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We present a methodology which jointly infers haplotypes and the causal alleles at a

gene influencing a given trait. Often in human genetic studies, the available data consists

of genotypes (series of genetic markers along the chromosomes) and a phenotype.

However, for many genetic analyses, one needs haplotypes instead of genotypes. Our

methodology is not only able to estimate haplotypes conditionally on the disease status,

but is also able to infer the alleles at the unknown disease locus. Some applications of

our methodology are in genetic mapping and in genetic counseling.

Keywords: EM algorithm, linkage disequilibrium, causal allele inference, haplotype estimation

1. Introduction

In human genetic studies, the unobserved raw data consists of two DNA sequences for each
individual (see Figure 1i). As we usually observe few variations along the sequences for different
people, we consider only sites which are different between individuals, the genetic markers. In this
work we will consider bi-allelic markers, i.e., markers having two possible variations (alleles); the
data can then be summarized as a binary couple. A series of genetic markers along the sequence is
a haplotype; however, we observe genotypes, not haplotypes. In short, genotypes contain the same
information as haplotypes, with the exception that they do not provide the phase information, i.e.,
we do not know which allele is located on which chromosome (see Figure 1, for an illustration).
Moreover, we assume here that the phenotype (indicated by case/control) is caused or influenced by
a binary (present or absent) Trait Influencing Mutation (TIM). The position of this TIM is always
unknown; obviously, inferring the position of such a TIM is the precise goal of genetic mapping: to
infer the location of such a TIM. In Figure 1, the TIM is illustrated as a DNA sequence of length
six, however, in general TIMs can be sequences of any length, a single site for example.

For many genetic analyses however, the haplotype data is required, and in some cases even this
information may not suffice. The unknown allelic state at the TIM is also required and this is an
issue addressed by our work. Indeed, many methodologies use genealogies to infer parameters of
populations (such as recombination rate and mutation rate) and these genealogies must be built
using haplotypes, not genotypes, since the haplotypes contain the additional information about
which genetic material was transmitted from one ancestor to a child. All such methodologies have
a way to deal with this problem: some include an estimate of the haplotypes, like the Margarita
program (Minichiello and Durbin, 2006), and others defer the issue to external methodologies,
like TreeLD (Zöllner and Pritchard, 2005). We introduced an approach for fine genetic mapping
using the coalescent with recombination (Larribe et al., 2002), which has the particularity to be
the only methodology using genealogies built conditionally on the alleles at the TIM. Of course, as
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the location of the TIM is unknown, the alleles at the TIM are
unknown as well, and hence must be inferred from the data.
Finally, the estimates of the alleles at the TIM opens new avenues
to evaluate risks associated with the disease: under a standard
genetic model, the risk of the disease is a function of the alleles
at the TIM.

2. Existing Methodologies

To our knowledge, none of the current methodologies is
able to jointly estimate haplotypes and the alleles at a causal
gene. To infer haplotypes from genotypes, laboratory or
computational methods can be used (Browning and Browning,
2011). The first statistical method to estimate haplotypes was
the parsimony principle proposed by Clark (1990): assuming
that the recombination rate is low, haplotypes are inferred
by supposing that the number of distinct haplotypes is small.
This method is limited to a few markers and works for short
sequences. Since then, different methods have used the EM
algorithm, for example Excoffier and Slatkin (1995) or Qin
et al. (2002). If we wish to estimate the distribution of the
haplotypes, we are in an incomplete data setting, and the EM
algorithm is a natural solution. Indeed, this algorithm has often
been used in this context; for example, one of the earliest
methods to use haplotypes frequencies estimated by the EM
algorithm is Fallin et al. (2001). One of the more advanced
methods to estimate haplotypes is Phase (Stephens et al., 2001;
Stephens and Donnelly, 2003); this bayesian method is based
on Gibbs sampling and uses coalescent theory to derive the
prior distribution of haplotypes. Other methods use information
from reference haplotypes to improve phase estimation and
infer missing genotypes. A comparison of the efficiency of
different methods has been realized by Marchini et al. (2006)
and Browning and Browning (2011), provide a recent review of
methods that infer haplotypes.

Most of the aforementioned methodologies do not take into
account the phenotype, nor the genetic model. In our context
of a case/control study, one would not want to ignore the
phenotype information. Unlike our method, none of the existing
methodologies proposes to estimate the alleles at the TIM.

FIGURE 1 | llustration of a (very short) piece of chromosome (52 base pairs) for one individual; from top to bottom: (i) the unobserved raw data are the

2 DNA sequences; genetic markers in red, TIM in blue; (ii) haplotypes obtained by considering only genetic variations in DNA, and the unobserved

TIM; (iii) finally, the observed data: a set of genotypes and a phenotype, in this case a status of a diseased individual.

Finally, note that recent methodologies for estimating
haplotypes use human sequence data, but some parts of the
human genome are still difficult to sequence, which can limit
the use of these methods; it is important to note that our
method can be used on human sequences as well as animal
or plant sequences, could also be extended to non diploid
organisms.

3. The EM Algorithm

Note that the EM algorithm presented here, by taking into
account the phenotype, is in a way an extension of the work
of Excoffier and Slatkin (1995), and is also related to the work
presented in chapter 5 of Foulkes (2009).

3.1. Complete Likelihood and M Step
Assume a large population of diploid individuals in Hardy-
Weinberg equilibrium, where we can observe a dichotomous
trait that depends on at least one Trait Influencing Mutation
(TIM). As the phenotype φ depends on the TIM through
a genetic model, it is actually possible for the trait to be
dependent on several TIMs, but we consider only one TIM at
a time. Let V0 denote the distribution of haplotypes among
non carriers of the TIM, and V1 denote the distribution of
haplotypes among carriers. Alternatively, carrier haplotypes
will be called mutant haplotypes, and non carrier haplotypes,
primitive haplotypes. For a given type of haplotype h (h =

1, . . . ,H), V0(h) is the proportion of haplotypes of type h among
non carrier haplotypes, and similarly V1(h) is the proportion
of haplotypes of type h among carrier haplotypes. A genetic
model F = (f0, f1, f2) associated with the TIM we are studying
is such that fi is the probability for an individual to express
the trait given that it bears i = 0, 1, or 2 copies of the
causal mutation. Let T be the status of an individual at the
TIM, such that T ∈ {(0, 0), (1, 1), (0, 1), (1, 0)} represents
a non carrier, an homozygote carrier or an heterozygote
carrier with the TIM inherited from the father or the mother,
respectively. Finally, let p be the frequency of carrier haplotypes
in the population, and f the frequency of the trait we are
working on.
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Since the population is in Hardy-Weinberg equilibrium, we
can easily calculate specific probabilities of the form P[φ,T =

(δ1, δ2)]; the sample spaces for T and φ being of size four
and two respectively, there are eight such probabilities for their
combinations. For example, as p2 is the probability for an
individual to be a double carrier, and f2 the probability for
a double carrier to express the trait, the probability for any
individual i in the population to be a double carrier and to express
the trait is simply

P [φi = 1,T = (1, 1)] = p2f2. (1)

The other seven cases are treated similarly (see Table 1, for
details).

Let h0 be a non carrier haplotype of type h, h1 a carrier

haplotype of type h, and di = (hδ1
i1

, hδ2
i2
) the diplotype of

individual i (i = 1, . . . , n), where δ1, δ2 ∈ {0, 1}. Let G be a
sample of genotypes from the population, and 8 the associated
set of phenotypes. As we need to estimate V0 and V1, we are
in an incomplete data problem, where the complete data is the
set of phenotypes 8 and the set of diplotypes D, including the
alleles at the causal gene. If the alleles (δ1, δ2) at the causal gene

were known, then the probability of the diplotype di = (hδ1
i1

, hδ2
i2
)

would only depend on the distributionsV0 andV1, and we would
then have:

P
[(

hδ1
i1

, hδ2
i2

)

| V0,V1

]

= P [T = (δ1, δ2)] Vδ1 (hi1 ) Vδ2 (hi2 ).

Since the phenotype depends on the diplotype only through the

causal gene, the joint probability of the diplotype di = (hδ1
i1

, hδ2
i2
)

and the phenotype is:

P
[(

hδ1
i1

, hδ2
i2

)

, φi | V0,V1

]

= P
[

φi |
(

hδ1
i1

, hδ2
i2

)]

P
[(

hδ1
i1

, hδ2
i2

)

| V0,V1

]

= P [φi | T = (δ1, δ2)] P [T = (δ1, δ2)] Vδ1 (hi1 ) Vδ2 (hi2 )

= P [φi,T = (δ1, δ2)]Vδ1 (hi1 ) Vδ2 (hi2 ). (2)

We have previously seen how to calculate probabilities of the
form P[φ,T = (δ1, δ2)] (see for example Equation 1); hence it
becomes easy to calculate the above probability for each of the
eight combinations of δ1, δ2 and φ; for instance:

P
[(

h1i , h
1
j

)

, φ = 1 | V0,V1

]

= f2 · p
2 · V1(hi) · V1(hj),

P
[(

h0i , h
1
j

)

, φ = 0 | V0,V1

]

= (1− f1) · p · (1− p) ·

V0(hi) · V1(hj).

Because individuals are assumed independent, the likelihood of
(V0,V1) on the complete data is:

Lc (V0,V1) = P [D,8 | V0,V1]

=

n
∏

i=1

P
[

di, φi | V0,V1

]

TABLE 1 | Distributions of alleles at the causal gene in the population.

Case Control Total

T = (0,0) f0 (1− p)2 (1− f0 )(1− p)2 (1− p)2

T = (0,1) f1p(1− p) (1− f1 )p(1− p)2 p(1− p)2

T = (1,0) f1p(1− p) (1− f1 )p(1− p)2 p(1− p)2

T = (1,1) f2p
2 (1− f2 )p

2 p2

Total f 1− f 1

=

n
∏

i=1

P
[(

h
δi1
i1

, h
δi2
i2

)

, φi | V0,V1

]

=

n
∏

i=1

P
[

φi,T =
(

δi1 , δi2
)]

Vδi1
(hi1 ) Vδi2

(hi2 ).

Since the probabilities P[φi,T = (δi1, δi2)] do not depend on the
distributions V0 and V1 but only on the penetrance model F and
on the frequency p of carrier haplotypes, by denoting K(F, p) a
function that depends only on F and p, we have:

Lc (V0,V1) = K(F, p)
n

∏

i=1

Vδi1
(hi1 ) Vδi2

(hi2 )

= K(F, p)
H

∏

i=h

V0(h)
mh0 V1(h)

mh1 ,

where the last expression is obtained by taking the product
over the types of haplotypes instead of individuals, and mh0

and mh1 are, respectively, the numbers of non carrier and
carrier sequences of type h in D. This likelihood belongs to an
exponential family, where the sufficient statistics for V0 and V1

are the frequencies mh0 and mh1 . If diplotypes were known, we
could obtain the theoretical frequencies from the empirical ones.
The diplotypes are not observable, but could be estimated if V0

and V1 were known.
Denote the expectation of the sufficient statistics by:

m(k+1)

hδ = E
[

mhδ | V(k)
0 ,V(k)

1 ,G, φ

]

.

We then have to maximize the function:

W
(

V0,V1 | V
(k)
0 ,V(k)

1

)

=
∑

h

[

m(k+1)
h0

log(V0(h))+m(k+1)
h1

log(V1(h))
]

with the constraints
∑

h V0(h) = 1 and
∑

h V1(h) = 1.
By incorporating a Lagrange multiplier for each of the two
constraints, we then have to optimize the linear expression :

WL

(

V0,V1 | V
(k)
0 ,V(k)

1

)

=
∑

h

[

m(k+1)
h0

log(V0(h))+m(k+1)
h1

log(V1(h))
]

+ λ0

(

1−
∑

h
V0(h)

)

+ λ1

(

1−
∑

h
V1(h)

)

,
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i.e., we obtain maximum likelihood estimates from the complete
data. It can be shown thatWL is a maximum if

V0(h) =
m(k+1)

h0

λ0
, V1(h) =

m(k+1)
h1

λ1
.

Applying the constraints, theM step of the algorithm consists in
evaluating

V0(h)
(k+1) =

m(k+1)
h0

∑

hm
(k+1)
h0

, V1(h)
(k+1) =

m(k+1)
h1

∑

hm
(k+1)
h1

,

where
∑

hm
(k+1)
h0

and
∑

hm
(k+1)
h1

are, respectively, the
expected numbers of non carrier and carrier sequences after
iteration k.

3.2. Conditional Expectation and the E Step
For now we have seen how to evaluate V0(h)(k+1) and V1(h)(k+1)

with the haplotypes’ frequencies; further we have to evaluate the

conditional expectations m(k+1)

hδ = E[mhδ | V(k)
0 ,V(k)

1 ,G, φ]. We
have seen in Equation (2) that

P
[(

hδ1
i1

, hδ2
i2

)

, φi | V0,V1

]

= P [φi,T = (δ1, δ2)] Vδ1 (hi1 ) Vδ2 (hi2 ),

which gives, by conditioning on the phenotype:

P
[(

hδ1
i1

, hδ2
i2

)

, φi | V0,V1

]

= P [T = (δ1, δ2) | φi] P [φi] Vδ1 (hi1 ) Vδ2 (hi2 ). (3)

Using P[φi = 1] = f , P[φi = 0] = 1 − f and the
probabilities found earlier (see Table 1), it is immediate to obtain
the probabilities of T given the phenotype, for example:

P
[

Ti = (0, 0) | φi = 1
]

=
f0(1− p)2

f
,

P
[

Ti = (0, 1) | φi = 0
]

=
(1− f1)p(1− p)2

1− f
. (4)

The joint probability of the genotype gi and the phenotype φi

is obtained from Equation (3) by summing over all the possible
diplotypes:

P
[

gi, φi | V0,V1

]

=
∑

(

h
δ1
i1

, h
δ2
i2

)

∈ g

P
[(

hδ1
i1

, hδ2
i2

)

, φi | V0,V1

]

= P [φi]
∑

(

h
δ1
i1

, h
δ2
i2

)

∈ g

P [T = (δ1, δ2) | φi]Vδ1 (hi1 ) Vδ2 (hi2 ) . (5)

Then, the probability of a diplotype (hδ1
i1

, hδ2
i2
), given the

phenotype φi and the genotype gi, is, using Equations (3) and (5):

P
[(

hδ1
i1

, hδ2
i2

)

| gi, φi,V0,V1

]

=
P [T = (δ1, δ2) | φi]Vδ1 (hi1 ) Vδ2 (hi2 )

∑

(

h
β1
i1

, h
β2
i2

)

∈ g
P [T = (β1, β2) | φi] Vβ1 (hi1 ) Vβ2 (hi2 )

. (6)

We can see that the conditional probability depends only on the
distributions V0 and V1, and the probabilities P[T | φi].

Let’s now evaluate the conditional expectationm(k+1)

hδ . Let ng,φ
be the number of individuals with genotype g and phenotype φ;
among these individuals,

ng,φ · P
[(

hδ, ·
)

| g, φ, | V0,V1

]

will receive the sequence hδ from their mother, and

ng,φ · P
[(

·, hδ
)

| g, φ, | V0,V1

]

from their father. As usual, the conditional probability of having
a given sequence as the maternal haplotype is obtained by
summing on all the compatible paternal haplotypes (and vice
versa). Recall that if there is no missing information on the
genotypes, there is a unique sequence hg compatible with h such
that (h, hg) ∈ g. In this case:

P
[(

hδ, ·
)

| g, φ,V0,V1

]

= P
[(

hδ, h0g

)

| g, φ,V0,V1

]

+ P
[(

hδ, h1g

)

| g, φ,V0,V1

]

,

P
[(

·, hδ
)

| g, φ,V0,V1

]

= P
[(

h0g, h
δ
)

| g, φ,V0,V1

]

+ P
[(

h1g, h
δ
)

| g, φ,V0,V1

]

.

These two probabilities being equal by symmetry, the mean
number of copies of hδ carried by the ng,φ individuals presenting
this profile is

2 · ng,φ · P
[(

hg, ·
)

| g, φ,V0,V1

]

.

We then obtain m(k+1)
hδ

by summing over all the genotypes and

phenotypes. The E step of the algorithm reduces to evaluating:

m(k+1)

hδ =
∑

(g,φ)∈(G,8)

2 · ng,φ · P
[(

hg, ·
)

| g, φ,V0,V1

]

. (7)

for each hδ . Note that the method can be generalized to missing
data, by considering every combination of haplotypes compatible
with the observed genotypes.

3.3. Non Random Sampling
We have assumed until now that the sample was obtained by
simple random sampling from the population, but usually this
is not the case in genetics, since most samples are obtained using
a case/control design. Let n1 be the number of cases in the sample
of size n, and let ω = n1/n be the proportion of cases (if
the sample were a simple random sample, then ω is expected
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TABLE 2 | Distributions of alleles at the causal gene in the population in a

sample with a fixed proportion of cases.

Case Control Total

T = (0,0) f0 (1− p)2 · ω
f

(1− f0 )(1− p)2 ·
(1−ω)
(1−f )

q00

T = (0,1) f1p(1− p) · ω
f

(1− f1 )p(1− p)2 ·
(1−ω)
(1−f )

q01

T = (1,0) f1p(1− p) · ω
f

(1− f1 )p(1− p)2 ·
(1−ω)
(1−f )

q10

T = (1,1) f2p
2 · ω

f
(1− f2 )p

2 ·
(1−ω)
(1−f )

q11

Total ω 1− ω 1

to be P[φ] = f ). In the case/control setting, many methods
which estimate haplotypes, including those which use the EM
algorithm, are biased since the case/control mode of sampling
modifies the distributions of alleles and haplotypes.

In this section we show that the algorithm described in Section
2.2 is robust to this case/control sampling. The proportions given
inTable 1, as well as the penetrance model, are not affected by the
sampling. Let’s see in a first step the behavior of some probabilities
under this stratified sampling design. The probabilities of T
conditional on the phenotype do not change, i.e., P[T | φ, n1] =
P[T | φ], and the probabilities defined previously are still valid.
Expected distributions are then easily obtained (see Table 2).

Let’s now review the steps of the algorithm. The likelihood on
the complete data for such a stratified sample, conditional on the
number of cases, is:

Lc (V0,V1) = P [D,8 | V0,V1, n1]

=
P [D,8,V0,V1, n1]

P [n1 | V0,V1, n1] P [V0,V1]

=
P [D,8, n1 | V0,V1]

P [n1 | V0,V1, n1] P [V0,V1]
.

Since knowledge of the phenotypes8 carries knowledge of n1, n1
can be removed from the numerator.Moreover, the probability of
obtaining n1 cases from a simple random sample does not depend
on the distributions V0 and V1. After removing terms which do
not depend on V0 and V1, the likelihood for this data is the same
as before:

Lc (V0,V1) =
P [D,8, n1 | V0,V1]

P [n1]

=
P [D,8 | V0,V1]
( n
n1

)

f n1 (1− f )n−n1

= K
(

F, p, n1
)

∏

h

V0(h)
mh0 V1(h)

mh1 ,

which shows the likelihood remains the same for case/control
sampling, and hence the M step of the algorithm remains
unchanged.

Recall that the E step depended on diplotypes’ probabilities,
conditional on the genotype and the phenotype. We prove that
these probabilities are not modified by the type of sampling.

Let’s begin by calculating the joint probability of a diplotype
and a phenotype, conditional on ω, the proportion of cases; this
probability is obtained by adding a condition on the proportion
of cases in Equation (3):

P
[(

hδ1
i1

, hδ2
i2

)

, φi | V0,V1, ω

]

= P [φi | n1] P [T = (δ1, δ2) | φi, ω]

× P
[(

hi1 , hi2
)

| T = (δ1, δ2) , ω
]

.

Once the status at the causal gene is determined, the diplotype
probability depends only on the distributions V0 and V1.
Moreover, if the phenotype is known, T does not depend on ω;
only the probability of the phenotype is modified:

P
[(

hδ1
i1

, hδ2
i2

)

, φi | V0,V1, ω

]

= P [φi | ω] P [T = (δ1, δ2) | φi]Vδ1 (hi1 ) Vδ2 (hi2 ).

Following the derivation for a simple random sample, the term
P[φi | ω] cancels out in the conditional probability formula, and
we get the same result as before. Because these probabilities are
not affected by the sampling design, the E step of the algorithm,
described in Equation (8) remains the same. We have shown that
this EM algorithm can be applied to case/control samples.

3.4. Overview of the Algorithm
Assume the penetrance model F = (f0, f1, f2) and the frequency
of the causal mutation are known. The steps of our algorithm
are:

1. Compute the probabilities P[T = (i, j) | φ = δ] (see Equation
4), for (i, j, δ) ∈ {0, 1};

2. Consider an initial V(0)
0 and V(0)

1 probability distribution
(in absence of a priori information on the frequency of
haplotypes, we use a uniform distribution);

3. E Step:

(a) For each genotype g and phenotype φ (see Equation 3):

(1) Evaluate, for all [hδ1
i1

, hδ2
i2
] ∈ g:

P
[(

hδ1
i1

, hδ2
i2

)

, φi | V
(k)
0 ,V(k)

1

]

∝ V(k)
δ1

(hi1 ) V
(k)
δ2

(hi2 ) P [T = δ1δ2 | φ]

(2) Sum these probabilities to obtain:

P
[

g, φi | V
(k)
0 ,V(k)

1

]

=
∑

(

h
δ1
i1

, h
δ2
i2

)

∈ g

P
[(

hδ1
i1

, hδ2
i2

)

, φ | V(k)
0 ,V(k)

1

]

.

(3) The conditional probability can then be computed as:

P
[(

hδ1
i1

, hδ2
i2

)

| g, φ,V(k)
0 ,V(k)

1

]

=
P

[(

hδ1
i1

, hδ2
i2

)

, φi | V
(k)
0 ,V(k)

1

]

P
[

g, φ | V(k)
0 ,V(k)

1

] .
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(b) Compute, for each sequence hδ (see Equation 8):

m(k+1)

hδ =
∑

(g,φ)∈(G,8)

2 · ng,φ ·

P
[

(

hg, ·
)

| g, φ,V(k)
0 ,V(k)

1

]

. (8)

4. M Step: update theV· distributions, by evaluating, for all h (see
Equation 3.1):

V0(h)
(k+1) =

m(k+1)
h0

∑

hm
(k+1)
h0

, V1(h)
(k+1) =

m(k+1)
h1

∑

hm
(k+1)
h1

.

5. Convergence test. Convergence is reached when

max
h,δ

∣

∣

∣
Vδ(h)

(k+1) − Vδ(h)
(k)

∣

∣

∣
< ǫ.

One convergence is reached, let V̂0 = V(k+1)
0 and V̂1 =

V(k+1)
1 . Otherwise, go back to step 3.

We have assumed that the proportion of carrier haplotypes is
known, which is of course not realistic in practice. Note however,
by assuming that the penetrance model F is known, and that the
frequency of the disease f is known as well, we can obtain p.
Since

f = f0(1− p)2 + 2f1p(1− p)+ f2p
2,

if f0 + f2 − 2f1 = 0, then p = (f − f0)/2(f1 − f0). In general,
however, we have:

p =
f0 − f1 ±

√

f 21 − f0f1 + f (f0 − 2f1 + f 2)

f0 − 2f 1+ f2
,

and there exists a solution in [0, 1] which satisfies the penetrance
model. If 0 ≤ f0 ≤ f1 ≤ f2, then the solution is unique. The
methodology has been implemented in C++, and is available
from the corresponding author.

For the proposed illustration, we have used ms (Hudson,
2002) to sample 10,000 chromosomes of approximate length
250 kb (simulated using ρ = 100), and randomly assigned
pairs of chromosomes to form diploid individuals. One of
the markers is chosen randomly such that its minimum allele
frequency is approximately 0.10, and this marker will become
the TIM. For each individual, a phenotype is then simulated
using the two alleles at the TIM according to the genetic model
F = (0.05, 0.10, 0.80). Haplotypes are then mixed in order to
obtain genotypes, and information on haplotypes is discarded.
We sample 100 individuals and sequences of length 8 markers,
so 28 haplotypes are possible in theory, but only 24 of them
are compatible with the observed genotypes. Figure 2 shows the
estimates of vectors V0 and V1 for each of the 24 possible types
of haplotypes in the sample. By comparing individual values,
V1(1) and V̂1(1) for example, we see that the estimates of the
frequencies are very good. Note that the estimates of V0(·) seem
to be slightly better than those of V1(·); this is due to the fact that
we have more information on control haplotypes than on case
haplotypes, because phenocopy causes many case haplotypes to
be non carriers.

FIGURE 2 | Distribution of V1 (left) and V0 (right). Estimated distributions

in light gray, and exact distributions in black. Each of the 24 horizontal bars

represents a frequency of a particular haplotype type which is compatible with

the data: of the 28 possible haplotypes of length 8 markers, only 24 were

compatible with the observed genotypes.

4. Estimating the Causal Alleles

Themethodology presented in this paper is the first to permit one
to jointly estimate the haplotypes at genotyped markers and the
(non observed) alleles at the TIM. Estimating the causal alleles
could be very useful in genetic counseling for example, where
the patient’s risk and treatment could be adjusted if the alleles
at the disease genes were known. In the sequel, we assume that
haplotypes are known andwe assess the capacity of ourmethod to
infer the causal alleles. As explained in Dupont (2012) or Boucher
(2009), when the haplotypes are known, Equation (6) reduces to:

P
[

T = (δ1, δ2) | d =
(

h1, h2
)

, φ,V0,V1

]

=
P [T = (δ1, δ2) | φ] Vδ1 (h1) Vδ2 (h2)

∑

T P [T = (δ1, δ2) | φ] Vδ1 (h1) Vδ2 (h2)
.

In the EM algorithm, the number of parameters increases as
the number of genetic markers increases: since the markers are
binary, if sequences of length d are used, there are 2d possible
haplotypes, leading to a maximum of 2d − 1 parameters to
estimate. For this reason, and because huge numbers of genetic
markers are available today, the method is illustrated here using
a moving windows strategy, i.e., we use windows made of d
markers each, and the total number of markers is L (d < L).
The first window consists of the set of markers {1, 2, . . . , d}, the
second consists of the set of markers {2, . . . , d + 1}, and so on.

Let ncas and ncon be the numbers of case and control
haplotypes, and n0 and n1 the numbers of non carrier and carrier
haplotypes, respectively. Let n1cas and n

1
con be the numbers of case

and control carrier haplotypes, and n0cas and n
0
con the numbers of

case and control non carrier haplotypes, respectively. We then
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have n = n0 + n1 = ncas + ncon = n0cas + n0con + n1cas + n1con.
Finally, let nδ

c (0) and nδ
c (1) be the numbers of haplotypes, where

the c subscript denotes the case/control status (c ∈ {cas, con})
and δ superscript (δ ∈ {0, 1}) denotes the true non carrier/carrier
status of the individuals in the counts nδ

c (0) and nδ
c (1). For

example, out of a total of n1cas= 100 carrier cases, if 75 are
correctly estimated as being carriers (n1cas(1) = 75), then 25
are erroneously estimated as being non carriers (n1cas(0) = 25),
because n1cas(1) + n1cas(0) = n1cas. We then define the partial
success rates:

π0
con =

n0con(0)

n0con
, π1

con =
n1con(1)

n1con
,

π0
cas =

n0cas(0)

n0cas
, π1

cas =
n1cas(1)

n1cas
,

and semi-partial success rates:

πcon =
n0con(0)+ n1con(1)

ncon
, πcas =

n0cas(0)+ n1cas(1)

ncas
,

π0 =
n0con(0)+ n0cas(0)

n0
, π1 =

n1con(1)+ n1cas(1)

n1
;

finally, we have the global success rate:

π =
n0con(0)+ n1con(1)+ n0cas(0)+ n1cas(1)

n0con + n1con + n0cas + n1cas
=

n0(0)+ n1(1)

n
.

A B

C D

FIGURE 3 | Example of the different success rates for a particular sample of 400 cases and 400 controls obtained with the genetic model

F = (0.01,0.1,0.1). (A) Global success rate. (B) Partial success rates: primitive controls, primitive cases, mutant cases, mutant controls. (C) Semi-partial success

rates: primitives and mutants. (D) Semi-partial success rates: controls and cases. Results are obtained with windows of width d = 16 SNPs incremented by one.

There are a total of 500 SNPs.
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All these rates have different meanings, and are useful depending

on the question of interest. In particular, π0 is the probability

to estimate a non carrier if the individual is a non carrier,
in other word the specificity, while π1 is the probability to
estimate a carrier if the individual is a carrier, in other word
the sensitivity. The probability π is known as the accuracy. As
with all classification rules, it is not informative to achieve high
sensitivity without specificity and vice versa. Accuracy alone is
not an ideal measure of success for low frequency TIM, as high
accuracy could be achieved by simply setting n1 = 0. Figure 3
exhibits an example of the different success rates for a particular
sample of 400 cases and 400 controls obtained with the genetic
model F = (0.01, 0.1, 0.1). Results are obtained with 500 SNPs
using windows of width d = 16 SNPs incremented by one.
The EM algorithm is run for each of the L − d + 1 windows
along the sequence. The different success rates are estimated for
each window and plotted at the center of the window. In each
window along the sequence, the rate indicates the proportion of

haplotypes for which the allele at the TIM is correctly inferred.
In all figures, the real position of the TIM is indicated by a red
vertical line. We can see in this example that there is variability
along the sequences, and this is easier to estimate TIM alleles
for primitive controls (light green) than mutant controls (dark
green). All rates increase in the vinicity of the TIM; for instance,
consider the global rate π (Figure 3A) which ranges from 0.70 to
0.96 at the position of the TIM. The mean global rate along the
sequence is 0.77. The increased success rate near the TIM is due to
more linkage disequilibrium around the TIM, and the difference
in haplotypes between cases and controls is more informative.

The accuracy of our method depends on several factors. We
have identified three of them: the genetic model, the sample size,
and the windows width d. To identify the impact of each of these
factors, we present further analyses where we vary the factors
one at a time. In order to assess the effect on the estimation of the
TIM’s allele only, we assume here that the haplotypes are known.
The strength of the genetic model will be measured using the risk

FIGURE 4 | Partial success rate depending on relative risks RR1 = RR2 = 10, for a sample size of 400/400 cases/controls, and windows of 16 SNPs.

Scale on Y axis: [0, 1]. Light green: primitive controls (π0
con), red: primitive cases (π0

cas), dark red: mutant cases (π1
cas), dark green: mutant controls (π1

con).
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ratio, RR, which is the ratio of the risk of one specified genotype
compared to the genotype with no carrier allele. On a simulated
population of 50,000 haplotypes and 10,000 SNPs generated by
FastSimCoal (Excoffier et al., 2013), 40 of datasets are produced
for various genetic models (RR1 = f1/f0 ∈ {1.01, 1.1, 2, 10},
RR2 = f2/f0 ∈ {1.01, 1.1, 2, 10}, for different sample sizes
(ncon/ncas ∈ {100/100, 200/200, 400/400, 800/800}) and for
various window of widths d ∈ {2, 4, 8, 16}. Low relative risks
RR1 and RR2 implies there is less information in the data to infer

mutant haplotypes. To obtain an informative range of values
for RR1 and RR2, we fixed f0 at 0.01 and allowed f1 and f2 to
take every value in the set {0.0101, 0.011, 0.02, 0.1} such that
f0 ≤ f1 ≤ f2. These combinations lead to various genetic models,
including recessive and dominant ones. Regarding the windows
width, we expect that short windows contain less information
about the data, however very large windows can cause many
single haplotypes, making V0 and V1 difficult to estimate.
Each sample originates from the same population, with a TIM

FIGURE 5 | Partial success rates depending on sample size and windows width for RR1 = RR2 = 10. Scale on the Y axis: [0, 1]. Light green: primitive

controls (π0
con), red: primitive cases (π0

cas), dark red: mutant cases (π1
cas), dark green: mutant controls (π1

con).
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A B C

FIGURE 6 | Global success rates depending on combined relative risks (A), sample size (B), and windows width (C). Scale is the same for all three plots.

The dotted line represents the random success rate (0.82). (A) 400/400 cases/controls, windows of 16 SNPs. (B) RR1 = RR2 = 10, windows of 16 SNPs. (C)

RR1 = RR2 = 10, 400/400 cases/controls.

A B C

D E F

FIGURE 7 | Success rates of primitive controls (A–C) and mutant controls (D–F) depending on combined relative risks (A,D), sample size (B,E) and

windows width (C,F). Scale is the same for a given line. Dotted lines represent the random success rate (A–C: 0.9; D–F: 0.1). (A,D) 400/400 cases/controls,

windows of 16 SNPs. (B,E) RR1 = RR2 = 10, windows of 16 SNPs. (C,F) RR1 = RR2 = 10, 400/400 cases/controls.
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frequency of p = 0.1. The same 500 selected SNPs are used for all
analyses. The disease frequency in the population, is calculated as
f0 ·(1−p)2+ f1 ·2 ·p(1−p)+ f2 ·p2, and ranges in values from 0.01
to 0.0271. In a case control design with equal proportions of cases
and controls, the frequency of the disease itself will have no effect
on the proposed methodologies, but the genetic models will.

Figure 4 provides the partial success rates for different
combinations of RR1 and RR2. When relative risks are low, we
observe that the rates are constant along the sequences, with π0

con
and π0

cas very high and π1
con and π1

cas very low (in fact, these rates
are near p = 0.1 and 1 − p = 0.9, which are the random success
rates without any genetic effect). As soon as the relative risk
increases, we observe an improvement in the estimation of the
causal alleles, this improvement being very noticeable in region
of the TIM.

The effect of the windows width (d) and the sample size are
shown in Figure 5. There is a general improvement in the success
rates (π0

con, π
0
cas, π

1
cas, π

1
con) when these two factors increase, but,

surprisingly, the effect is not very strong, perhaps due to the high
relative risk assumed in these analyses.

An overview of the effect of the different factors on the
global rate π (the accuracy) is shown in Figure 6; an increase
in the relative risks clearly translates to an improvement of the
global success rate. If the sample size is larger than 50/50 for
cases/controls, increasing the sample size seems to have little
effect, at least with the parameters considered in this example.
Finally, the effect of the windows width is pretty clear: π increases
all along the sequence when the width of the windows increases.
Similar results are obtained for the partial rates π1

con, π0
con (see

Figure 7) and for the partial rates π1
cas, π

0
cas (see Figure 8).

We have compared this EM methodology to a simpler naive
method, which consists of testing the association of each marker
in the region with the phenotype, and to infer the alleles at
the TIM to be the alleles at the marker having the strongest
association with the phenotype. To illustrate this procedure, we
have used 7503 heterozygote markers to test the association on
the data in the case RR1 = RR2 = 2. As shown in Figure 9A,
for each of the four markers showing the strongest association
with the phenotype, we have inferred the TIM’s alleles to be
the alleles of this marker, and plotted the success rate π at the

A B C

D E F

FIGURE 8 | Success rates of primitives cases (A–C) and mutants cases (D–F) depending on combined relative risks (A,D), sample size (B,E) and

windows width (C,F). Scale is the same for a given line. Dotted lines represent the random success rate (A–C: 0.9; D–F: 0.1). (A,D) 400/400 cases/controls,

windows of 16 SNPs. (B,E) RR1 = RR2 = 10, windows of 16 SNPs. (C,F) RR1 = RR2 = 10, 400/400 cases/controls.
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A B C

FIGURE 9 | Using the genetic model RR1 = RR2 = 2. (A) The blue line indicates the global success rate when the TIM is estimated by our proposed methodology,

and the four dots around the position of the TIM indicate the success rate when the TIM is estimated by the four most significant markers (the naive method); the

marker showing the strongest association is the largest of the four points. (B) The green line indicates the success rate π0 (specificity) and the the red line indicates

the success rate π1 (sensitivity) both obtained with TIM estimated by our proposed methodology; the four green dots are the specificity of the four most associated

markers (naive method), and the four red dots are the sensitivity of the same four markers (naive method). (C) Relation between sensitivity and 1-specificity,

showing − log10 of the p-value for each marker.

position of these markers. One can see that the success rate for
the naive method is lower than the success rate of the EMmethod
around the true position of the TIM, which is expected since
the EM method benefits from the haplotype and the phenotype
information, and from the penetrance model. Another benefit
is that the EM method does not need many markers, we used
only 500 of them. Moreover, it is very interesting to evaluate
the sensitivity π1 and the specificity π0 for the naive method,
and to compare them with our previous estimates obtained using
our method. This comparison is illustrated in Figure 9B, which
shows π1 and π0 (from Figure 9B), and the same rates for
the four most associated markers using the naive method. The
EM method (plain lines) shows both increased sensitivity and
increased specificity around the location of the TIM, as expected,
whereas the naive method has a very high specificity and a
very low sensitivity. To complement these results, Figure 9C
shows the relation of the sensitivity to 1-specificity, such that the
darkness of each of the 7503 points is proportional to − log10
p-value of the association between themarker and the phenotype;
one can see that the most significantly associated markers are
not the ones exhibiting the highest sensitivity and specificity. The
best marker (regarding sensitivity and specificity) is at the top-
left of the figure, and is not near being the most associated one.
It is important to note, however, that these results depend of the
strength of the genetic model: if RR1 = RR2 = 10, then it is
likely that one of the marker could perform as good or better than
the EMmethod, because the association between the marker and
the phenotype in this case would be more direct. This illustrates
that our EM method surpasses the naive method in the most
interesting cases.

5. Conclusion

We have shown how to build an EM algorithm to jointly estimate
haplotypes and unknown alleles at the TIM conditionally on
the phenotype. In contrast to other methodologies, we use the

phenotypic information available, and estimate the frequencies
of haplotypes for non carriers, V0, and for carriers, V1; the
method also estimates the alleles T = (δ1, δ2), opening new
avenues. This method to estimate the alleles at the TIM can
also be used with resolved haplotypes, and with missing values.
We have shown that the methodology is robust to the sampling
from case/control design, which is commonly used in genetic
studies. We benchmarked the method on data simulated under
the coalescent. The efficiency of the method to infer the alleles at
the TIM depends mostly on the strength of the genetic model:
when the relative risks are high, the success rates of correctly
estimating the alleles are high. This implies that it would be
relatively easy to infer TIM alleles for mendelian traits, however
we probably need more data when relative risks are low. We
observed that neither the frequency of the disease nor of or the
causal alleles in the population had any impact on the efficiency
of the method. This was to be expected given the case/control
design, which implies an enrichment in cases, and thus in causal
alleles, in the samples. We also compared our methodology to a
naive method, which consists of estimating the alleles at the TIM
by the alleles of the marker the most significantly associated with
the phenotype. By studying specificity and sensitivity, we have
shown that the proposed method provides both higher specificity
and higher sensitivity, especially around the true position of
the TIM.
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