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In the USA, each year, almost 5.4 million people are diagnosed with skin cancer. Melanoma is one of the most dangerous types of
skin cancer, and its survival rate is 5%. The development of skin cancer has risen over the last couple of years. Early identification
of skin cancer can help reduce the human mortality rate. Dermoscopy is a technology used for the acquisition of skin images.
However, the manual inspection process consumes more time and required much cost. The recent development in the area of deep
learning showed significant performance for classification tasks. In this research work, a new automated framework is proposed
for multiclass skin lesion classification. The proposed framework consists of a series of steps. In the first step, augmentation is
performed. For the augmentation process, three operations are performed: rotate 90, right-left flip, and up and down flip. In the
second step, deep models are fine-tuned. Two models are opted, such as ResNet-50 and ResNet-101, and updated their layers. In
the third step, transfer learning is applied to train both fine-tuned deep models on augmented datasets. In the succeeding stage,
features are extracted and performed fusion using a modified serial-based approach. Finally, the fused vector is further enhanced
by selecting the best features using the skewness-controlled SVR approach. The final selected features are classified using several
machine learning algorithms and selected based on the accuracy value. In the experimental process, the augmented HAM10000
dataset is used and achieved an accuracy of 91.7%. Moreover, the performance of the augmented dataset is better as compared to
the original imbalanced dataset. In addition, the proposed method is compared with some recent studies and shows
improved performance.

1. Introduction

The development of skin cancer has risen throughout the
previous decade [1]. Ultraviolet rays in the sun damage the
skin over time and cause cancer cells to develop [2].
Usually, such conditions have hidden risks that lead to a
lack of confidence and psychological distress in humans
and to skin cancer risks. Several types of skin cancer exist,

including basal cells, melanoma, actinic keratosis, and
squamous cell carcinoma [3]. The squamous cell carcinoma
is contrasted against actinic keratosis (solar keratosis) [4].
Each year, the incidence rate of both melanoma and
nonmelanoma continues to grow [2]. The deadliest form of
skin cancer is melanoma and quickly spread to other body
parts due to the malignancy of neural crest neoplasia of
melanocytes [5].
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In the United States, almost 5.4 million new cases of skin
cancer are detected each year. Due to melanoma, more than
10,000 deaths are registered every year in the USA [6]. In the
USA, 104,350 new cases of skin cancers were diagnosed
during the year 2019, where the numbers of deaths were
7230. In the year 2020, 196,060 Americans are diagnosed
with melanoma. According to these facts, melanoma cases
are increasing approximately 2% [7]. Recently, in the year
2021, 207.39 K peoples are diagnosed with skin cancer
whereas the numbers of deaths are 70.18 K. According to the
facts, when the lesion is detected earlier, the survival rate
increases approximately 98% [7]. The summary of diagnoses
and deaths due to skin cancer is illustrated in Figure 1.

Dermatologists diagnose malignant lesions via a der-
moscopic visual examination technique [8]. Diagnosis of
skin cancer using dermoscopy is challenging due to various
textures and wounds [9]. However, the manual inspection of
dermoscopic images makes it difficult to diagnose skin
cancer with better accuracy. The accuracy of the lesion di-
agnosis depends on the dermatologist’s experience [9]. Few
other techniques are available for diagnosing skin cancer,
such as biopsy [7] and macroscopic [10]. Due to the complex
nature of skin lesions, the clinical methods need more at-
tention and time [11, 12].

The computer-based detection (CAD) techniques are
introduced by several researchers in medical imaging [7, 13].
They introduced CAD techniques for several cancers such as
skin cancer [14], brain tumor [15, 16], lung cancer [17, 18],
COVID-19 [19, 20], and more [21-23]. A simple CAD
technique consists of four key steps such as preprocessing of
input images, detection of infected parts, features extraction,
and classification. A computerized method can be helpful as
a second opinion for dermatologists to verify the manual
diagnosis results [8]. The advancement in machine learning,
like deep learning, has shown much achievement in medical
imaging in the last couple of years. Convolutional Neural
Network (CNN) is a form of deep learning used for auto-
mated features extraction [6]. A convolutional neural net-
work is a computer vision technique that automatically
distinguishes and recognizes images’ features [24]. Due to its
high accuracy, it has attracted interest in medical image
processing, agriculture, biometric, and surveillance, to name
a few. A simple CNN typically entails a series of layers such
as a convolutional layer, ReLU layer [25], normalization
layer, pooling layer [26], fully connected layer, and Softmax
layer [27]. In many techniques, researchers used some
pretrained deep learning models for the classification tasks.
A few publically available pretrained deep learning models
are AlexNet, VGG, GoogleNet, InceptionV3, and ResNet to
name a few [28]. They used these models through transfer
learning [7]. Few researchers used feature selection and
fusion techniques to improve recognition accuracy [29, 30].

The computer-aided diagnostic systems can allow der-
matologists and physicians to make decisions, decrease
diagnostic costs, and increase diagnostics reliability [31]. An
automated skin lesion identification mechanism is chal-
lenging due to several challenges such as changing ap-
pearance and imbalanced datasets to name a few [32].
Chaturvedi et al. [6] presented an automated framework for
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FiGURE 1: Graph of infected and death cases of skin lesion.

multiclass skin cancer classification. Five steps were in-
volved in the presented method: dataset preprocessing,
classification models (pretrained deep learning), fine-
tuning, feature extraction, and performance evaluation.
During the evaluation process, it is noted that the maxi-
mum accuracy of 93.20% was achieved for an individual
model (ResNet-101), whereas a complete precision of
92.83% was performed on the ensemble model (Incep-
tionResNetV2 + ResNet-101). In the end, they concluded
that the training of deep learning models with the best
setup of hyperparameters could be performed better than
even ensemble models. Hsin et al. [33] presented the au-
tomatic lightweight diagnostic algorithm for skin lesion
diagnosis. The presented algorithm was more reliable,
feasible, and easy to use. For the experimental process, the
HAM10000 dataset was used and achieved an accuracy of
85.8%. Besides, this method was tested on a five-class
KCGMH dataset and achieved an accuracy of 89.5%.
Kumar et al. [9] presented an automated electronic device.
They considered numerous challenges such as skin cancer
injuries, skin colors, asymmetric skin, and the shape of the
area affected. They used fuzzy C-means to divide homo-
geneous image regions. Then, some texture features are
extracted and trained with the Differential Evolution (DE)
algorithm. The experimental process was conducted on
HAM10000 and achieved an accuracy of 97.4%.

Afshar et al. [8] presented a computerized method for
lesion localization and identification. For the lesion locali-
zation, they used RCNN architecture and extract deep
features. Later, the best features are selected using Newton-
Raphson (IcNR) and artificial bee colony (ABC) optimi-
zation. Daghrir et al. [5] developed a hybrid approach for
diagnosing suspect lesions that may be checked for mela-
noma skin cancer. They used a coevolutionary neural net-
work and two classical classifiers in three different methods.
Shayini [2] presented a classification framework using
geometric and textural information. They used ANN for the
final features classification. Results showed improved ac-
curacy as compared to the existing techniques. Akram et al.
[7] presented deep learning-based lesion segmentation and
classification process. They used Mask RCNN architecture
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for lesion segmentation. Later, a 24-layered CNN archi-
tecture was designed for the multiclass skin lesion
classification.

Moreover, many other techniques are introduced such as
deep learning and improved moth-flame optimization [34],
teledermatology-based architecture [35], hierarchical three-
step deep framework [35], and more [36, 37].

1.1. Challenges. Several challenges affect the multiclass le-
sion classification accuracy. As compared to binary class
classification, the multiclass problem is a complex and
challenging recognition process. The following challenges
are considered in this research work:

(i) Classifying multiple skin lesions into a correct class
is challenging due to the high similarity among
different lesions.

(ii) The imbalanced dataset classes increase the prob-
ability of a higher sample class.

(iii) Multiclass skin lesion types have similar shapes,
colors, and textures, which also extract similar
features. In the later stage, those features are clas-
sified into an incorrect skin class.

(iv) In the fusion step, multiproperties features are fused
in one matrix for better accuracy, but it is a high
chance that several redundant features are also
added. This kind of problem later increases the
computational time.

(v) In the feature extraction step, several essential
features are also removed, which may cause a
problem of misclassification. Therefore, a good
feature optimization technique is required [38].

1.2. Major Contributions. In this work, an automated
technique has been proposed for multiclass skin lesion
classification. The significant contributions in this work are
as follows:

(i) Intraclass pixel change operations are implemented
for data augmentation based on the left to right flip,
up-to-down flip, and rotation at 90 degrees. This
step shifts entire image pixels for differentiating the
images from each other for a fair training of a deep
model.

(ii) A modified serial-based approach is proposed for
the fusion of extracted deep features.

(iii) A novel skewness-controlled SVR approach is
proposed for the best feature selection. The best-
selected features are finally classified using super-
vised learning algorithms.

The rest of the manuscript is organized in the following
order. Section 2 presented the proposed methodology in-
cluding deep feature, selection of best features, and fusion
process. Results and comparisons with existing techniques
are presented in Section 3. Finally, the manuscript is con-
cluded in Section 4.

2. Proposed Methodology

For the multiclass skin lesion classification, a new framework
was proposed using deep learning and features selection. The
proposed framework consists of a series of steps such as data
augmentation, model fine-tuning, transfer learning, feature
extraction, the fusion of extracted features, and selection of
best features. In the augmentation phase, three operations
are performed: rotate 90, right-left flip, and up and down
flip. In the fine-tuning model step, two models are opted,
such as ResNet-50 and ResNet-101, and updated their layers.
Later, transfer learning is applied to train both fine-tuned
deep models on augmented datasets. In the subsequent step,
features are extracted and performed fusion using a modified
serial-based approach. Finally, the fused vector is further
enhanced by selecting the best features using the skewness-
controlled SVR approach. The main architecture diagram of
the proposed framework is illustrated in Figure 2.

2.1. Data Augmentation. Data augmentation is a vital in-
formation extension approach in machine learning (ML).
Data augmentation showed much importance in deep
learning due to a massive amount of data for training a
model. In this article, the HAM10000 dataset is selected for
the experimental process. This dataset consists of seven
highly imbalanced classes. Initially, the HAM10000 dataset
includes more than 10,000 images of seven skin classes such
as 6705 images of melanocytic nevi, 1113 images in mela-
nomas, 1099 images in benign keratoses, 514 images in basal
cell carcinomas, 327 images of actinic keratoses, 142 images
in vascular lesions, and 115 images in dermatofibromas [39].
From this information, it is noted that few classes are highly
imbalanced; therefore, it is essential to balance this dataset.
On imbalanced datasets, the deep learning models are not
trained for better performance. A few sample images are
shown in Figure 3.

Three operations are performed in the data augmenta-
tion phase: rotate 90, right-left flip (LR), and up and down
flip (UD). These operations are applied multiple times until
the number of images in each class reached 6000. In the end,
the numbers of images in the newly updated dataset are
42,000, which are previously 10,000. Mathematically, these
operations are performed as follows.

Consider an image dataset p = {a,,...,a;} [40], where
a; € U is an example image from the dataset. Let g; have
tully N pixels; then, the homogeneous pixel matrix coor-
dinates (; or a; is defined as follows:

Y, Z, 1

Y, Z, 1
Ck=| . . > (D
|
Y, Z, 1

where each row of single-pixel indicates the exact coordi-
nates. Consider that the size of an input image is
256 x 256 x 3, represented by U, ;; having ith rows, jth
columns, and kth channels, where U; ; € R™/. The flip-up
(UD) operation is formulated as follows [41]:
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FIGURE 2: Architecture of proposed methodology.

FIGURE 3: Sample skin lesion images of the HAM10000 dataset [7].

Ut = Uj,i’ (2)

where U’ denotes the transposition of the original image.
This image is further updated as follows:

4
U = U(m+1—i)j’ (3)

where UV denotes the vertical flip image. The horizontal flip

(LR) operation is performed as follows:
UH = Ui(n+1—j)’ (4)

where U denotes the horizontal flip image. The third
operation, named rotate 90, is formulated as follows:

cosff —sinff 0
Rot=|sinfl cosf 1|, (5)
0 0 1

where Rot denotes the rotation matrix of the image. Vi-
sually, these operations are illustrated in Figure 4. This
figure shows that three operations are performed on each
original image: vertical flip (UD), horizontal flip (LR), and
rotate 90.

2.2. Convolutional Neural Networks. A convolutional
neural network (CNN) is a computer vision technique
that automatically distinguishes and recognizes images’
features [24]. A simple CNN architecture for image
classification is illustrated in Figure 5. In this figure, skin
lesion images are considered as input, passed to the
convolutional layer. In this layer, weights are transformed
into features that are further refined into the pooling layer.
Later, the features are transformed into 1D in a fully
connected layer. The features of this layer are finally
classified through the Softmax layer.
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2.3. Transfer Learning. Transfer learning is a technique to (x2), 2z €Z,x; €Q. (9)

define applied knowledge based on one or more source
activities. Consider a domain M consisting of two parts:

M ={z, Q(Z)}, (©)
where y is a feature space, and the distribution is marginal:
qQ(2), Z={zy,....2,},z € Z (7)

Given a two-component task U and X,

U= {p, QX|2)} ={p,0};

X ={x;,...,x,h ®)

X €

where ¢ is label space containing a prediction function; then,
¢ is trained as

Each vector of features in the M domain and § represents
an appropriate label.

0(x;) = (2:)- (10)

Suppose the source domain Mg and an objective domain
M, where M = {z, Q(Z)} and the task is Us and U, where
U = {9,Q(¢l2)}. Hence, TL is defined as follows:

(i) yg# yp: different feature space
(if) Q(Z,) # Q(Z;): different marginal possibilities

(iii) @g+# ¢p: different label spaces

(iv) Q(ZslY5) #Q(ZplY p): different

probabilities

conditional



Visually, this process is illustrated in Figure 6. This figure
describes that the ImageNet dataset used as source data has
1000 object classes. After transferring knowledge of the
source model to the target model, the weights and labels are
updated according to the target dataset. The HAM10000 skin
cancer dataset is utilized as a target dataset with seven skin
classes in this work.

2.4. Fine-Tuned ResNet-50 Deep Features. Residual Network
(ResNet) is a traditional neural network model for many
computer vision tasks utilized as an integrated network
element. The network has a depth of 50 layers and a size of
224 x 224 pixels in the input [42]. When it comes to residual
learning functions, ResNet may reformulate network layers
given an input mapping reference. The layers are stacked
directly within ResNet. The basic idea of ResNet-50 is to use
identity mapping to anticipate what is required to obtain the
final prediction of previous layer output [43]. ResNet-50
reduces the disappearing gradient effect by applying an
alternative bypass shortcut. It may help the model overcome
the overfitting training problem. Visually, it is shown in
Figure 7.

Moreover, a complete architecture is also given in
Figure 8. This figure describes that five residual blocks are
used in this network, and in each residual block, multiple
layers are added to convolve hidden layer features. Overall,
this network includes 50 deep layers with a 7 x 7 input layer
receptive field, followed by a max-pooling layer of 3 x 3
kernel size.

The last fully connected (FC) layer is removed, and a new
FC layer is added in the fine-tuning process. Then, the new
FC layer is connected with the Softmax layer and final
classification output layer. The fine-tuned architecture is
shown in Figure 9. This figure describes that the augmented
skin lesion dataset is considered an input to this network,
and in the output, seven classes of different skin cancer types
are gotten. After this, the TL technique is employed to train
this network, and a new modified network is obtained. In the
training process, the following parameters are initialized; for
example, the learning rate is 0.0001, the epochs are 100, the
minibatch size is 64, and the learning method is Stochastic
Gradient Descent (SGD). Features are extracted from the
global average pooling layer, which is later utilized for the
classification process. The dimension of an extracted feature
on this layer is N x 2048, where N denotes the dermoscopy
images.

2.5. Fine-Tuned ResNet-101 Deep Features. ResNet-101
consists of 104 layers composed of 33 squares, of which the
previous blocks use 29 squares directly [44]. Figure 10 shows
a brief description of the ResNet-101 CNN model. In this
figure, it is described that the output of the first residual
block is 112 x 112. After the first convolutional layer, a max-
pooling layer is added of filter size 3 x 3 and stride 2. Using
the same sequence, four more residual blocks are added, and
each block consists of several layers, as given in Figure 11.
This model was initially trained on the ImageNet dataset;
therefore, the output was 1000D.

Computational Intelligence and Neuroscience

In this work, this model is fine-tuned according to the
target dataset named HAM10000 having seven skin classes.
The FC layer is removed in the fine-tuning process and a new
FC layer is added with seven outputs. Later, the FC layer is
connected with the Softmax layer and output layer and
trained using TL. The following parameters are initialized in
the training process: the learning rate is 0.0001, epochs are
100, the minibatch size is 64, and the learning method is
Stochastic Gradient Descent (SGD). Features are extracted
from the average pooling layer, which is later utilized for the
classification process. On this layer, the dimension of
extracted features is N x 2048.

2.6. Feature Fusion. Feature fusion is an essential topic in
pattern recognition, where multisource features are fused in one
vector. The main purpose of feature fusion is to increase the
object information for accurate classification. In this work, we
consider the idea of a serial-based approach named modified
serial-based feature fusion. The proposed fusion approach
works in two sequential steps. In the first step, all features of
vectors are fused in one matrix, and later on, a standard error
mean- (SEM-) based threshold function is proposed.
Assume that P and Q are two function rooms on the
sample size pattern A. The corresponding two characteristic
vectors § € P and y € Q for an arbitrary sample are f € A.
The serial-based feature combination of f is defined as

W= ( i ) Of course, if the vector feature 6 is n-dimensional

and y is m-dimensional, then the combined serial feature w
is (n+ m)-dimensions [45]. A serial combined feature space
is created by combining all serially merged feature vectors of
pattern samples of (n +m)-dimensions. The resultant w
vector has dimension N x 4096. After this step, SEM is
computed of w using the following formulation:

(11)

Fus (i),

for w; > SEM,
Thr =

Nfus(j), -elsewhere,

where Thr denotes the threshold function, Fus (i) is fused
feature vector of dimension N x 2506, Nfus (j) is a feature
that is not considered in the fused vector, and s is a standard
deviation value. The output of this step is further refined in
the feature selection step, as given below.

2.7. Feature Selection. The goal of feature selection is to
reduce input variables when a predictive model is developed.
This process minimizes the computational time of a pro-
posed system and improves classification accuracy. In this
work, a new heuristic search-based feature selection method
is proposed named skewness-controlled SVR. In the first
step, a skewness feature vector is extracted from the fused
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vector Fus(i). This step aims to find the likelihood of the
features falling in the specific probability distribution.
Mathematically, skewness is computed as follows:

Skew — 3Fus (i) — Median) (12)

s

where Skew is the skewness feature vector, Fus(i) is the
mean value of the fused feature vector, and s is the standard
deviation. Using this skewness value, a threshold function is
defined to select features at the first stage.

{ Sel(i), for Fus(i) > Skew,

Ignore,

Thrl = (13)

elsewhere.

Using this threshold function, features are selected at the
initial phase. The selected features of this phase are later
validated using a fitness function Support Vector Regression
(SVR). The SVR is formulated as follows.

Convl 112x112 7x7,64,stride2

3x3max pool,stride2

1x1,64
3x3,64 [x3
1x1,256

Conv2 56x56

[1x1,128
3x3,128|x4
1x1,512

Conv3 28x28

[1x1,256
3x3,512 [x6
1x1,1024,

Conv4 14x14

[1x1,512
3%3,512 |x3
1x1,2,048

Conv5 7x7

Average pool,7D

Ix1 fc,Softmax

FLOPs 3.8x10°

FiGuRe 8: Architecture of ResNet-50.

Assume that the dataset for training Q comprises the
instances g, each having an attribute u;, an associated class,
and v;. u; € Sel(i) is a selected feature and v; represents
labels; i.e., {(ul, V) (Uy, v5)se e, (uq, v )}. On the dataset D,
b is a bias, and the linear function f(x) may be defined as
follows:

f(u) = 81“1 + 62142 + -+ 5d”d + b, (14)
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Ficure 10: Fine-tuned architecture of ResNet-101.

where the weight &; is defined as input space % i.e., §; € S°.
The maximum margin size is determined by the Euclidean
weight (|Y])). The flatness, therefore, requires a minimum
weight standard in the case of the following equation. Here,
the definition of (||[Y]) is

IYIP=Y2+Y:+---+Y2 (15)
Each training data error may be represented as (u;, v;).
Err; (u;) = v; — (8;u; + b). (16)

If there is error Err; (1;), the deviation is permitted to be
within it, and the previous equation may be expressed as 1.

v, —(0;u; +b) <n,
1 (ll ) IJ (17)
(8u; +b) —v; <n.

Using these two equations, the minimization issue for §
can be formulated as follows:

1
minimized: EIIYIIZ, (18)

subject to

v, —(8.u; + b) <,
1 (l 1 ) IJ (19)
(8;u; +b) —v; <.

The restrictions of the above equation imply that the
function f corresponds to all pairings (u;,v;) with a devi-
ation of 1. However, the assumption is not accepted in all
instances when the slack variables ;3" are neither required
nor necessary in case of violation of the assumption. The
optimization problem may be reformulated using slack
variables as follows:

o S .
minimize: 5||Y||2 + Cz (3: + 3 )

(20)
i=0
subject to
Vi=v;,—(Siu; +b)<n+3,
V= (8u; +b)—v;<p+3", 1)
V0 3,20,
V3 <0,

where C is the penalty constant, which does not meet the
constraints. It also helps in reducing overfitting. The Kernel
is defined by the input data K (u;, u;) and can substitute the
occurrence of the dot product between the tuples to avoid
the dot product on a data tuple changed. All computations
are therefore done in the original input areas. In this work, a
radial basis Kernel/Gaussian function is utilized:
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(o + 1)

2p2 '

The accuracy is computed using SVR, and if accuracy is
less than the target accuracy value, then Sel(i) is again
updated. This process is continued until the maximum
number of iterations is performed. In this work, the target
accuracy is 90%, and the numbers of iterations are 5. Fol-
lowing this process, a feature vector is obtained called the
best-selected feature vector of dimension N x 1456 and
further fed to supervised learning algorithms for final
classification.

K(u,», uj) =exp— (22)

3. Experimental Results and Discussion

The proposed method is evaluated on the augmented
HAMI10000 dataset. Dataset is divided into 70 : 30, where the
70% data is used for the training of a model, and the rest of
the 30% is utilized for the testing process. The other training
hyperparameters; for example, epochs are 100, the mini-
batch size is 64, and the learning rate is 0.0001. The 10-fold
method was carried out for cross-validation [46]. Seven
performance measures are used for the experimental pro-
cess: recall rate, precision rate, false-negative rate (FNR),
Area under Curve (AUC), accuracy, time, and F1-score. The
proposed method is implemented in MATLAB 2020b,
Corei7, with a RAM 16GB and 8GB graphics card.

3.1. Results. In this section, the proposed method results are
described in numerical values (Tables) and confusion ma-
trixes. Total ten classifiers are utilized for the experimental
process, such as Linear Support Vector Machine (LSVM),
Quadratic SVM (QSVM), Cubic SVM (CSVM), Medium

Gaussian SVM (MGSVM), Cosine K-Nearest Neighbor
(CKNN), Weighted KNN (WKNN), Coarse KNN (CKNN),
Ensemble Subspace Discriminative (ESD), Ensemble
Boosted Tree (EBT), and Ensemble Subspace KNN
(ESKNN). Five experiments are performed for the validation
of the proposed framework such as (i) Experiment # 1:
classification using fine-tuned ResNet-50 CNN model, (ii)
Experiment # 2: classification using Fine-Tuned ResNet-
101CNN model, (iii) Experiment # 3: perform features fu-
sion of Fine-Tuned ResNet-50 and ResNet-101 CNN models,
and (iv) Best Features (BF) selection.

3.1.1. Experiment # 1. In the first experiment, features are
extracted using fine-tuned ResNet-50 CNN model, and
results are computed. The augmented dataset was used for
the experimental process. The results of this experiment are
given in Table 1. CSVM has the highest accuracy of 92.7% in
this table, with computational time 1190.3 (sec). Figure 12
shows the confusion matrix of CSVM for this experiment. In
this figure, the diagonal values represent the correct pre-
dicted values such as AKIEC (96%), BCC (93%), BKL (87%),
DF (97%), MEL (86%), NV (94%), and VASC (99%), re-
spectively. Moreover, the recall rate is 93.14, the precision
rate is 93.14, and F1-score is 93.14%, respectively. Compared
with the rest of the classifiers, it is noticed that the CSVM
showed better classification accuracy. Moreover, the com-
putational time of each classifier is also noted and plotted in
Figure 13. This figure shows that the CKNN has the lowest
computational time of 274.55 (sec).

3.1.2. Experiment # 2. Table 2 presents the results of fine-
tuned ResNet-101 CNN features using the augmented
HAM10000 dataset. This table shows that the best accuracy
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TasLE 1: Classification accuracy of fine-tuned ResNet-50 deep features using augmented HAM10000 dataset.

Classifier Recall rate (%) Precision rate (%) FNR (%) AUC Accuracy (%) Time (sec) Fl1-score (%)
LSVM 86.42 86.85 13.57 0.988 86.5 742.5 86.63
QSVM 92.00 92.14 8.00 0.992 91.7 1046.1 92.07
CSVM 93.14 93.14 6.858 0.994 92.7 1190.3 93.14
MGSVM 89.57 90.00 10.42 0.988 89.3 1906.8 89.78
CKNN 53.25 65.28 46.75 0.898 60.8 274.5 58.65
CKNN 80.42 79.00 19.57 0.967 78.7 287.6 79.70
WKNN 85.14 84.42 14.85 0.98 83.6 262.3 84.78
ESKNN 93.14 92.57 6.858 0.99 92.3 4514.7 92.85
EBT 55.28 86.71 44,71 0.974 57.1 1546.0 86.49
ESD 86.28 57.00 13.71 0.85 86.1 839.8 56.12

The bold value represents best ones.

True Class
g
=

Nv

Vasc

Akiec Bee Bkl Df Mel Nv Vasc

Predicted Class

Figure 12: Confusion matrix of CSVM using ResNet-50 model for HAM10000 dataset.
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FiGure 13: Time plot for fine-tuned ResNet-50 CNN model using augmented HAM10000 dataset.

TaBLE 2: Classification accuracy of fine-tuned ResNet-101 deep features using augmented HAM10000 dataset.

Classifier Recall rate (%) Precision rate (%) FNR (%) AUC Accuracy (%) Time (sec) Fl1-score (%)
LSVM 86.00 86.28 14.00 0.98 85.5 746.2 86.14
QSVM 91.57 91.71 8.428 0.992 91.1 1010.2 91.64
CSVM 92.71 92.42 7.285 0.992 92.1 11321.1 92.56
MGSVM 89.42 89.42 10.57 0.988 88.9 1919.4 89.42
CKNN 78.87 77.85 21.14 0.961 77.2 268.2 78.36
CKNN 58.42 63.00 41.27 0.887 58.9 263.6 60.62
WKNN 84.85 84.00 15.14 0.977 83.3 260.5 84.42
EBT 56.57 56.57 43.42 0.855 57.2 1544.5 56.57
ESKNN 80.28 92.28 19.71 0.99 92.1 4590.9 85.86
ESD 85.85 86.28 14.14 0.98 85.6 821.79 86.06

The bold value represents best ones.

achieved by CSVM is 92.1%, with a computational time of ~ confusion matrix of CSVM. In this figure, the diagonal
11321.1 (sec), recall rate is 92.7, the precision rate is 92.42,  values represent the correct predicted values such as AKIEC
and Fl-score is 92.56%, respectively. Figure 14 shows the (96%), BCC (92%), BKL (85%), DF (98%), MEL (86%), NV
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F1gure 15: Time plot for fine-tuned ResNet-101 CNN model using augmented HAM10000 dataset.

(93%), and VASC (99%), respectively. As given in this table,
a few other classifiers are also implemented and show that
the CSVM gives better accuracy. Moreover, the computa-
tional time is computed for each classifier, and the minimum
noted time is 260.5 (sec) for the W-KNN classifier. The noted
time is also plotted in Figure 15.

3.1.3. Experiment # 3. In the next experiment, features are
fused using the serial-based extended (SbE) approach.
Results are given in Table 3. This table represents the best
accuracy achieved by the ESD classifier of 95%, further
demonstrating in a confusion matrix, given in Figure 16.
This figure represents the correct predicted values such as
AKIEC (97%), BCC (94%), BKL (89%), DF (98%), MEL
(89%), NV (99%), and VASC (99%), respectively. The
other computed measures are recall rate, precision rate,
FNR, AUC, and F1-score of 95.0, 95.0, 5.00, 0.99, and
95.0%, respectively. The CSVM achieved the second-best
accuracy of 94.9%, whereas the recall rate and precision
rates are 95.0%. Comparison with the rest of the classifiers
shows the superiority of the ESD classifier. Moreover, the
computational time is also noted, as illustrated in
Figure 17.

Compared with the results of this experiment with Ta-
bles 1 and 2, it is noticed that the fusion using the SbE
approach significantly improves the classification accuracy.
The limitation of this step increases computational time,
which needs to be minimized.

3.1.4. Experiment # 4. Finally, the proposed feature selection
algorithm is applied on the fused feature vector and achieved
an accuracy of 91.7% on the ESD classifier, where the
computational time is 1367 (sec), given in Table 4. The recent
time was 4118 (sec), which is significantly minimized after
the selection algorithm. This table also showed that the
proposed accuracy decreases, but on the other side, it helps
to minimize the computational time. The accuracy of the
ESD classifier is further verified using a confusion matrix
given in Figure 18. In this figure, the diagonal values rep-
resent the correct predicted values such as AKIEC (94%),
BCC (91%), BKL (85%), DF (93%), MEL (83%), NV (97%),
and VASC (99%), respectively.

The Fl-score-based analysis is also conducted and
plotted in Figure 19. In this figure, it is illustrated that the
value of the Fl-score is improved after the feature fusion
process except the CKNN and EBT classifier. Moreover, the
feature selection approach reduced the computational time
but accuracy is degraded. Overall, the proposed framework
performed well on the selected dataset. In the last, the
proposed method accuracy is compared with some recent
techniques, as given in Table 5. In this table, Khan et al. [7]
presented a deep learning method for skin lesion classifi-
cation. They used the HAM10000 dataset and achieved an
accuracy of 88.5%. The recent best-reported accuracy was
91.5%, achieved by Sevli [47]. The proposed accuracy is
91.7% and 95% for the best feature selection approach and
tusion approach. Based on this accuracy, it is noted that the
proposed method showed improved accuracy.
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TaBLE 3: Classification results using SbE approach-based deep features fusion on augmented HAM10000 dataset.

Classifier Recall rate (%) Precision rate (%) FNR (%) AUC Accuracy (%) Time (sec) Fl1-score (%)
LSVM 92.71 92.85 7.285 0.992 92.50 1303.8 92.78
QSVM 94.85 94.85 5.142 0.997 94.80 2400.4 94.75
CSVM 95.00 95.00 5.00 0.854 94.90 2868.5 95.00
MGSVM 92.85 93.14 7.142 0.995 92.60 4501.6 92.99
CKNN 61.71 73.14 38.28 0.910 62.20 562.0 66.94
CKNN 84.14 83.57 15.85 0.975 82.60 550.5 83.85
WKNN 83.42 84.57 16.27 0.971 82.10 530.7 83.99
ESD 95.00 95.00 5.00 0.997 95.00 4118.2 95.00
FKNN 88.14 87.57 11.85 0.931 87.00 543.2 87.85
EBT 62.00 62.22 38.00 0.855 62.80 69886.0 62.11

The bold value represents best ones.

True Class
g
2
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Figure 16: Confusion matrix of ESD using ResNet-50 and ResNet-101 model for HAM10000 dataset.
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FiGure 17: Time plot for the fusion of ResNet-50 and ResNet-101 using augmented dataset (HAM10000).

TaBLE 4: Classification results using proposed feature selection algorithm on augmented HAM10000 dataset.

Classifier (ESD) Recall rate (%) Precision rate (%) FNR (%) AUC Accuracy (%) Time (sec) Fl1-score (%)

500 78.42 79.28 21.57 0.954 78.3 102.4 78.85
1000 64.85 66.71 35.14 0.902 65.1 132.5 65.77
1500 87.14 87.57 12.85 0.978 86.8 406.0 87.35
2000 83.57 84.42 16.42 0.97 83.3 748.4 83.99
2500 89.71 90.14 10.28 0.984 89.5 1293.5 89.92
3000 91.85 92.00 8.142 0.99 91.7 1367.6 91.92

The bold value represents best ones.
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F1Gure 18: Confusion matrix of ESD classifier using a proposed
feature selection algorithm.
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FIGURE 19: F1-score-based analysis of middle steps like ResNet-50,
ResNet-101, and fusion.

TaBLE 5: Comparison with existing techniques.

Reference Year  Dataset  Accuracy (%)
[7] 2020 HAMI10000 88.5

[48] 2020 HAM10000 86.1

[49] 2020 HAMI10000 83.1

[30] 2021 HAM10000 85.50
[47] 2020 HAM10000 91.5
Proposed (fusion) 2021 HAM10000 95.0
Proposed (feature selection) 2021 HAM10000 91.7

The bold value represents best ones.

4. Conclusion

In this work, a new framework is presented for multiclass
skin lesion classification using deep learning. The proposed
method consisted of a series of steplike data augmentation,
feature extraction using deep learning models, the fusion of
features, selection of parts, and classification. The experi-
ment was performed on an augmented HAM10000 dataset.
The number of experiments was performed, such as non-
augmented and augmented datasets, and achieved accuracy
with a nonaugmented dataset of 64.36% using ResNet-50
and 49.98% using ResNet-101. The augmented dataset
achieved an accuracy of 95.0% for feature fusion and 91.7%
for feature selection. The results show that the augmentation
process helps improve the classification accuracy for a
complex dataset.
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Moreover, the fusion process increases the performance
but also increases the computational time. This process can
be further refined through a feature selection process.
However, according to the results, the feature selection
process decreases the computational time and reduces ac-
curacy. But from the overall comparison with recent tech-
niques, feature fusion and feature selection technique both
perform better than previous techniques. The new datasets
ISBI 2020 and ISIC 2020 can be used for the experimental
process in future work. Latest deep learning models can be
used as feature extraction. Fusion can be performed using
parallel approaches. The selection process can be refined,
which not only reduces the time but also increases accuracy.

Data Availability

The HAMI10000 dataset is utilized in this work for the ex-
perimental process. The dataset is publically available at
https://dataverse.harvard.edu/dataset.xhtml?
persistentld=doi:10.7910/DVN/DBWS86T.
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