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Quantum advantage for probabilistic one-time
programs
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One-time programs, computer programs which self-destruct after being run only once, are a
powerful building block in cryptography and would allow for new forms of secure software
distribution. However, ideal one-time programs have been proved to be unachievable using
either classical or quantum resources. Here we relax the definition of one-time programs to
allow some probability of error in the output and show that quantum mechanics offers
security advantages over purely classical resources. We introduce a scheme for encoding
probabilistic one-time programs as quantum states with prescribed measurement settings,
explore their security, and experimentally demonstrate various one-time programs using
measurements on single-photon states. These include classical logic gates, a program to
solve Yao's millionaires problem, and a one-time delegation of a digital signature. By com-
bining quantum and classical technology, we demonstrate that quantum techniques can
enhance computing capabilities even before full-scale quantum computers are available.
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ith the continuous march of technological advance-

ment, computer processors have become ubiquitous,

impacting almost every aspect of our daily lives.
Whether being used to compose email or acting as control sys-
tems for industrial applications, these devices rely on specially
written software to ensure their correct operation. In many cases
it would be desirable to prevent a program from being duplicated
or to control the number of times a program could be executed,
for example, to prevent reverse-engineering or to ensure com-
pliance with licensing restrictions. Unfortunately, the very nature
of classical information ensures that software can in principle
always be copied and rerun, enabling various misuses.

As a solution to this and other problems, the concept of one-
time programs was introduced!. One-time programs are a com-
putational paradigm that allows for functions that can be exe-
cuted one time and one time only. Thus, if a software vendor
encodes a function f as a one-time program, a user having only
one copy of that program can obtain only one input-output pair
(x, fix)) before the program becomes inoperable. In the classical
world, this is only possible through the use of one-time hardware
or one-time memories!, special-purpose hardware that gets
physically destroyed after being used once. However, it is unclear
whether such hardware can be realised in an absolutely secure
way. An adversary may attack the specific implementation,
seeking to circumvent or reverse whatever physical process is
used to disable the device after a single use.

Certain features of quantum mechanics, such as the no-cloning
theorem®3 and the irreversibility of measurements*, suggest that it
may enable a solution to this problem. It was recently shown,
however, that deterministic one-time programs are impossible
even in the quantum regime®. As a result, it is believed that neither
classical nor quantum information theoretically secure one-time
programs are possible!>~% without further assumptions!9-14,

Here, we demonstrate theoretically and experimentally that
quantum mechanics does enable a form of probabilistic one-time
program which shows an advantage over any possible classical
counterpart. These rely on quantum information processing to
execute, but encode entirely classical computation. Such prob-
abilistic one-time programs circumvent existing no-go results by
allowing a (bounded) probability of error in the output of the
computation. We show that these quantum one-time programs
offer a trade-off between accuracy and number of lines of the
truth table read, which is not possible in the classical case.
Remarkably, the experimental requirements to encode the prob-
abilistic one-time programs we introduce are comparable to those
of many quantum key distribution implementations, allowing for
technological advances in that field to be harnessed for a new
application.

Results
Construction of the one-time programs. We consider one-time
programs (OTPs) in the context of a two-party setting, where
Alice is the software provider and Bob is the user. Alice’s program
is represented by a secret function f, which she encodes as a
separable state of some number of qubits, which scales linearly in
the number of elementary logic gates required to implement f,
and provides these to Bob. Bob can then evaluate f on some input
of his choice x by sequentially measuring each qubit received
from Alice. These measurements are a fundamentally irreversible
process, which is necessary for Bob to evaluate f(x) while at the
same time preventing him from learning f(x’) for some input x’ =
x. An outline of our approach is presented in Fig. 1.

In analogy to the compiling of standard classical programs, the
logic of f is mapped onto a logic circuit using basic logic
synthesis!?. It is necessary that the circuits have a certain standard
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Fig. 1 Overview of a probabilistic one-time program scheme. Alice
possesses a secret program, f, and Bob a secret input, x. Alice converts f
into a logic circuit. Next, Alice encodes the logic gates comprising the
circuit as non-orthogonal quantum states. For the particular encoding
scheme we realise experimentally, these are always separable states. These
states are sent to Bob via a quantum channel. Bob executes the program by
sequentially measuring the quantum states corresponding to individual
logic gates. The basis for each measurement is determined by Bob's input
to that gate and the measurement result represents the output of the gate,
up to some bounded probability of error. The encoding can be chosen such
that it suffices for Bob to make only single-qubit measurements. Intuitively,
the security of the scheme stems from the fact that the measurements
corresponding to different inputs for a given gate do not commute, which
prevents Bob from evaluating more than one input

form, such that the information to be hidden is encoded in the
precise choice of logic gates and not on the connections between
gates. This is because our approach is to encode the truth table for
individual gates as a one-time program in its own right, which we
will call gate one-time programs (gate-OTPs). The interconnec-
tion of gates is left public, allowing Bob to propagate information
from one gate to the next. Each logic gate is a Boolean function,
taking k input bits and returning a single output bit. We will
denote the set of k-input gates as G,. For k=2, it is possible to
implement an arbitrary Boolean function on n input bits with
gates chosen only from G, together with the fan-out operation!®
that defines the number of output bits. It is however possible to
build up arbitrary G, gates from a fixed configuration, with some
choice of gates from G,. Such a construction of an arbitrary G,
gate is shown in Fig. 2e.

Probabilistic versions of the four gates comprising G; can be
encoded using a single qubit, as shown in Fig. 2a-d, such that the
measurement operators corresponding to different inputs anti-
commute. This is achieved by first fixing the measurement bases
corresponding to inputs of 0 and 1 respectively (Fig. 2b), and then
finding the states to encode each gate such that it maximises the
average probability of obtaining the correct outcome across both
possible inputs (Fig. 2c). The measurement bases are chosen to be
unbiased and correspond to anti-commuting observables, o for
input 0 and oy for input 1, to ensure that in learning about the value
of one observable Bob must forego information on the other. Once
the measurement bases are fixed, the states can be found which yield
the correct output with a maximal probability of 1+ ﬁ
or approximately 85.36%. This encoding relates to conjugate
encoding introduced by Wiesner!” and is equivalent to the quantum
random access codes considered in ref. 18, which were motivated by
ideas of compression rather than security. However, the concepts of
one-time programs and random access codes diverge when we
consider hiding gates from G, for k> 1 later on.

With a method for implementing G, now in place, we can
proceed to construct a universal set of gates, for example G,, while
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Fig. 2 Method for constructing probabilistic one-time programs for gates with one and two bits of input. All possible truth tables for gates in G, are shown
in (a) while (b) shows the encoding of Bob's inputs: a measurement in 6 corresponds to an input of O to the gate while a measurement in oy corresponds
to an input of 1. The output of the gate is given by the measurement outcome. ¢ An overview of the four G, states in a Bloch-sphere representation. A
detailed example is shown in (d): when measured in o (i.e., input O) the state corresponding to ¥, will be found in the state |1), corresponding to an
output of 1, with a probability of about 85.36%. When measured in oy (i.e., input 1) the measurement will find |+), so an outcome of O, with the same
probability. e, f Two equivalent circuits to build an arbitrary G, gate. The (e) is based on three G, gates while the circuit shown in (f) only requires two
quantum states per gate, some of which however need to be outside the X-Z plane

preventing Bob from learning the full truth table. As alluded to
previously, one way to achieve this is to insert hidden G, gates
into a fixed circuit, as shown in Fig. 2. The exact choices required
for each of the hidden gates to achieve a specific G, gate is
described in the Supplementary Tables 1 and 2. The overall
success probability for gates constructed in this way is 75%.
However, such an approach vyields a rather complicated
construction for gates in G, for k > 2 and introduces
complications in the security analysis. A more appealing
approach is to directly implement probabilistic one-time
programs for gates in G;. This can be done by generalising the
construction used in the k=1 case. Specifically, each possible
input is assigned a unique observable from a set of anti-
commuting multi-qubit Pauli operators {o;}, where a-+1
measurement outcome is taken to correspond to a gate output
of 0 and a — 1 outcome is taken to correspond to an output of 1.

As before, the states encoding each gate G are chosen to maximise
the average probability that the outcome of measuring the
observable corresponding to input x results in output G(x).
Unlike the case for G, there is an entire subspace of states
satisfying this constraint for a given G. Our approach is to encode
G as the maximum entropy state maximising success probability,

2k—1

po = ﬁ (H+ﬁ;<—1>‘3%,-). (1)

This coincides with the definition of a particular type of
random access code, known as a parity oblivious random access
code, explored in ref. !° for other purposes. The success
probability for any input i is then given by
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Fig. 3 Experimental one-time program implementation. a Our setup:
marked in green are the liquid crystal retarders (LCRs) and quarter-wave
plate (QWP) used to manipulate the polarisation state of single photons
which corresponds to setting the individual gates of the encoded program.
The LCRs marked in red are used by Bob to set the measurement basis
according to the gate inputs. On Alice's side an active switch is
implemented based on a Pockels cell placed between two crossed
polarisers acting as a fast switching half-wave plate. Alice produces single
photons with a source in a Sagnac configuration28-30. In (b) we show the
average success probability per gate for all G, gates. Blue dots represent
the results for the linear scheme, green dots the results for the elliptical
scheme and the theoretically predicted value is shown by the red line. The
gates are labelled by the last column of their truth table, e.g. (00 — 0, 01—
1,10 - 0, 11— 0) corresponds to 0100. Error bars show an interval of

+1 standard deviation derived from binomial statistics and are therefore a
lower bound

: (1 + (71)G<’)tr(pcai)) which simplifies to 3 <1 + 2_§>.
Remarkably, this results in each pg being the maximally mixed
state of a 2K~1-dimensional subspace, so that the von Neumann
entropy is k — 1 bits.

The implementation of G, gates requires 2K anti-commuting
operators and 2k—1 qubits. However, there is an alternative
implementation that uses 2K — 1 qubits whose Pauli operators are
restricted to being tensor products of the identity, ox and o.
While there is no fundamental reason to require such a restriction,
it can reduce the hardware requirements necessary to implement
the scheme, as seen in the experimental section. An explicit
construction in terms of separable states for the case where k=2
is given in the the Methods section and Supplementary Tables 1
and 2, both with and without this restriction. These encodings
form the basis for the experimental implementations with linearly
and elliptically polarised photons respectively.

Experimental implementation. To demonstrate the viability of
the presented scheme, we show a proof-of-principle

11 M Linear
M Elliptical
0.75 1

0.5 1
0.25 +
0 T T T
1 2 3 4

Position of differing bit

Probability of success

Fig. 4 Success probability for the millionaires problem using the linear (blue
or first bar) and elliptical (green or second bar) scheme. We compare
different four-bit numbers in binary representation to the number 0101,
where each compared number deviates from 0101 in exactly one bit. The
expected probability of success (shown in black dotted lines) depends on
the position of the differing bit (1 corresponds to the most significant bit, 4
to the least significant bit). Error bars show an interval of £1 standard
deviation derived from binomial statistics and are therefore a lower bound

implementation based on polarisation encoded photonic qubits
(Fig. 3a; see Methods for details).

We realised two equivalent schemes: we refer to the first one as
the linear scheme because it can be implemented using only
linearly polarised photons. This version requires fewer techno-
logical resources: Alice and Bob each need just one liquid crystal
retarder (LCR). These LCRs rotate the polarisation of each
photon by an angle depending on the applied voltage and are
therefore used to actively switch from one polarisation setting
(corresponding to a gate or a measurement basis) to the next.
However, in this encoding three photons per G, gate are required.
Our elliptical scheme uses elliptically polarised states and requires
two LCRs per party. The advantage of this scheme is that it only
requires two photons per G, gate, reducing the length of the
program by a third.

For both versions we tested all 16 gates comprising G, for all
four possible inputs (00, 01, 10, 11). The average success
probability of each gate is shown in Fig. 3b, and the results are
in good agreement with the expected value of 0.75. We
characterised all single-photon states using quantum state
tomography?? where a fidelity, F>0.991+0.008 could be
achieved for all states (see Supplementary Table 3 for details).

Demonstrated programs. To demonstrate the applicability of
our scheme we have experimentally implemented two different
classes of one-time programs.

The first class we consider is a program built from a
combination of G, gates which are universal for classical
computation. We use it to solve Yao’s millionaires problem!4,
in which two people wish to compare their wealth without
disclosing this value to the other party. To accomplish this goal,
Alice encodes her wealth into the program. Bob’s wealth will be
his input (see Supplementary Figure 1). The program returns a
single bit, indicating which number is larger. We ran the
millionaires problem using both the linear and the elliptical
schemes on several inputs. Alice encoded a four-bit number and
Bob compared it to numbers that each differed in one bit from
Alice’s input. The detailed results are shown in Fig. 4. In good
agreement with our theoretical expectations, it can be seen that
the probability of success rises with the significance of the bit in
which the two numbers differ (i.e., it is easier to discriminate two
numbers that differ in the most significant bit than two that differ
in the least significant bit).

The second kind of program we consider concerns the
delegation of digital signatures or one-time power of attorney.
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Fig. 5 Private key one-time signature scheme. a Overview of the private key one-time signature scheme. Alice encodes her signature program as noisy
quantum OTPs, and sends them to Bob via a quantum channel. Bob measures the states according to the hash of a message he wishes to sign, with outputs
corresponding to a signature. This message and signature pair may be verified by Alice at a later stage. b Bob's success probabilities of signing a message
or messages, in both the honest (one message) and the dishonest (two messages) cases. The probability of the client successfully generating a valid
signature is plotted against the threshold value for number of correct bits required to sign a message, given that the client is provided with 300 OTPs for
each row of the table. The green line shows the probability of an honest client generating a single signature (>t correct outputs for each row of the
signature), as a function of the threshold number of correct bits required in each row. The blue line shows probability of a dishonest client generating two
signatures, which differ only by one bit in the hash (the probability of a client following an honest strategy in all but one row). The difference between the
probabilities of the prior two lines is indicated by the yellow line. Details are given in the Supplementary Note 4—Description of the Private Key Signature

scheme

Here Alice can enable Bob to sign one, and only one, message of
his choice with a signature derived from her private key.
However, due to the probabilistic nature of the described OTPs,
there is a non-negligible probability that OTPs will not output the
correct signature. To compensate for this we may repeat the
procedure and define some threshold number of signatures which
is announced publicly to be an acceptable number required to
verify a given message has been signed. Alice produces many
distinct OTPs each using a different private key such that Bob has
a high probability of forming the required number of signatures
for a single message.

Standard signature schemes use a public key for verification
and are widely used within cryptographic protocols to guarantee
authentication, non-repudiation and integrity?!~2%. However, due
to technical reasons limiting our gate rate in experiment, we
restrict our demonstration to a symmetric digital signature
scheme, wherein Alice’s private key is used to verify a signature.

Such a program may be utilised for a third party to spend an
amount of money on someone else’s behalf, so that they should
pay anyone with a signed receipt. An overview of this scheme is
shown in Fig. 5a. Bob computes a hash of the message he wishes
to sign and uses this as the input to the OTPs (using a hash
ensures that the input length does not depend on the length of the
actual message signed). The output of the OTPs will then be the
digital signature which Alice may verify. For each bit of this hash
Alice provides e.g. 300 G, gates, from which Bob produces a bit
string dependent on the result of measuring according to that bit.
Such a bit string may be compared by Alice to the ideal case
where all gates have been implemented on the corresponding
hash bit. We require that each bit string matches such an ideal
string in at least T positions to produce a valid signature. The
threshold 7 is chosen as a function of the bit string length T to
maximise the difference between the probabilities of success of
the honest and dishonest strategies, where in a dishonest strategy
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Fig. 6 Security of probabilistic one-time programs. We demonstrate that
the ability to make a single query to the (ideal) classical gate allows us to
have 2 copies of state |yg). The quantum circuit shown in the figure
produces two copies of the state |yg) for any G € G, using only a single
query of Og which is an implementation of a reversible version of the
encoded gate G mapping |x, y) to |x, y @& G(x)) and W = [c, s; 5,—c], where ¢
= cos(z/8) and s = sin(x/8). As it is not possible to produce two copies of
[ws) from a single copy, this demonstrates strictly less can be learned from
a single copy of output state G, than from a single (coherent) query to the
encoded function

|0) D

Bob would attempt to sign two hashes differing only by a single
bit. This is illustrated in Fig. 5b and in Supplementary Figure 2.
As T is increased, the probability of an honest Bob forming a
sufficient fraction of correct bits (=7/T) in each bit string
approaches 1, while that of a dishonest user who would try to
form multiple signatures approaches 0. This demonstrates a clear
example of a case where even probabilistic one-time programs
enable new functionality that is inexecutable using classical
technology.

Security analysis. We will now discuss the security of our pro-
tocol and show a strict advantage over any possible classical
strategy. We note that the security relies on several measures
affecting different steps of our protocol. Starting with the logical
synthesis we see that when gate-OTPs are combined into circuits,
there is some freedom over how the gates are chosen. In our
proof-of-principle demonstration of Yao’s millionaires problem
we limit the information accessible to Bob by randomly inserting
pairs of NOT gates into the circuit immediately after each gate-
OTP with probability one-half. The first NOT gate is absorbed
backwards into the gate-OTP, altering the encoded gate. The
second NOT of the pair is propagated forward, through any
present fan-out and XOR gates, and absorbed into the next layer
of gate-OTPs, altering the function they encode. Such a procedure
can always be applied to any circuit composed of gate-OTPs
along with XOR, NOT and fan-out operations.

To analyse the effect of this randomisation procedure, we will
assume it is applied after every gate-OTP. In such a case, the joint
state of the quantum systems used to encode the gate-OTPs is
maximally mixed, and hence independent of the encoded
function. For those gate-OTPs which produce the output of the
program the second NOT gate cannot be absorbed into a
subsequent gate-OTP. We will simply eliminate this second NOT
gate, effectively applying a one-time pad to the program’s output
and creating the maximally mixed state from the perspective of
the receiver. Such a scheme thus negates all losses in the system as
the maximally mixed state does not allow a dishonest user to
extract any information regarding the intended gate-OTP. Since
the output of the program can be revealed by decoding the one-
time pad, the accessible information for the entire system can be
no greater than the size of this encryption key, and hence can be
no greater than the number of output bits for the program. This is
in line with the requirement that a one-time program should
reveal no more information than can be obtained from a single
run of the program.

We now consider the security of the individual gate-OTPs
corresponding to gates in G,. We show that strictly less can be
learned from a single copy of them than from a single query to
the encoded function (i.e., an ideal one-time implementation of

that function). For all gates G € G,, the corresponding state pg is
pure, and so we will denote the state vector as |y). Figure 6
shows how a single query of the encoded function can be used to
produce two copies of this state. The fact that states encoding
different programs are non-orthogonal, coupled with the no-
cloning theorem?3, implies it is not possible to produce two
copies of |yg) from a single copy, and hence strictly less can be
learned about G from a single copy of |y) than from a single
(coherent) query to the function it encodes.

We conclude our analysis by discussing the security of G, and
G, gates. We show that the gate-OTPs we have explored here
have strict advantages over any purely classical computational
procedure. First, we choose an appropriate figure of merit for
which to compare quantum and classical noisy OTPs. An ideal
OTP would allow for one, and only one, evaluation of the
encoded function, resulting in exactly one input-output pair.
We will therefore choose the average probability of evaluating a
specific input-output pair correctly, P;, compared to the
average probability of correctness when evaluating all
input-output pairs P,. In the classical case, information can
always be copied. Therefore, a classical procedure producing
one input-output pair with some fixed probability of success
can be repeated arbitrarily many times to produce a noisy
version of the encoded gate. The probability of getting a specific
input-output pair is equal to the average probability across all
input-output pairs, thus P¢ = PC. However, for G, OTPs this is
not the case. If we fix the single line probability of success such
that P¢ = PQ, we find that for G, gates PY =0.75 while
PC ~ 0.8536. Similarly, for G, we find that PY = 0.625 while
PS¢ = 0.75. This shows that our encoding gives an advantage
over the best possible classical scheme for an equivalent P;.
Details of these calculations can be found in Supplementary
Note 2, where it is also shown that success probability can be
boosted via error correction while still maintaining an
advantage. Furthermore, in the case of G, gates, we may state
that the probability of an adversary finding the parity of two
lines, which gives an upper bound on the probability of
guessing the complete truth table, is strictly lower than in any
possible classical encoding (for details see Supplementary
Note 1). This includes noisy implementations of oblivious

transfer>>2% as our G, gates are equivalent to noisy -obliv-

ious transfer. Remarkably, even though oblivious transfer with a
vanishing error probability is known to be impossible2®-27 with
our digital signature scheme, we were able to present an
implementation whose overall success probability can approach
1.

Aside from the inherent security of an ideal implementation of
gate-OTPs, additional measures are necessary in the presence of
communication over lossy channels. It is not in general advisable
for Alice to simply resend qubits that are not received by Bob,
since he can simply claim to have lost a photon to receive a new
copy and hence gain additional information about the encoded
gate-OTP. This may be prevented via a simple subroutine: for
each gate several copies of each state are produced, but each with
a randomly chosen additional one-time pad (i.e., a bit flip on the
output of all possible inputs). These states are thus in the
maximally mixed state as observed from the client and provide no
information. Alice will reveal only the one-time pad for the state
that Bob confirms to have received and that she wants him to use.
Bob will then keep or flip his measurement result, according to
Alice’s one-time pad and proceed with the next gate following the
same procedure. This subroutine has been used in each of the
demonstrated programs. We note that this procedure does
necessitate additional interaction between the parties to enable a
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loss-tolerant implementation of the scheme. Theoretically, the
program may be executed at a later point if a non-demolition
measurement was utilised to compensate for loss, and quantum
memories were employed to maintain the received states. In our
implementation, however, it was sufficient to measure the
photons at arrival and thus the program was executed directly
upon receipt.

Discussion

Here we have shown the implementation of probabilistic one-
time programs in theory and experiment. Our results demon-
strate that quantum physics allows for better security trade-offs
for certain secure computing tasks than are possible in the clas-
sical world, even when perfect security cannot be achieved. This is
realised without assumptions on computational hardness, noisy
storage or difficulty of entanglement. Using readily available
technology we find our results are in good agreement with the
theoretical predictions. Future advances in technology that would
allow for non-separable measurements on the client’s side could
be used to further improve our implementation. We believe the
presented work hints at a rich area of quantum protocols to
enhance the security of classical computation, even before large-
scale quantum computers can be realised.

Methods

Experiment. Our single-photon source is based on spontaneous parametric down
conversion (SPDC) using a Sagnac loop?8-30, The pump beam is generated by a
4.5 mW-diode laser at a central wavelength of 394.5 nm, followed by a half- and a
quarter-wave plate to adjust the polarisation. It was focused on a 20 mm long, type-
II colinear periodically poled Potassium Titanyl Phosphate crystal placed inside the
loop, which emitted photon pairs at 789 nm in a separable state |H) |V), where H
and V denote horizontal and vertical polarisation, respectively. The down-
converted photons were reflected by a dichroic mirror while the pump beam was
transmitted. Additionally long-pass and band-pass filters were used to block the
pump beam and to select the desired wavelength for the photon pairs. The down-
converted photons were then coupled into single-mode fibres and one was directly
sent to a detector to herald the second photon. The source was configured in a way
that we observed a typical two-photon coincidence rate of 2 kHz with an open
switch and the ratio of multi-pair events to single-pair events was <0.07 %. The
possibility of multi-pair emissions is a property of every SPDC process which in
our case could lead to the transmission of more than one photon at once through
the switch and therefore cause unwanted information leaking to the client. Should
a future application require even lower (or vanishing) multi-pair emission, this
could be implemented using alternative single-photon sources3!-34,

Furthermore, we implemented an active switch based on a KD*P (potassium
dideuterium phosphate) Pockels cell with a half-wave voltage of 6.3 kV and two
crossed polarisers. The electronic signal from the avalanche photo diode detector
(APD) in the heralding path was sent to a splitterbox which could produce an ‘on’
and 'off' signal for the driver of the Pockels cell. The pulses were separated by 46 ns
which corresponds to the opening time of the switch. During this time voltage is
applied to the Pockels cell, causing it to act as a half-wave plate.

These pulses are gated to ensure photons are not transmitted while the LCRs are
changing. Once the LCRs are ready to set a state in the program, a gating signal is
sent to the splitterbox. Only then will the next heralding signal cause an on/off
pulse to be sent to the Pockels cell. All following herald signals will be blocked until
the splitterbox receives the next gate signal.

The splitterbox itself causes a delay of the electric signal of 22 ns while the total
electronic delay of splitterbox and control electronics is 80 ns. The Pockels cell has
a rise-time of 8 ns. To allow for the switch to be opened before the signal photon
reaches the Pockels cell in spite of all electronic delays, the signal photon is delayed
in a 29 m single-mode fibre. All necessary polarisation states were set using a
combination of two LCRs and a QWP at 0°. The maximum time to switch between
two states in our scheme was 60 ms. This was therefore the time allowed for every
switching process (so as not to leak information about the prepared state because of
a shorter switching time). To measure the states in the bases dictated by the inputs
to the gates a second set of two LCRs was used followed by a polarising beam
splitter and two APDs to measure the photons. Typically 4 % of the times the
switch opened a photon was also detected at Bob’s side. This was due to losses in
the setup as well as the limited detection efficiency of the APDs. Together with the
LCR switching time of 60 ms, this lead to an average gate time of 1.4 s per photon.

Gates with 1 bit of input. The simplest case of program is one that accepts one bit
of input and returns one bit of output. The truth tables for all such G, gates (shown

in Fig. 2c) may be easily encoded as:

1) = men(0) 4 1), @
1

|‘1’1>*\/T—ﬁ(|1>*\*>)a (3)

¥,0) =ﬁ<\o> +1-)), @
1

Woor) = T\ﬁ(m + 1), (5)

£) = =(10) 1)

Gates with 2 bits of input. G, gates can be encoded using either a combination of
three states from Eqgs. (2)-(5) (which corresponds to the linear scheme) or a
combination of two states (elliptical scheme), in which case the above mentioned
states need to be combined with additional states from the following list:

o e
) = (‘év%o o)+ 511, g
ws) =%\0>+ <+%+i2i>|1> ®)
[#5) =2 10) + (—}izi)ll% ®)
vg) = (+%+%i) 10) +5 1), (10)
)= (=3 757)0 4500 "
[¥e) == 0) + <+%—i2i)|1>~, (12)
p#5) =310+ (—3 - 750, (13)

The encoding of specific gates is done according to tables shown in the
Supplementary Tables 1 and 2. In the linear and elliptical scheme, the gate-
encoding state is a tensor product state of three or two photons, respectively. In
the linear scheme, each of the three photons are in a state given in Egs. (2)-(5). As
there are 64 combinations and only 16 gates, each gate can be encoded in four
different ways (represented by orthogonal state vectors), and a random choice is
made each time the gate must be encoded. In the elliptical scheme, the first
photon is in a state given in Egs. (2)-(5), while the second photon is in a state
given in Egs. (6)-(13). As there are 32 combinations and only 16 gates, each gate
can be encoded in two different ways, and again a random choice is made each
time the gate must be encoded. The random choice between orthogonal state
vectors is made by the sender and it is irrelevant from the point of view of the
receiver. Thus, the state as seen by the receiver is effectively the mixed state given
in Eq. (1).

Data availability
The data that support the findings of this study are available from the corre-
sponding authors upon reasonable request.
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