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Abstract

Peptide drugs have been used in the treatment of multiple pathologies. During peptide dis-

covery, it is crucially important to be able to map the potential sites of cleavages of the prote-

ases. This knowledge is used to later chemically modify the peptide drug to adapt it for the

therapeutic use, making peptide stable against individual proteases or in complex medias.

In some other cases it needed to make it specifically unstable for some proteases, as pep-

tides could be used as a system to target delivery drugs on specific tissues or cells. The

information about proteases, their sites of cleavages and substrates are widely spread

across publications and collected in databases such as MEROPS. Therefore, it is possible

to develop models to improve the understanding of the potential peptide drug proteolysis.

We propose a new workflow to derive protease specificity rules and predict the potential

scissile bonds in peptides for individual proteases. WebMetabase stores the information

from experimental or external sources in a chemically aware database where each peptide

and site of cleavage is represented as a sequence of structural blocks connected by amide

bonds and characterized by its physicochemical properties described by Volsurf descriptors.

Thus, this methodology could be applied in the case of non-standard amino acid. A fre-

quency analysis can be performed in WebMetabase to discover the most frequent cleavage

sites. These results were used to train several models using logistic regression, support vec-

tor machine and ensemble tree classifiers to map cleavage sites for several human prote-

ases from four different families (serine, cysteine, aspartic and matrix metalloproteases).

Finally, we compared the predictive performance of the developed models with other avail-

able public tools PROSPERous and SitePrediction.
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Introduction

Proteolytic enzymes play critical role in many processes including cell proliferation, immune

response, cell death and others [1]. Protease specificity was studied in different studies [2, 3].

Protease cleavage of peptides is directed by short amino acid motifs, from two to eight amino

acids around the scissile bond (site of cleavage, SoC) [4]. This specific amino acid sequence is

recognized by the active site of a given protease, but the efficiency of a proteolytic activity is

also related to the structural properties of the SoC. Kazanov et al. [5] studied the structural

preferences of cleavage sited by mapping 200 proteolytic events to the CutDB [6]. Recently, it

has been shown that the following additional factors to the peptide sequences influence on a

cleavage such as unfolding events, allosteric effects, solvent accessibility, secondary structure of

the sequence etc. [7]

Nowadays it is known that the new peptide-based drugs must be designed considering the

localization of potential protease SoCs to make the compound less susceptible to protease reac-

tion. Firstly, efforts are spent on evaluating a large numbers of lead compounds and their

derivatives to reveal motifs recognized by proteases. Secondly, peptide sequences of potent

drug candidates are typically chemically modified to eliminate these motifs or to incorporate

structural features preventing proteolysis [8]. Various chemical strategies have been developed

to overcome the low availability issue of peptides, including cyclization, changing the stereo-

chemistry of an amino acid, substitution of natural amino acids by unnatural ones and others

[9]. These changes are applied during the design-make-test drug discovery cycle, with hopes of

improving the physicochemical and pharmacokinetics properties of the compound of interest.

Therefore, it is crucial to evaluate these properties rapidly in early development and suitable in

vitro techniques providing reliable predictions of in vivo performance are required.

The information about proteases and their sites of cleavage is widely spread across publica-

tions and databases such as MEROPS [10], CutDB [11] and Proteasix [6]. The MEROPS data-

base integrates available information about proteolytic sites and, consequently, proteases from

different organisms, their experimentally identified or predicted SoCs with their sequences,

peptidase substrates and inhibitors. This information can be used to develop models to identify

possible labile residues in the candidate peptide for individual proteases. Although useful,

these databases still have several limitations. For example, none of the available resources allow

to add new information in an automatic way to enrich the database information.

Different bioinformatic tools were developed to for protease-specific substrates and their

cleavage sites prediction. Efficient computational tools potentially can help to reduce the num-

ber of experiments and improve peptide drug structure before synthesis. These approaches use

as an input data extracted from databases described above. Several reviews were published to

compare developed models and their predictive performance [12, 13, 14]. These approaches

can be classified in four main groups depending on the way how models were developed.

The first group contains sequence-based approaches (ExPaSy [15, 16]). The second group

consists of approaches that perform prediction using position-specific scoring matrix (PSSM)

for individual proteases (GraBCas [17], CasPredictor [18], PoPS [19], SitePrediction [20]).

Approaches in the third group use machine learning-based predictive models trained on

sets of cleavage site specific descriptors (PROSPER [21], PROSPERous [22], Pripper [23],

CasCleave [24], CasCleave 2.0 [25], CASVM [26], iProt-Sub [27]). Finally, the forth group

contains approaches that combine methods explained. For example, Proteasix can perform

matching against the collection of the known cleavage sites from the literature and calculate

probability of cleavage event appearance based on MEROPS specificity matrix.

In accordance with comparison reported in the literature machine learning methods over-

perform the methods from the first and the second group. In this group approaches models
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are trained using different features: binary features, PSSMs, molecular descriptors, structural

features such as the secondary structure of the cleavage sites, the solubility of the sequence

around the cleavage site and others. The cleavage site specific molecular descriptors are used

to explain physical, physicochemical, pharmacophoric properties of the residues around the

cleavage site. One more feature that is considered during model training is the size of local

window around the cleavage site, typically from two to sixteen residues. Different machine

learning algorithm such as support vector machine (SVM) learning algorithm (CASVM, Prip-

per), support vector regression (SVR) (CasCleave 2.0, PROSPER), logistic regression (PROS-

PERous), neural networks [28] and others are applied to implement protease-specific models.

This article presents a new approach which aim is to derive cleavage site appearance rules

for the specific peptide family or for specific experimental condition (i.e. individual protease).

The system considers the following steps: firstly, the information coming from liquid chroma-

tography mass spectrometry (LC-MS) based experimental data or from external sources such

as MEROPS database is stored in a chemically aware database (i.e. WebMetabase [29]). We

represented each amino acid as a vector of physicochemical properties. We used validated Vol-

surf molecular descriptors [6] to describe these properties. Finally, the cleavage site-specific

descriptors are calculated as a combination of the individual amino acid descriptors for the

residues surrounding the cleavage site. Each stored peptide substrate and cleavage site are

described as a combination of pharmacophoric and physicochemical properties of each amino

acid contained in the sequence. This database can be used to perform frequency analysis (FA)

to discover the most frequent SoC [29] within the experimentally derived and/or public data-

base. FA results can be used to create a set of empirically derived rules based on molecular

properties of the cleavage sites. At the next step, results of the frequency analysis for several

individual proteases were used to train a Logistic Regression (LR), Support Vector Machine

(SVM) and Ensemble Trees (ET) classifier prediction models. We trained models for eighteen

proteases from four protease families: serine, cysteine, aspartic and matrix metalloproteases.

Nevertheless, the proposed methodology could be applied in the case of non-natural amino

acid and/or cyclic peptides. Moreover, since the system used to derive the cleavage site appear-

ance rules (frequency analysis, FA) could be linked to the software assisted metabolite struc-

ture elucidation based on MS data, the database is automatically enriched with the new

experiments. Rules can then be refined to tune the system for the experimental conditions

and/or peptide families of interest. This knowledge can be applied during the design-make-

test drug discovery cycle.

Materials and methods

In-silico MEROPS dataset

In this study we exported peptide cleavage data from the MEROPS database (version 11 1/09/

2017) [10] for all the available proteases in MySQL format using our own script that converts

each organism/protease/peptide information in a single xml file inside a folder data structure.

This data consists of substrate sequences, the cleaving protease, and the cleavage sites. MEROPS

database version 11 contained information about 75959 substrates. Each peptide sequence was

converted to a chemical structure and saved in MDL mol format. [30] For our analysis, we

focused on peptides having less than 200 amino acids. This amount of the amino acids was

selected since we were concentrated on peptide substrates more than proteins. Several peptides

were excluded from analysis because it was not possible to restore their chemical structure. The

reasons could be, for example, the lack of an appropriate defined structure for some encoded

abbreviations of amino acids in a sequence.
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Two different strategies were followed depending if the source organism for the protease

was indicated in the MEROPS database or it was not. The summary information extracted

from the MEROPS database includes: substrate peptide sequence, parent sequence peptide

range, substrate Uniprot number, cleavage site position in substrate, metabolite peptide

sequence, protease name, protease source organism and references list related to the protease.

All the information was collected and written in a xml file. The xml has four blocks of

information:

1. Properties: The Matrix (name of the protease), the MEROPS Peptidase Code, the MEROPS

Peptide Uniprot_acc, the MEROPS Peptide Range, the MEROPS Organism and the MER-

OPS Peptidase Reference.

2. Parent: the parent structure in sdf format, the InchiKey, the molecular formula and the

m/z.

3. Metabolized Parent: as the previous one without the InchiKey.

4. Metabolites: There is a new block for each metabolite. It contains the metabolite name and

the structure. Each structure has the structure ID inside the xml file, the sdf (V3000 or

V2000 format), the formula, the m/z, the formula difference compared to the parent struc-

ture, the metabolic mechanism, the m/z difference compared to the parent, the collection of

atoms in the parent that suffer the metabolic transformation and the list that contains the

isomorphism between the number of the atom in the parent and the number of atom in the

metabolite.

After the xml files were imported into WebMetabase the same steps to annotate the infor-

mation for each file that were described elsewhere for the case of experimentally derived

approach were followed [31]. Enabling in this way the combination of the external and internal

sources of information.

WebMetabase

All files extracted from MEROPS database were uploaded into the web application “WebMeta-

base 3.2.12” (Molecular Discovery Ltd, Middlesex, UK). WebMetabase imports the data from

external sources in a predefined xml format where the structure of the peptides introduced in

MDL mol format (V3000 or V2000). This conversion to a structure format is necessary to feed

the chemically aware system. A complete list of uploaded substrates for each protease grouped

by organism can be found at http://webmetabase.com:8182/WebMetabaseBioinformatics/. To

access this database following credentials should be used: login “User”, password

“WebMetabase”.

Peptide database and search algorithm based on similarity. Once the experimental

results and/or data from external database were interpreted and approved in WebMetabase,

the parent and metabolite structures were stored in the database. Each peptide structure was

annotated by the Structural Blocks (SBs) defined as the structural fragment between amide

bonds and their connectivity. SBs in the substrate sequence were numbered as . . .-P4-P3-P2-

P1-/-P1’-P2’-P3’-P4’-. . ., with the cleaved bond located between the P1 and P1’ sites. [32, 33]

In this article we described a new approach implemented in WebMetabase to store each

peptide described as a combination of physicochemical properties of each SB contained in the

sequence. These physicochemical properties of the SBs were represented through molecular

descriptors calculated by the cheminformatics library Volsurf. [6] Therefore, each SoC P1-P1’

was also characterized as a combination of physicochemical properties of the two SBs. More-

over, similarity matrix for Volsurf descriptors was calculated for all SB stored in the database.
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The annotation of the peptide information in this manner enables doing an exact substruc-

ture and similarity-based substructure search inside the database without being limited to any

type of peptides and/or amino acid (cyclic/linear, natural/synthetic). This methodology can be

used to perform a structural search on the exact sequences identifying the experiments where a

certain bond of interest participated in a metabolic reaction. Also, the described algorithm

implemented in WebMetabase includes a system to perform searches based on similarity of

the molecular descriptors. As an output, searches give a list of experiments that fulfill the

search criteria. [31]

Volsurf descriptors. We used the cheminformatics toolkit Volsurf [6, 34] to calculate the

physicochemical properties for the individual SBs. Peptide descriptors are then built from the

descriptors of the SB in the peptide. Volsurf+ creates 128 molecular descriptors from 3D

Molecular Interaction Fields (MIFs) produced by our software GRID [35, 36]. The Volsurf

descriptors summarize the MIF information in a few variables easy to understand and to inter-

pret. Basically, it quantitatively characterizes size, shape, polarity, hydrophobicity and the bal-

ance between them.

Frequency analysis. The algorithm can perform frequency analysis (FA) based on exact

match of the sequence of interest (simple frequency analysis, sFA) and/or on the similarity

based on the molecular descriptors (similarity frequency analysis, SFA). A simple peptide fre-

quency analysis of the cleaved amide bonds can be performed for the entire database or for the

selected set of the approved experiments in WebMetabase. The algorithm collects information

about all cleaved peptide bonds that were involved in the metabolic reactions of interest.

Herein site of cleavage (SoC) considers the two SBs involved in the amide cleavage containing

the C-terminal and N-terminal of the SBs. We define a potential SoC (pSoC) as the pair of

structural blocks (referred as P1 and P1’) that may and may not be involved in the catalysis.

The frequency analysis refers to the number of times that a pSoC is observed in the parent

structure and how many times this is an actual SoC (aSoC).

The output of the frequency analysis is done by protease and provides two tables. The first

table contains the counts of a pSoC found and the counts that it was an aSoC. The second table

contains the counts a pSoC found and if it was cleaved once, twice or more than twice. A fre-

quency analysis of the aSoCs depending on the protease can be done to create a set of empiri-

cally derived rules that later can be used to predict the metabolic liability of different amide

bonds in a new non-tested peptide. WebMetabase automatically generates an excel file in tem-

porary folder to store FA results. Filename format starts with string “soc” and after some ran-

dom number, e.g. soc7511073558888689580.xls. This file can be used for the following analysis

if needed. Moreover, frequency analysis results can be persisted in the database for the further

usage.

Model implementation

The information registered in the database and FA results based on MEROPS dataset for eigh-

teen proteases were selected to make some examples of the methodology. These proteases

from four different families (serine, cysteine, aspartic, matrix metalloproteases) from Homo

sapiens were chosen to develop classifier models. They included granzyme A, granzyme B,

granzyme B (rodent-type), granzyme M, thrombin, trypsin1, caspase-1, caspase-2, caspase-3,

caspase-6, caspase-7, cathepsin E, cathepsin D, cathepsin L, MMP2, MMP3, MMP8, MMP9.

Trypsin1, MMP2, caspase-6 and cathepsin L were selected because the number of the identi-

fied aSoCs was the highest for proteases imported in WebMetabase. Others were selected as a

representative of the respective protease family. For each selected protease we split all extracted

substrates in train and external dataset (ED). Train dataset contained experiments with 80% of
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extracted cleavages events and was used to develop models and to perform the cross-valida-

tion. ED was used only as a final assessment of model predictive performance quality for each

protease and to perform comparison with publicly available PROSPERous and SitePrediction

approaches. In accordance with the literature it was revealed that increasing of the investigated

window’s size around cleavage site could improve the performance of the model [22]. Due to

this fact, all classifier models were built using two sequence windows, consisting of the P1-P1’

(SoC2) and P4-P4’(SoC8). SoC2 considers the two SBs P1 and P1’ involved in the amide cleav-

age containing the C-terminal and N-terminal of the SBs. SoC8 considers the eight SBs on

positions P4-P4’. S1 Table summarizes the information regarding selected proteases, protease

family, number of selected substrate peptides, number of cleavage events exported from MER-

OPS, number of unique aSoCs from two amino acids (P1-P1’), number of unique aSoCs from

eight amino acids (P4-P4’) and number of substrates excluded from the exported dataset to

perform external validation (EV) of the models.

To derive a training and external dataset for each of the selected proteases, we cut out all

possible 2 SBs and 8 SBs sequences from substrate peptides. Thus, a substrate with 100 amino

acids would lead to 93 and 99 sequences of length 8 and 2, respectively. Each sequence than

was characterized as a combination of physicochemical properties described by Volsurf

descriptors of the SBs in the sequence. These sequences were then classified as either cleaved

(aSoC2 and aSoC8) or non-cleaved sequences (pSoC2 and pSoC8). Cleaved sequence for

aSoC2 was the one involved in metabolic reaction. In cleaved sequence for aSoC8 the proteo-

lytic event happened between fourth and fifth residue. Substrate cleavage site prediction was

formulated as a binary classification problem for two classes cleaved SoCs so-called positive

examples or non-cleaved SoCs so-called negative examples. We calculated number of times

each pattern was cleaved and number of times it was met. For the SoC2 it was done during

sFA in WebMetabase, for the SoC8 additional script was applied. Since the size of positive

dataset was significantly smaller than the number of non-cleaved motifs, we split all negative

dataset in groups with number of objects equal to the number of cleaved patterns, than com-

bined positive dataset with each of the received negative subsets, therefore obtained balanced

datasets to derive models. In details, we decomposed the non-cleaved objects dataset into X

partitions, where X depended on the number of cleaved sequences and combined all the

metabolized SoCs with each partition of pSoCs to be an individual subset. Thus, we generated

multiple training subsets with better class distribution and each non-cleaved object occurred

in at least one training subset (Fig 1). Moreover, we performed directed oversampling for

aSoCs and pSoCs to give a weight to the motifs that appeared in the dataset and were metabo-

lized more frequently [37, 38]. We gave them an over representation in the dataset for certain

number of times. This number was calculated in accordance with the following formula (1). S2

Table summarizes the information regarding number of subsets for each protease.

N ¼ ðM � 11Þ � ð100þMÞ ð1Þ

N is the number of times sequence pattern will be repeat in a final dataset. M is the number

of times the sequence pattern was met in the initial exported dataset. Train dataset and external

dataset for each of the selected proteases used for model training for local window of two resi-

dues and local window of eight residues are provided in the Supporting information S1 File.

The next step, for each protease we applied multiple learning algorithms to each training

subset of sequences described by Volsurf descriptors to train prediction models independently.

In this study, we used Logistic regression (LR) [39, 40], Support Vector Machine Classifier

(SVC) [39, 40] and Random Forest Classifier (RFC) [39, 40] and Gradient Boost Classifier

(GBC) [39, 40] to build the models to estimate the cleavage site probability of substrates for
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selected proteases. For SVC we selected radial basis kernel function (RBF) [39, 40] and applied

Grid Search CV [39, 40] to search best parameters of the classifier. For all other classifiers

default parameters were used.

While models were generated, we performed 5-fold cross-validation (5CV). The predictive

performance of each model was evaluated using the accuracy, sensitivity, specificity, area

under the curve (AUC) for the receiver–operator characteristic curve (ROC), area under the

curve for the precision-recall curve (PRC), Mathews correlation coefficient (MCC) using these

measures based on 5-fold cross-validation. Finally, we combined all models measures for each

learning algorithm by calculating the mean for each measure.

To evaluate the model’s performance in a real scenario and to inspect the potential over-fit-

ting effect on these algorithms, we also performed prediction on EDs, peptides that had not

been included in the model building. Prediction was performed for each peptide from the

external dataset independently by each model. To complete this goal each peptide from exter-

nal dataset also was split in motifs and each motif was characterized as a combination of phy-

siochemical properties of its SBs. To combine the results from all models for each learning

method we calculated a mean of predicted probabilities for each bond in the peptide, using the

predicting bond breaking probability we evaluated ranking performance for each classifier.

The procedures are described in detail below.

Fig 1. Architecture of the classifier ensembles.

https://doi.org/10.1371/journal.pone.0199270.g001
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Finally, we performed independent tests and compared the predictive performance by

ranking on ED between selected LR and RFC model classifiers and the other public available

tools such as SitePrediction and PROSPERous.

Evaluation of model performance

Performance evaluation comparison between different classifiers. We performed com-

prehensively evaluation and comparison of the predictive performance between different classifi-

ers (LR, SVC, RFC and GBC) on the external dataset (ED) in each protease family combining the

prediction for all proteases inside the family. Based on the intermediate results presented below

we decided to proceed with classifiers using local window P4-P4’. To complete this task, we cut

out each external peptide in subsequences of length 8, calculated Volsurf descriptors for each of

the SB in this peptide and characterized each sequences of 8 SBs as a combination of physico-

chemical properties of SBs contained in the subsequence. We used these combinations of Volsurf

descriptors to perform prediction on each of them. Since the final goal of the model was to select

which of the bonds was more likely to be broken in each sequence, an analysis of the rank (sorted

by the predicted SoC) was performed. Therefore, when the probability for each bond was com-

puted by the model, we sorted each sequence by their value and registered a rank of each pre-

dicted cleavage site. Since peptides differ in a size ranking was normalized by the amount of

possible cleavage sites. A recovery analysis of the rank value for the known SoC was done and

finally we accumulated all ranking positions for each external peptide and each protease inside the

family. Moreover, we calculated the best and the random ranking. The random ranking was done

by assigning a random number for the probability to be broken for each SoC and continuing in

the same way as in the model case. In the case of the best ranking positions, the known SoCs in a

peptide were assigned to 1,2,3, etc. rank for each of the known SoCs. As a summary of the results,

we plotted the cumulative ranking score for the recovered known SoCs for each family including

the best and the random cumulative ranking. Python algorithm used to perform predictive mod-

els training and to perform prediction on external dataset for each model for each of the selected

protease with ReadMe.txt was provided in the Supporting materials (S2 and S3 Files).

Performance evaluation comparison with other prediction tools (SitePrediction and

PROSPERous). We performed comprehensively evaluation and comparison of the predictive

performance between selected LR and RFC model classifiers and other public available tools such

SitePrediction and PROSPERous. Comparison with the external methodologies was performed

only for the proteases in each family where models were available. Models for trypsin1, granzyme

M and caspase-2 were not available in both methods, also for granzyme A, granzyme B, granzyme

B (rodent-type) and thrombin were not available in SitePrediction approach. To complete this task,

we used as an input for SitePrediction and PROSPERous FASTA format sequences of the peptides

in the external dataset and exported prediction results. In SitePrediction we selected models trained

for each protease for Homo sapiens. In PROSPERous we selected logistic regression models and

local window P4-P4’. After each potential cleavage site was sorted in accordance with the predicted

scores from each method. For the SitePrediction case where a score was not predicted it was

assigned to 0. After we followed the same rank strategy explained for the models developed in this

article, registering the rank of each predicted cleavage site and normalized it by the amount of possi-

ble cleavage sites for each peptide. Finally, we plotted the cumulative ranking score for each family

for our models and for each method including the best and the random cumulative ranking.

Results and discussion

In this section, we present the results of the application of our approach in the analysis of the

MEROPS. All files extracted from MEROPS database were uploaded into the web application

Peptide cleavage sites prediction workflow
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“WebMetabase 3.2.12” (Molecular Discovery Ltd, Middlesex, UK). WebMetabase imports the

data from external sources in a predefined xml format. Metabolites structures extracted from

MEROPS were directly uploaded into WebMetabase and automatically approved. After

approval parent peptide and metabolites were persisted into the database and annotated as

described before. Finally, the methodology was applied to perform a sFA on the stored infor-

mation for selected proteases: granzyme A, granzyme B, granzyme B (rodent-type), granzyme

M, thrombin, trypsin1, caspase-1, caspase-2, caspase-3, caspase-6, caspase-7, cathepsin E,

cathepsin D, cathepsin L, MMP2, MMP3, MMP8, MMP9. The sequence pattern around the

potential cleavage site was represented as a combination of Volsurf descriptors. Moreover, an

additional script was applied on the database to perform sFA for the sites of cleavage with the

local window P4-P4’. The results from both FA were used to build predictive models for the

selected proteases enabling the cleavage site prioritization based on the physicochemical prop-

erties for the cleavage sites. The MEROPS/WebMetabase workflow used is shown in Fig 2.

In total we extracted 18760 xml files and they contained information for 18760 substrate

peptides and 21804 metabolites. For each selected protease we split all extracted experiments

in train and external dataset. Train dataset contained experiments with 80% randomly selected

of the extracted identified cleavages events and it was used to develop models and perform

cross-validation. External dataset was used to evaluate the model performance and compare it

with other methods. In both datasets each SoC was represented as a combination of the Vol-

surf descriptors of the SBs in the sequence. We performed a simple frequency analysis of the

metabolized chemical moieties for each protease in the train and external datasets. The sum-

mary on the amount of identified individual metabolized bonds by frequency analysis is pre-

sented in S3 Table. Full information of identified cleavage sites frequency can be found at

http://webmetabase.com:8182/WebMetabaseBioinformatics.

Using the prepared substrate training datasets, we analyzed the statistical distributions of

cleavage sites for the eighteen proteases analyzed (S1 Table). The amino acid occurrences in

the P4-P4’ positions for the SoCs of all selected proteases were calculated to generate heat map.

The heat maps for the selected caspases and trypsin1 are presented as an example in Fig 3, for

all other proteases they are provided in S1, S2 and S3 Figs. These heat maps help to identify

conserved and frequently occurring amino acids at scissile bonds (Fig 3, S1, S2 and S3 Figs).

For example, as shown in Fig 3, one of the main characteristics of caspase-3 specificity is that

this protease preferentially cleaves after the aspartic acid (Asp, D) at P1 and P4 position. We

identified Asp in position P1 in 100% of analyzed SoCs and in position P4 in 57.1%. Also, we

noted that glutamic acid (Glu, E) presented in 28.6% at P3 and valine (Val, V) presented at

position P2 in 30.95%. Also, glycine (Gly, G) at P1’ in 30.95% and alanine (Ala, A) in 23.8% or

leucine (Leu, L) in 21.4% at position P2’. Therefore, a good substrate for caspase-3 should con-

tain sequence like D-E-V-D+G-A or D-E-V-D+G-L. These results agree with literature where

it was described caspase-3 preferentially cleaved at D-E-V-D+X-X-X [41,42], Comparison of

different caspases reveals differences between preferential cleavage motifs, for example, phe-

nylalanine at P2’ for caspase-1, serine at P1’ for caspase-2 and caspase-6, threonine at P2 and

leucine at P4’ for caspase-7. These results also agreed with specificity matrix presented in

MEROPS DE-E-V-D+GS—. This indicates that, although we reduced our dataset by selecting

only peptides of small size limited to 200 of amino acids, we still got representative dataset of

substrates for each protease.

In addition, for trypsin1 we identified arginine (Arg, R) in position P1 in 36.8% and lysine

(Lys, K) in 63.2%. These results agreed with literature where it was described trypsin preferen-

tially cleaved at Arg and Lys in position P1 [43] and with MEROPS specificity matrix.

To evaluate the performance of the selected classifier models for cleavage site prediction of

multiple proteases, we carried out a 5-fold cross validation (5CV) test on each of selected
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proteases under investigation in this study. Moreover, the predictive performance on several

external datasets was explored. Firstly, we trained and compared the predictive performance of

models with two learning methods LR and SVC using two sizes of local windows P1-P1’ and

P4-P4’ For evaluation of predictive performance during 5CV test the following criteria were

calculated: accuracy, ROC AUC, sensitivity and specificity. For evaluation of the predictive

performance on external dataset we calculated the accuracy, sensitivity and specificity. S4 and

S5 Tables summarizes results for the predictive performance evaluation for LR and SVC classi-

fiers trained using local windows P1-P1’ and P4-P4’ for caspases all evaluated parameters for

5-fold CV and for external dataset, respectively. S6 and S7 Tables summarizes results for the

predictive performance evaluation for LR and SVC classifiers validated on external dataset for

all selected proteases and all evaluated parameters trained using local windows P1-P1’ and

P4-P4’, respectively.

For caspases-1, 3 and 7 all performance measures decreased for both classifiers when win-

dow was widened, on the other hand for caspases-2 and 6 they increased for LR and decreased

for SVC. For example, for caspase-1 and 2 comparing LR classifier performance based on

Fig 2. MEROPS/WebMetabase workflow from experimental data to searchable information manageable by in silico analysis tools.

https://doi.org/10.1371/journal.pone.0199270.g002
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AUC ROC for the 5CV results for window P1-P1’ was 0.77 and 0.87 and for P4-P4’ was 0.73

and 0.93, respectively. Comparing results for LR and SVC specificity was higher for SVC classi-

fier in both P1-P1’ and P4-P4’. Meanwhile, when we compared predictive performance on

external dataset of the models trained using two local windows AUC ROC for P4-P4’ were

higher for caspases-2, 3, 6, 7 and cathepsin L in both classifiers. Also, AUC PRC and MCC

were higher for P4-P4’ were higher for caspases-2, 6 and cathepsin L in both classifiers. For

caspase-1, -3 and -7 AUC ROC, AUC PRC and MCC were lower that also could be related

with small amount of training data. It can be explained by the fact that models trained for win-

dow P4-P4’ are more complex and involve higher number of variables to be defined during the

training process. We suppose that because the amount of data is not sufficient to properly

train the model for window P4-P4’. For caspases-1, 3, and-7. This theory is also confirmed by

the fact that all parameters increased when P4-P4’ dataset was used to train both learning

methods for cathepsin L. Based on this analysis results we decided to continue using local win-

dow sequence P4-P4’.

In addition, we compared the difference of amount of recovered known cleavage sites for

all selected proteases for the P1-P1’ and P4-P4’ LR models for the 10 top positions. To com-

plete this task, we calculated a difference and normalized it by total amount of known cleavage

sites. In Fig 4 amount of recovered known cleavage sites for 10 top positions is shown for LR

models trained on P4-P4’ local window.

Fig 3. The cumulative amino acid occurrences in P4–P4’ two-dimensional heat map for caspases: a) caspase-1; b) caspase-2; c) caspase-3; d) caspase-6; e) caspase-7;

f) trypsin1. The scissile peptide bond was between sites P1 and P1’.

https://doi.org/10.1371/journal.pone.0199270.g003
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Different learning approaches methods were used to train the models in other tools [21, 22,

25, 28]. For example, in the PROSPERous approach the best performing models are based on

logistic regression. [22] At the next step, we trained and compared predictive performance of

models with the following learning methods: LR, SVC, RFC and GBC. Fig 5 summarizes infor-

mation regarding MCC, AUC PRC and AUC ROC evaluated on external dataset for all investi-

gated classifiers comparing predictive performance of these models for caspases using window

around cleavage site P4-P4’. Both ensemble tree classifiers outperformed logistic regression

and SVC for all caspases by comparing all three metrics. All evaluated metrics (accuracy, AUC

PRC, AUC ROC, MCC, sensitivity and specificity) for all investigated classifiers comparing

Fig 4. The amount of recovered SoCs for LR models trained on P4-P4’ local window for 10 top positions.

https://doi.org/10.1371/journal.pone.0199270.g004

Fig 5. The predictive performance results comparison for MCC, AUC PRC and AUC ROC for all investigated

classifiers for caspases using local window P4-P4’.

https://doi.org/10.1371/journal.pone.0199270.g005
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predictive performance of these models for all selected proteases using window P4-P4’ are

shown in S8 Table. In addition, predictive performance of RFC and GBC models was equal for

caspases-2 and 6, meanwhile RFC demonstrated higher accuracy for caspase-7 and GBC over-

performed RFC model for caspase-1 that also can be related with the size of the training

dataset.

Lastly, we evaluated predictive performance of LR, SVC, GBC and RFC models on external

dataset to understand if trained models were able to predict known cleavage sites with the top-

ranking positions for the protease of interest. To complete this task, we explored the ranking

positions of the probable cleavage sites sorted by predicted probability for each learning

approach. Since peptides differ in a size, ranking was normalized by the amount of possible

cleavage sites. Therefore, we completed a recovery analysis of the rank value for the known

SoCs and calculated the sum of all ranking positions for each external peptide for each protease

inside the family. Moreover, we calculated the best and random ranking. The cumulative per-

centage ranking score for the recovered sites of cleavage for all proteases is demonstrated in

Fig 6.

We noted that the best ranking recovered 100% of known SoC reaching 20% of the normal-

ized ranking positions. Fig 7 summarizes percentage recovered by each learning algorithm at

20% of the normalized ranking positions.

All classifiers were able to recover all known cleavage sites better than random but at lower

percentage of ranking positions than the best. LR models were the best considering they recov-

ered all known SoCs at 99% of the ranking positions, while the best recovered known sites of

cleavage at 31%. RFC and GBC recovered all SoCs from external dataset for all proteases at

91% of the ranking positions, accordingly. Moreover, we compared percentage of recovered

known SoCs at the percentage ranking positions when the best ranking collected 100% of

known sites of cleavage for each protease family selected for this study, results are presented in

S9 Table. For all protease families except of cysteine the highest percentage of correctly

Fig 6. The cumulative ranking score in percentage for the recovered known sites of cleavage for all selected

proteases in range of ranking positions from 0 to 100%.

https://doi.org/10.1371/journal.pone.0199270.g006
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predicted cleavage sites was reached by RCF models and the lowest by SVC. S10 Table summa-

rizes the normalized ranking positions reached when 100% of known cleavage sites were

recovered for all classifiers for all selected protease families.

Finally, we compared the predictive performance by ranking on external dataset

between LR and RFC classifiers and other tools such as SitePrediction and PROSPERous.

For following proteases predictive performance was compared with PROSPERous and

SitePrediction: caspase-1, caspase-3, caspase-6, caspase-7, cathepsin E, cathepsin D,

cathepsin L, MMP2, MMP3, MMP8, MMP9. Also, PROSPERous contained models

trained for serine proteases: granzyme A, granzyme B, granzyme B (rodent-type), throm-

bin. Our LR and RFC models as well as PROSPERous correctly predicted 376 known

cleavage sites, while 306 known cleavage sites were correctly predicted by both PROSPER-

ous and SitePrediction. Fig 8 and Fig 9 summarizes the cumulative percentage score for

the recovered known sites of cleavage between our all models compared to PROSPERous

and SitePrediction performance on external dataset.

Our models were able to collect the same amount of known cleavage sites as PROSPERous

and SitePrediction. SitePrediction is based on statistical scoring methods, while PROSPERous

is based on SVM learning and LR approach. In the dataset of proteases compared to SitePre-

diction and PROSPERous LR and RFC models recovered higher percentage of known SoCs at

the ranking percentage position equal to 50% but reaching 88% the percentage of recovered

known sites of cleavage was the same for our models, PROSPERous and SitePrediction. In the

dataset of proteases compared only to PROSPERous RFC model performed worse than PROS-

PERous and recovered less percentage of known cleavage sites. On the other hand, LR model

recovered higher percentage of known SoCs at the ranking percentage position equals to 50%

but reaching about 85% of ranking position percentage of recovered known sites of cleavage

was the same for LR and PROSPERous. While we performed detailed analysis of ranking

Fig 7. The cumulative ranking score in percentage for the recovered known sites of cleavage for all proteases in

range of ranking positions from 0 to 20%.

https://doi.org/10.1371/journal.pone.0199270.g007
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position percentage between 0 and 40% LR outperformed RFC and PROSPERous, while last

ones performed at the same level. We can suppose that LR model works better for the peptides

of the smaller size.

Fig 8. The cumulative ranking score in percentage for the recovered known sites of cleavage for selected protease families

compared with PROSPERous and SitePrediction.

https://doi.org/10.1371/journal.pone.0199270.g008

Fig 9. The cumulative ranking score in percentage for the recovered known sites of cleavage for selected protease

families compared with PROSPERous.

https://doi.org/10.1371/journal.pone.0199270.g009
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Conclusions

Predicting possible sites of cleavage for individual proteases is an important task to be com-

pleted during drug-design process of peptide therapeutics to improve their stability and avail-

ably as a promising drug. In this study we presented a new approach in WebMetabase that

helps to predict cleavage site for the specific peptide family or for specific experimental condi-

tion (i.e. individual protease). One of the main advantages of this approach is that it generates

a searchable database for the information coming from LC-MS based experimental data or

from external sources such as MEROPS database. In this database each amino acid is described

as a vector of physicochemical properties, Volsurf molecular descriptors. Thus, the sequence

pattern around the potential cleavage was represented as combination of Volsurf descriptors.

The proposed methodology can be applied in the case of non-natural amino acid. Comparing

to MEROPS this database type can be enriched with new experimental or external data. This

way to store the data can be utilized to perform frequency analysis to discover the most fre-

quent scissile bonds within the generated database. The FA results can be used to derive a

cleavage site appearance rules based on molecular properties of the cleavage sites. To demon-

strate this, we trained several models using Logistic Regression (LR), Support Vector Machine

(SVM) and Ensemble Trees (ET) classifier learning approaches for eighteen proteases from

four protease families: serine, cysteine, aspartic and matrix metalloproteases. In the training

dataset each sequence pattern around the potential cleavage site and actual site of cleavage was

represented as a combination of Volsurf descriptors that characterized physicochemical prop-

erties of the SBs in the sequence. We compared predictive performance of the models trained

with different learning approaches applying 5-fold cross validation test and external dataset

validation test. Moreover, we examined the influence of the local window sequence size around

the site of cleavage by comparing the models trained for P1-P1’ and P4-P4’ range. We revealed

that LR and RFC models trained using window P4-P4’ outperformed other learning methods

and the models trained using P1-P1’ window. We noted that training dataset size influenced

on the predictive performance of the models analyzing data for caspases. Finally, we compared

the predictive performance of LR and RFC models with other approaches such as PROSPER-

ous and SitePrediction tools. LR model recovered higher percentage of the known cleavage site

in the first 30% of the ranking positions comparing to the other tools. It can be explained by

the fact that it performs better prediction on smaller peptides. Moreover, since the system can

be linked to the software assisted metabolite structure elucidation based on MS data, the data-

base is automatically enriched with the new experiments. Nevertheless, models can be re-

trained with updated dataset and derived rules can be refined to tune the system for the experi-

mental conditions and/or peptide families of interest. This knowledge can be applied during

the design-make-test drug discovery cycle.
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S5 Table. Results for the predictive performance evaluation for LR and SVC classifiers

trained using local windows P1-P1’ and P4-P4’ for caspases all evaluated parameters for

external dataset.
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S6 Table. Results for the predictive performance evaluation for LR and SVC classifiers vali-

dated on external dataset for all selected proteases and all evaluated parameters trained

using local window P1-P1’.
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S7 Table. Results for the predictive performance evaluation for LR and SVC classifiers vali-

dated on external dataset for all selected proteases and all evaluated parameters trained

using local window P4-P4’.
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investigated classifier models trained using window P4-P4’ for all selected proteases.
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when the best ranking collected 100% of known sites of cleavage for each protease family.
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S10 Table. The normalized ranking positions reached when 100% of known cleavage sites

were recovered for all classifiers for all selected protease families.
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S1 Fig. Substrate cleavage sites for P4-P4’ local window for cathepsins: a) cathepsin D; b)

cathepsin E; c) cathepsin L. The cumulative amino acid occurrences in P4–P4’ were calculated

and displayed in the form of a two-dimensional heat map. The scissile peptide bond was

between sites P1 and P1’.

(TIF)

S2 Fig. Substrate cleavage sites for P4–P4’ position for granzymes. a) granzyme A; b) gran-

zyme B; c) granzyme B (rodent-type); d) granzyme M. The cumulative amino acid occurrences

in P4–P4’ were calculated and displayed in the form of a two-dimensional heat map. The scis-

sile peptide bond was between sites P1 and P1’.

(TIF)

S3 Fig. Substrate cleavage sites for P4–P4’ position for matrix metalloproteases (MMP). a)

MMP2; b) MMP3; c) MMP8; d) MMP9. The cumulative amino acid occurrences in P4–P4’

were calculated and displayed in the form of a two-dimensional heat map. The scissile peptide

bond was between sites P1 and P1’.

(TIF)
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S2 File. Python script for model generation and ReadMe.txt with script usage instruction.
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S3 File. Python script for the prediction with generated models and ReadMe.txt with script

usage instruction.

(ZIP)
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