of
ACSL4 was a predictor of better prognosis of breast cancer.

Nevertheless, there were also evidences that
ACSL4 overexpression increased the aggressiveness of breast
cancer. ACSL4 expression was significantly higher in breast
cancer tissues than that in adjacent tissues. ACSL4 expression
was 0.386 times higher on average in p53-positive patients than
in p53-negative individuals. Additionally, in both breast tumor cells
and animal models, the use of PRGL493, a chemical inhibitor of
ACSL4 impeding de novo steroid synthesis, could block cell
proliferation and tumor growth, and promote the sensitivity of
tumor cells to chemotherapeutic and hormonal treatment
(Castillo et al., 2021). It is well-known that estrogen receptor
(ER) negative breast cancer is less sensitive to chemotherapy,
more likely to relapse, leading to poor prognosis. RT-PCR
detections confirmed that only 2 of the 19 (10.5%) ER positive
breast cancer cell lines existed ACSL4 mRNA expression, and
ACSL4 mRNA was broadly expressed in 20 of 31 (64.5%) ER
negative cell lines (Monaco et al., 2010). This indicated that
ACSL4 mRNA expression may be correlated with more
aggressive ER negative breast cancer. Moreover, Maloberti et al.
(2010) found that ACSL4 was significantly upregulated in highly
aggressiveMDA-MB-231 breast cancer cells and played a key role in
enhancing its aggressiveness. Moreover, ACSL4 was found to be
more expressed in estrogen receptor (ER)-negative cancers, such as
quadruple negative breast cancer (QNBC), than that in ER-positive
cancers (Yen et al., 2017). ACSL4 levels were negatively correlated
with hormone/growth factor receptor expression and positively
correlated with the most aggressive form of QNBC (Huang et al.,
2020). According to these studies, lower ACSL4 expression points
more beneficial prognosis, and ACSL4 may serve as a promising
prognostic biomarker for invasive breast cancer. The prognosis of
breast cancer predicted by ACSL4 is related to the type of breast
cancer. In ER receptor negative patients, higher ACSL4 expression
could predict the poor prognosis.

ACSL4 serves not only as a prognostic biomarker but also as a
therapeutic target. ACSL4, as a crucial molecule that regulates
ferroptosis, is preferentially expressed in a group of basal-like
breast cancer cell lines, and its expression appears to be closely
associated with sensitivity to RSL3-induced ferroptosis (Doll
et al., 2017). In addition, ACSL4 may be an effective
therapeutic target for the regulation of multiple transporters
associated with anti-cancer resistance through the mammalian
target of rapamycin (mTOR) pathway, thereby restoring drug
sensitivity in breast cancer with poor prognosis (Orlando et al.,
2019). Thus, ACSL4 may serve as a valuable biomarker for breast
cancer as well as a target for therapy in the way of promoting
ferroptosis and drug sensitivity.

Acyl-CoA Synthetase Long-Chain Family
4 and Lung Cancer
Lung cancer has a high mortality rate, which is one of the
common type of cancer (Siegel et al., 2017). The mechanism
of lung cancer progression and the exploration of treatment
strategies are still important research topics (Liu et al., 2018).

Adenocarcinoma of lung is the dominant pathological types,
accounting for approximately 30% of new diagnosed lung
cancer worldwide (Barta et al., 2019). Due to early metastasis
and recurrence, the 5-year survival rate of lung adenocarcinoma
is less than 30% (Lin et al., 2019).

The Cancer Genome Atlas (TCGA) analyzing and clinical
samples verification showed that ACSL4 was frequently
downregulated in lung adenocarcinoma (Zhang et al., 2021).
Furthermore, Kaplan-Meier survival analysis showed that
patients with lower ACSL4 expression had worse progression-
free survival and overall survival than patients with higher
ACSL4 expression (Zhang et al., 2021). Gene set enrichment
analysis found the increasing expression of ACSL4 was related
with ferroptosis-related proteins. In vivo experiments
demonstrated that knockdown of ACSL4 could improve the
ability of tumor invasiveness and inhibit ferroptosis, while
ACSL4 overexpression represented the opposite effects (Zhang
et al., 2021). Additionally, previous studies found free fatty acid
metabolism could affect ACSLs expression and cell sensitivity to
ferroptosis (Magtanong et al., 2019). High-fat intervention on
cancer cells could inhibit erastin-induced ferroptosis by
decreasing the expression of ACSL4. It was reported that the
nuclear paraspeckle assembly transcript 1 (NEAT1, a long non-
coding RNA) was regarded as a novel target for diagnosis and
therapy in human tumors, and higher NEAT1 expression was
together with worse survival in cancer patients (Dong et al.,
2018). Recent study found that the NEAT1 could target binding
with ACSL4 and downregulate the expression of ACSL4, resulting
in decreased sensitivity of non-small cell lung cancer (NSCLC)
cells to ferroptosis (Wu and Liu, 2021). Although most studies
revealed that the low expression of ACSL4 in lung cancer was a
biomarker of adverse outcomes, some studies showed that the
upregulation of ACSL4 gene may be one of the causes of lung
cancer. The expression of ACSL4 gene was significantly
upregulated in the tobacco exposure group compared with the
non-smoking group (Xing et al., 2015).

Acyl-CoA Synthetase Long-Chain Family
4 and Colorectal Cancer
Colorectal cancer is seen with increasing frequency, being one of
the most common causes of cancer mortality worldwide. The
important reasons of death should be resulted from late diagnosis
and recurrence or metastasis of tumor cells and new therapeutic
strategies are urgently needed (Rajalingam et al., 2007; Prior et al.,
2012). As we all-known that KRAS mutations were one of the
most prominent oncogenes in colorectal cancer. Studies have
found that mutations in KRAS were found in 30%–50% of
colorectal cancers (Liu et al., 2011). In addition, patients with
KRAS mutations represented a poor prognosis compared to all
other patients (Inoue et al., 2012).

Here, we focus on the potential roles of ACSL4 in colorectal
cancer. Dysregulated lipid metabolism resulted in cancer progression
and previous studies indicated that ACSLs were essential for lipid
regulation. Systematic analysis and in vitro experiment confirmed
that high expression of ACSL4 predicted a worse prognosis in
colorectal cancer and downregulating ACSL4 could reduce cell
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proliferation and invasion (Chen et al., 2016). Metabolic
reprogramming is a prominent feature of cancer. ACSL/stearoyl-
CoA desaturase (ACSL1/ACSL4/SCD) metabolic network disorders,
resulting in elevation of acylcarnitines, downregulation of
polyunsaturated fatty acids (PUFA), and upregulation of
monounsaturated fatty acids (MUFA), could cause invasion and
poor prognosis in colorectal cancer (Sánchez-Martínez et al., 2017).
Unlike the partly positive roles of ACSL4 in breast cancer, higher
ACSL4 expression resulted in colorectal cancer cells proliferation and
migration accompanied by a shorter survival time in colorectal cancer
patients (Sánchez-Martínez et al., 2017). Moreover, Park et al. (2018)
treated colorectal cancer cells with bromelain and analyzed the
expression level of genes involved in cell signaling pathway. The
results showed that compared with KRAS wild-type colorectal cancer
cell line, KRAS mutant colorectal cancer cell line showed significant
upregulation of ACSL4. Specific shRNA knockout of ACSL4 could
inhibit erastin-induced ferroptosis in KRAS mutant DLD-1 cells,
indicating that ACSL4was a key regulatorymolecule for bromelain to
effectively inhibit KRAS mutant colorectal cancer by stimulating
ferroptosis (Park et al., 2018). The result showed that bromelain could
significantly inhibit the growth and proliferation of colorectal cancer
cells, but the downstream molecular mechanism was unknown.

Acyl-CoA Synthetase Long-Chain Family
4 and Hepatocellular Carcinoma
Hepatocellular carcinoma (HCC) has become the second leading
cause of cancer mortality worldwide, resulting in 819,000 deaths per
year (Fitzmaurice et al., 2019). Furthermore, HCC is the main
pathological pattern among all primary liver malignancies with
90% composition (Jemal et al., 2011). As we all-known, lipid
metabolic reprogramming is tightly related with HCC
proliferation, migration and invasion. Interestingly, ACSL4, a
member of acyl-CoA synthetases family, is frequently upregulated
in HCC and associated with poor prognosis. Furthermore,
ACSL4 isoforms could be used to divided HCC,
cholangiocarcinoma (CCA) and hepatic metastases (Ndiaye et al.,
2020). Functionally, ACSL4 knockdown could induce decreased cell
proliferation, whereas upregulation ACSL4 expression could activate
tumor formation in vitro and in vivo. The molecular mechanisms
could be relatedwithmicroRNAs, PTMs, oncogene activation, and so
on. Specifically, evidences showed that microRNAs miR-211-5p was
involved in the HCC progression and prognosis, while ACSL4 was a
direct downstream target of miR-211-5p. And miR-211-5p could
inhibit the malignant phenotype by reducing the expression of
ACSL4 protein (Qin et al., 2020). Compared with normal tissues,
the relative expressions of miR-211-5p in HCC tissues and cell lines
were significantly downregulated, and the upregulation of miR-211-
5p in vitro continuously inhibited. Moreover, ACSL4 could
upregulate the master lipogenesis regulator sterol regulatory
element binding protein 1 (SREBP1) (Chen et al., 2021) and
stabilize the oncoprotein c-Myc, resulting in HCC prognosis
(Chen et al., 2020). Glycosylation was a common PTM in cancer
and immunoprecipitation test demonstrated that ACSL4 protein
could be O-GlcNAcylated to maintain protein stability and
continuously promote cancer cell proliferation (Wang et al., 2020).
Additionally, autophagy dysfunction is a crucial event in the

progression of HCC, accounting for increasing cell proliferation
and invasion (Calvisi et al., 2011; Ho et al., 2012; Matter et al.,
2014). Specifically, the level of mTOR phosphorylation significantly
increased when ACSL4 was overexpressed, and decreased when
ACSL4 was downregulated. Moreover, rapamycin treatment saved
the role of overexpression of ACSL4 in promoting cell growth and
inhibiting cell apoptosis.

Moreover, clinical studies have shown that ACSL4 expression
level was directly related to HCC prognosis (Sun and Xu, 2017).
Oncomine database and TCGA databases were used to explore
the relationship between the expression of ACSL4mRNA inHCC
and its prognosis. The results showed that the expression of
ACSL4 mRNA in HCC tissues was significantly higher than that
in normal tissues. Survival analysis showed that the overall
survival and disease-free survival time of HCC patients with
high ACSL4 expression were significantly shortened (Cheng et al.,
2009; Iavarone et al., 2011). However, ACSL4 could play a
positive role in sorafenib-resistant patients with HCC.
Sorafenib is the first-line HCC treatment agent and there
exists no effective biomarkers to predict sorafenib response
sensitivity (Marisi et al., 2018). Recently, studies showed
ACSL4 was positively correlated with the efficacy of sorafenib
through cell experiment and clinical study. Cell experiments
found the expression of ACSL4 protein was negatively related
with half maximal inhibitory concentration (IC50) values of
sorafenib in hepatoma cell line. Clinical study confirmed the
expression of ACSL4 in excised HCC tissue was positively related
with sorafenib reaction (Feng et al., 2021). Taken together,
ACSL4 could be an essential prediction factor for sorafenib
sensitivity in HCC.

Acyl-CoA Synthetase Long-Chain Family
4 and Cervical Cancer
Cervical cancer is one of the key life-threating disease among
women worldwide (Schiffman et al., 2007; Crosbie et al., 2013;
Manini and Montomoli, 2018). Recently, researcher found
oleanolic acid (OA), a substance obtained from the leaves,
fruits, and rhizomes of plants, could significantly reduce the
volume of cervical cancer in mice, but the mechanism is
unclear (Xiaofei et al., 2021). Interestingly, ACSL4 was
highly expressed in cervical cancer cells treated with OA.
Using siRNA to inhibit the expression of ACSL4 in cervical
cancer cells, the suppression effect of OA on cell proliferation
and viability was cancelled (Xiaofei et al., 2021). These results
suggest that OA could promote ACSL4-dependent ferroptosis
and may be a potential therapeutic approach for cervical
cancer. Moreover, previous studies have clarified that
circular RNA (circRNA) could participate in inhibiting
tumorigenesis and tumor progression. Ou et al. (2022)
found circular RNA (CircLMO1) could inhibit cervical
cancer proliferation by activating ACSL4-induced
ferroptosis, and could be a promising anti-cancer biomarker
for cervical cancer. As for chemotherapy treatment of cervical
cancer, ACSL4-mediated ferroptosis could play an important
role in propofol synergistic anticancer effects with paclitaxel
(Zhao et al., 2022).
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Acyl-CoA Synthetase Long-Chain Family
4 and Prostate Cancer
Prostate cancer is one of the most frequent cancer threat to men’s
health (Jemal et al., 2008). Surgery or drugs that target androgen
receptor (AR) signaling served as the first-line therapy (Harris
et al., 2009). As is well-known that castration resistance is an
essential reason for poor efficacy of prostate cancer. Studies have
found that fatty acid metabolism dysregulated was highly
associated with the maintenance of high proliferation rate and
tumor growth of prostate cancer cells (Baron et al., 2004; Currie
et al., 2013).

Recently, ACSL4, a rate-limiting enzyme, functioning as the
conversion of long chain fatty acids into activated fatty acid has
sparked great interests of researchers (Monaco et al., 2010; Wu et al.,
2015). Studies have shown that AR, as a transcription inhibitor, could
bind to the ACSL4 promoter region and inhibit its transcription.
Inhibition of androgen-AR signaling, significantly increased
ACSL4 levels. Downregulation of ACSL4 significantly inhibits the
non-AR dependent prostate cancer cells proliferation, migration and
invasion (Ma et al., 2021). Moreover, docetaxel resistance is a key
problem in clinical therapy of metastatic prostate cancer and the
mechanism is unclear. Researchers found lncRNAs NEAT1 could
promote docetaxel-resistant prostate cancer cells proliferation and
invasion by sponging miR-204-5p and miR-34a-5p, leading to an
increasing expression of ACSL4 (Jiang et al., 2020). And inhibitor
targeting to ACSL4 could reduce prostate cancer growth, therapeutic
resistance and steroidogenesis (Castillo et al., 2021).

SUMMARIZE AND PROSPECTIVE

In this article, we introduce the cell localization, structure and
function of ACSL4, and mainly summarize the evidences of
ACSL4 as a potential biomarker and therapeutic target in
many cancer types. ACSL4 could activate fatty acids by adding
CoA and abnormal expression of ACSL4 was reported in several
cancers and may affect prostaglandin biosynthesis, fatty acid β-
oxidation, ferroptosis, and phosphatidyl chain remodeling.
ACSL4 behaves as a crucial regulator in lipid metabolism,
ferroptosis, and immune response, which contributes to its
tight association with the onset and progression of various
cancers. Due to different cancer types or different subtypes of
the same cancer, ACSL4 showed different effects in promoting
tumor proliferation or inhibiting cancer cell growth. Specifically,
the expression of ACSL4 is significantly upregulated in multiple
types of cancer, including breast ER negative, colorectal, and
prostate, while it becomes downregulated in other cancers (breast
cancer ER positive, lung cancer and cervical cancer). Commonly,
in ACSL4 high expressing cancers (e.g., colon or ovarian cancer),
increased expression of ACSL4 typically predicts unfavorable
outcome/prognosis, while in the ACSL4 low expressing
cancers (e.g., liver cancer), decreased expression of ACSL4 is
corelated to unfavorable outcome/prognosis. In this context,
ACSL4 may be capable of identifying abnormalities to serve as
risk, diagnostic or prognostic markers as well as therapeutic
targets in a wide range of cancers.

However, the Janus-faced role of ACSL4 in cancers due to the
diverse pathophysiology of cancers and the heterogeneous nature
of tumors, make the lack of consistency becomes a problem to
evaluate the indicative effect of biomarker ACSL4. This may be
associated with the different roles of ACSL4 in distinct cancers.
Specifically, activation of ACSL4 may play a role in lipid
metabolism reprogramming, providing an efficient supply for
tumor survival, or inducing antitumor effects leading to tumor
death. However, we cannot accurately evaluate whether
ACSL4 has more benefits than harms in specific antitumor
responses. Although ACSL4 is the activator of ferroptosis in
distinct cancers, whether ferroptosis/ACSL4 benefit to improve
the outcome of tumors need careful identification. On the one
hand, the response to ferroptosis is regulated by a complex
network of epigenetic, post-transcriptional modifications, and
post-translational modifications. Targeting those pathways that
regulate ferroptosis in tumor cells is an emerging antitumor
strategy because malignant tumor cells often rely on oncogenic
and/or survival signals, making them particularly vulnerable to
ferroptosis. On the other hand, ferroptotic injury can trigger
inflammation-related immunosuppression in the tumor
microenvironment, thereby facilitating tumor growth.
Therefore, ACSL4 could play complex roles in tumor
promotion and tumor suppression when analyzing different
tumors.

As we all-known each candidate biomarker has their own the
limitations. Considering the tumor heterogeneity and unique
micro-environment, strategy with combinatorial approaches
for different tumor markers could be a more accurate way to
predict tumor prognosis or therapeutic effect. Therefore, a single
biomarker is not reliable for decision making, while a
combination of biomarkers and/or algorithms supported by
multiple methods will be more successful.
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