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Identifying the best drug for each cancer patient requires an efficient individualized strategy.
We present MATCH (Merging genomic and pharmacologic Analyses for Therapy CHoice), an
approach using public genomic resources and drug testing of fresh tumor samples to link drugs to
patients. Valproic acid (VPA) is highlighted as a proof-of-principle. In order to predict specific tumor
types with high probability of drug sensitivity, we create drug response signatures using publically
available gene expression data and assess sensitivity in a data set of 440 cancer types. Next, we
evaluate drug sensitivity in matched tumor and normal tissue and exclude cancer types that are no
more sensitive than normal tissue. From these analyses, breast tumors are predicted to be sensitive
to VPA. A meta-analysis across breast cancer data sets shows that aggressive subtypes are most
likely to be sensitive to VPA, but all subtypes have sensitive tumors. MATCH predictions correlate
significantly with growth inhibition in cancer cell lines and three-dimensional cultures of fresh
tumor samples. MATCH accurately predicts reduction in tumor growth rate following VPA treatment
in patient tumor xenografts. MATCH uses genomic analysis with in vitro testing of patient tumors to
select optimal drug regimens before clinical trial initiation.
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Introduction

Matching treatments to patients who will most benefit using
streamlined computational and biochemical analyses will
enable effective clinical trial design for the many drugs
currently available (Adjei et al, 2009; Dancey et al, 2010;
Freedman et al, 2010). An efficient approach for accurate
identification of cancer patients who will benefit from a
specific therapy prior to clinical trial initiation will enable
optimal selection of patients for clinical trials. The benefits of
identifying the right target population for a drug include (1)
improved patient response, (2) minimization of time lost
treating patients non-responsive to therapy, (3) avoiding side
effects in people who will not respond, and (4) smaller sample
sizes needed for clinical trials because of larger expected effect
sizes. As the pharmaceutical industry estimates that there are
over 800 agents and biologics in use or under development for
treatment of human malignancies, knowing best how to target
these drugs to the cancer patients who will benefit most is
critical (PhRMA, 2009).

Historically, most clinical trials evaluate a therapeutic
regimen on an unselected patient population, measuring
efficacy based on the response in the entire group. Therefore,
these studies may fail to identify a significant response rate
when a drug is effective in only a subset of patients (Bast and
Hortobagyi, 2004). By incorporating prior knowledge about
drug sensitivity or the underlying signaling pathways driving
cancer progression, relevant subpopulations can be defined
prior to a clinical study, improving the likelihood of obtaining a
significant drug response (Bild et al, 2006; Downward, 2006;
Lamb et al, 2006; Dutta and Maity, 2007; Huang et al, 2007;
Rhodes et al, 2007; Du et al, 2009). Given the heterogeneity of
cancer, the future of personalized medicine is to have a large
number of drugs to choose from, each associated with a
biomarker that predicts cancer responsiveness. For example,
B15–20% of breast cancers have HER2 amplification, which
corresponds to high levels of responsiveness to trastuzumab
(Barron et al, 2009; Coulson et al, 2010). Without knowing the
relevant population of breast cancer patients to treat with this
inhibitor, the drug would not have had significant improve-
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ment in the overall population. However, even when we use
available tools to predict patient sensitivity, such as FISH for
HER2 amplification, we still are not able to perfectly predict
who will respond. As an example, approximately one third of
breast cancer patients with amplified HER2 do not respond
to trastuzumab, in part due to deregulation of downstream or
parallel pathway components such as PTEN or PI3K (Marty
et al, 2008; Stemke-Hale et al, 2008).

With the increasing use of high-throughput technologies in
the study of cancer, genomic approaches are finding their
way into the oncologists’ toolkit (Neve et al, 2006; Tinker et al,
2006; Massague, 2007; Foekens et al, 2008; Gusterson, 2009;
Sotiriou and Pusztai, 2009). The majority of commercially
available genomic assays focus on prognosis but not predic-
tion (Desmedt et al, 2008; Haibe-Kains et al, 2008; Sotiriou and
Pusztai, 2009). Therefore, these tests provide risk of recur-
rence but do not predict response to particular chemotherapy
or non-chemotherapy drugs. For most drugs newly entering
the clinical trial pipeline, we still lack the means to rationally
and efficiently choose an optimal drug regimen targeted
toward the characteristics of a specific tumor, thus impeding
the promise of personalized medicine (Desmedt et al, 2008).
While creating a predictive drug response signature using
actual patient response data is ideal, this approach cannot be
used before a drug is tested in a large number of people with
different kinds of cancers. Recent studies have identified
subsets of patients characterized by gene expression profiles
indicating drug sensitivity, and some have translated these
findings into clinical trials (Chang et al, 2003; Lamb et al, 2006;
Huang et al, 2007; Lamb, 2007; Rhodes et al, 2007; Haibe-Kains
et al, 2008). One genomic approach is the ‘Connectivity Map,’
which includes a compendium of gene expression profiles
based on chemical and genetic perturbations (Lamb et al,
2006). However, individual assessments of optimal drug
sensitivity in cancer patients using high-throughput profiling
and the relationship of these profiles to drug response in actual
human tumors have not been thoroughly evaluated. Selecting
effective drugs by leveraging both genomic and focused
preclinical testing with actual patient tumors streamlines the
identification of optimal therapeutic regimens.

In this study, we make progress toward this goal by using
genomic methods to identify drugs that will be effective for
individual tumors. We provide a method, which we call
MATCH (Merging genomic and pharmacologic Analyses for
Therapy CHoice), to determine the individuals most likely to
benefit from a drug prior to a clinical trial. We use the histone
deacetylase (HDAC) inhibitor valproic acid (VPA) as our proof-
of-principle. We focus on VPA because its optimal target
population is not well defined, it is readily available, oral,
inexpensive, and has relatively low toxicity. VPA also happens
to be attractive from an informatics standpoint because it can
be tested in vitro without needing metabolic activation and
there are sufficient samples in the Connectivity Map to achieve
a robust signature on leave-one-out cross-validation (LOOCV)
analysis. MATCH leverages extensive gene expression data and
biochemical validation to rationally match drugs to patients.
We first use a genomic approach to predict drug sensitivity
across cancer types and between cancer and normal tissue
to identify those cancers most likely to respond to a drug.
We then focus on breast cancer and examine VPA sensitivity

for general breast cancer subtypes and for individual tumors
within these subtypes. Importantly, this approach allows
for drug response characterization in actual human tumors
and may represent a more accurate assessment of drug
sensitivity than the use of cell lines alone. In silico validation
of MATCH’s ability to link drugs to optimal target cancer
phenotypes is provided by the characterization of a B-RAF
inhibitor that has been proven in vitro and in the clinic to
effectively treat melanoma: predictions by MATCH correspond
to the observed clinical activity of this B-RAF inhibitor. As the
ideal target population for VPA is unknown, the accuracy of
genomic drug sensitivity predictions for VPA is verified in vitro
with breast cancer cell lines grown in two-dimensional (2D)
culture. We then use patient tumors, grown in both three-
dimensional (3D) cultures and mouse xenografts, to further
confirm accurate drug sensitivity predictions for individual
samples. From these analyses, VPA is identified as a potential
therapy in the treatment of aggressive breast cancers, and
our drug response signature is shown to predict in vivo
response to VPA in individual patient tumors. More generally,
MATCH provides an efficient methodology for determining the
cancer patients most likely to respond to a particular drug
without any prior knowledge of drug mechanism or target
population.

Results

Flowchart of MATCH approach for optimal patient
selection

Figure 1 outlines the MATCH approach for choosing an optimal
target patient population for a drug. We first generate a
genomic signature of cellular response to the drug by using
cancer cell lines treated with drug or a placebo vehicle. Gene
expression between the untreated and treated cells is then
compared to identify genes consistently reflective of drug
response, and those genes are used to generate the predictive
drug response signature. Following internal and external
computational validation, the signature is used to predict drug
sensitivity in data sets with multiple tumor types in order to
determine the cancer types with little or no sensitivity that
should be excluded from further testing. If desired, this
analysis can be performed for actual patient tumors, which
may provide a more accurate measure of drug sensitivity than
cell lines, which often gain additional genetic changes
compared with the primary tumor following growth in culture.
Next, the signature is used to predict drug sensitivity in data
sets with matched tumor and normal tissue in order to exclude
those tumor types where there is no significant increase in
tumor sensitivity compared with normal tissue. Tumors in
such tissues would likely have limited sensitivity to drug given
no increase from baseline tissue response levels, and perhaps
even show unacceptable toxicity at pharmacologically rele-
vant doses of the drug if high baseline response is seen. Once
the optimal target cancer is identified, projection of the
signature into data sets of that cancer type allow comparisons
of drug sensitivity across subtypes defined by established
prognostic or predictive features, such as estrogen receptor
(ER) or HER2 status for breast cancer, histologic type for lung
cancer, and grade or MSI status for colon cancer. In vitro
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validation begins with the cancer type(s) predicted to be most
sensitive to drug in genomic analyses using standard dose-
responsiveness testing of established cell lines in culture,
which can be accomplished in a matter of days. If that step is
successful, further validation is performed using a panel of
fresh patient tumor samples grown in relevant in vitro
conditions, such as 3D matrix for breast cancer. If both of
these models show a relationship between predicted and
actual sensitivity, then the genomic signature can be used to
identify an optimal target population for clinical trial initiation.

Generation of drug response signature

Gene expression profiles of cancer cells following drug
treatment are a useful tool to better understand cellular
changes reflective of drug treatment. These expression
profiles can be used to identify genes reflective of drug
response: tumors with genes upregulated that turn off

following drug treatment are most likely to be sensitive, and
vice versa. One resource that has extensively cataloged genes
modulated by specific drug treatments is the Connectivity Map
(Lamb et al, 2006). We generated a response signature for VPA
using samples from the Connectivity Map build 1 as the
training set. Gene expression microarray data from treated and
untreated cells were analyzed using a binary regression
algorithm to determine the genes that best distinguished
treated from untreated samples. Parameters for the binary
regression were optimized to maximize the consistency and
robustness of predictions within the training set. Internal
consistency and robustness of the signature was measured by
LOOCV, a process in which each sample is successively left out
of the training set and a model is fit to the remaining samples
and then applied to the left out sample to obtain a prediction.
Prefiltering of gene expression data and number of genes in the
signatures were optimized to maximize the accuracy of
these predictions. The VPA signature used 200 probes,
which represent 188 unique genes, because some genes have
more than one probe on the microarray. The heatmap
and LOOCV graph for the VPA signature are shown in
Figure 2A and B.

We validated the accuracy and sensitivity of the signature in
two ways. First, an external and independent data set was used
in which normal ovarian theca cells were treated with VPA or a
control agent, and RNA from these cells were placed onto
microarray. Our analyses show a change in gene expression in
the VPA-treated cells compared with controls, further validat-
ing the accuracy of our signature (Figure 2C). Specifically, the
predicted sensitivity dropped from a mean of 0.77 before
treatment to 0.05 after treatment (P¼0.0002).

Second, we applied the VPA signature to 169 samples from 9
batches of the Connectivity Map build 2 that had at least one
sample treated with VPA and one sample treated with another
drug. The predictions are shown in Figure 2D. Untreated cells
and cells treated with random drugs show significantly more
predicted sensitivity to VPA than cells treated with VPA or
other HDAC inhibitors (Po0.0001). The variation in prediction
in VPA-treated cells is due to different doses, with increasing
dose of VPA correlating to a decrease in predicted sensitivity
(Figure 2E). Based on the ROC curve, the optimal cutoff for
VPA sensitivity is B0.5, with an AUC of 0.86 (Figure 2F).

In order to better understand the meaning of the VPA
signature, we performed a Gene Ontology analysis of the genes
in the signature using http://gather.genome.duke.edu. Gene
Ontology categories with a disproportionate number of genes
in the signature are shown in Figure 2G. In particular, genes
involved in cell growth and communication (FGFR1, IGF2,
PDGFRB, TGFB2, and MET) and genes involved in cell-cycle
regulation (CDK2, CDK10, and CDKL1) are dysregulated
by VPA.

Rational determination of relevant tumor type
for drug treatment

We examined the pattern of predicted sensitivity to VPA across
different types of cancer in order to identify the tumors most
likely to respond to drug treatment (Figure 3A). Specifically,
using the VPA signature defined above (Figure 2), we predicted

Figure 1 Flowchart of streamlined method to identify target population
for a drug.
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drug responsiveness in a panel of 310 diverse cancer cell
lines (https://array.nci.nih.gov/caarray/project/woost-00041).
These cancer cells were placed onto microarray as a group

and can be used to compare profiles across over 40 different
tumor types. The results highlight the broad variation in
responsiveness of different tumor types and show that specific

Figure 2 VPA signature. (A) The heatmap columns are the Connectivity Map samples with the 10 controls on the left and 5 treated samples on the right. Each row is a probe
in the signature. Red indicates upregulation and blue indicates downregulation of the gene. (B) LOOCV from the Connectivity Map training sample. Blue samples (1–10) are
the control samples. Red samples (11–15) are the VPA-treated samples. (C) Bar graph of mean and standard error of predicted VPA sensitivity on ovarian theca cells before
and after treatment with VPA. (D) Graph of predicted sensitivity to VPA in Connectivity Map samples from nine independent batches. Samples are grouped as untreated
controls, samples treated with a drug other than an HDAC inhibitor, samples treated with an HDAC inhibitor other than VPA, and samples treated with various doses of VPA.
(E) Graph of sensitivity predictions versus actual treatment dose for Connectivity Map samples treated with various doses of VPA. The line is a best-fit sigmoidal curve
excluding the two outliers. (F) ROC curve based on data from Figure 2D comparing VPA-treated samples with samples that were untreated or treated with a non-HDAC
inhibitor. (G) Doughnut plot of the Gene Ontology terms for the genes in the VPA signature with Bayes factor 42. Bayes factor for each term is given on the doughnut.
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tumor types such as breast, lung, and pancreas have high
average predicted response and others, such as brain, ovarian,
and melanoma, have low predicted response. Therefore, this

approach provides a mechanism to rapidly assess predicted
drug sensitivity between different tumor types in order to
exclude from further study those with gene expression
patterns reflective of little drug sensitivity and to focus
on those with subpopulations predicted to be sensitive to
the drug.

While assessing predicted drug sensitivity between different
tumor types is an important first step in determining the
optimal tumor types for a specific therapy, these results must
be taken in the context of tissue type. The goal is to identify
tumor-specific response to drug and minimize tissue-specific
effects. To this end, we used a gene expression data set
comprised of matched normal and tumor tissue profiles.
In order to minimize artifact such as batch effect, we looked
within a single previously published data set containing
several different types of cancer (Yu et al, 2008), although
other data sets were compared and similar results were found
(data not shown). The average sensitivity within each type of
cancer and normal is shown in Figure 3B. Significantly, there is
high correlation between the cancer cell line (Figure 3A) and
patient tumor gene expression predictions (Figure 3B), thereby
confirming the drug response patterns identified in the cancer
cell lines. Further, breast and lung cancers were significantly
more sensitive to VPA than the corresponding normal tissues,
P¼6�10�6 and P¼0.005, respectively. Liver (P¼0.14), eso-
phageal (P¼0.3), colon (P¼0.22), and thyroid (P¼0.36)
cancers did not differ in sensitivity from the corresponding
normal tissue. These results are consistent with prior research;
for example, VPA is known to be toxic to normal liver cells
in vitro and in vivo, to cause gastrointestinal-related side
effects, and can cause hypothyroidism with long-term use
(Fisher et al, 1991; Gau et al, 2010). We chose to focus on breast
cancer for further study due to its high predicted sensitivity to
VPA compared with other cancers and its highly significant
sensitivity in tumor tissue compared with normal breast tissue.

Meta-analysis of drug sensitivity patterns
in breast cancer phenotypes

We then examined patterns of sensitivity across different
phenotypes of breast cancer. We applied the VPA response
signature to each of the 1803 human breast cancer samples in
11 large independent data sets of microarray data from snap-
frozen tumors (Supplementary Table S1). A cutoff of 0.5 was
then used to predict sensitivity or resistance in all cases.
Homogeneity of the data sets was tested by ANOVA limited
to each breast cancer subtype across data sets for the
VPA response signature (Supplementary Figure S1). Overall,
the data sets were homogeneous in the relative predicted
sensitivity of each subtype to VPA, the differences in mean VPA
sensitivity between data sets within each subtype were o0.2,
medians were generally on the same size of 0.5, and removal of
individual data sets did not improve homogeneity significantly
or affect conclusions. Therefore, all 11 data sets were used.

Results from predictions of all data sets were merged and
sorted by molecular subtype (upper color bar on Figure 3C),
providing an overview of the predicted responsiveness of each
subtype to each drug. In all, 57% of basal tumors, 57% of
HER2-like tumors, 42% of luminal A tumors, 57% of luminal B

Figure 3 Predictions across cancer types and subtypes. (A) Box-whisker plot for
predicted VPA sensitivity across GSK cell lines for epithelial cancers. Median is
indicated by a horizontal line. The box gives the interquartile range, and the error
bars indicate the total range. (B) Box-whisker plot for VPA sensitivity across cancer
types in GSE5364. Boxes for normal adjacent tissue are checkered. Median is
indicated by a horizontal line. The box gives the interquartile range, and the error
bars indicate the total range. (C) Heatmap of samples from 11 breast cancer data
sets, divided by intrinsic subtype, with the predicted response to VPA displayed as a
color, with red representing a high predicted response, and blue a low predicted
response. Each column is an individual sample, and the heterogeneity of predicted
response to VPA within and between subtypes is clearly visible. The percent of
samples with predicted sensitivity 40.5 is given below the heatmap.
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tumors, and 33% of normal-like tumors are predicted to be
sensitive to VPA. Overall, 51% of breast tumors are predicted
to be sensitive to VPA, with significant heterogeneity within
subtypes. Overall, more aggressive breast cancer subtypes
such as basal, HER2-like, and luminal B have higher levels of
predicted sensitivity. This finding is in contrast to other drugs
such as fulvestrant, an ER pathway antagonist, which shows
subtype response specificity for ER-positive subtypes (luminal
A, luminal B, and normal-like) (Supplementary Figure S2).
Therefore, even within a particular breast cancer subtype,
there remains varied predicted sensitivity, highlighting the
importance of individualized predictions.

In silico validation of the MATCH approach
using a drug with a known target population

While VPA is attractive to study because of the need for
identification of a target population for ongoing clinical trials,
we also wanted to validate MATCH using a drug with a
well-defined target population. Gene expression analysis on a
data set of sensitive melanoma cells treated with a B-RAF

inhibitor, PLX4032 (GSE20051) enabled generation of a
genomic signature (Joseph et al, 2010). Importantly, we use
PLX4032 to validate the ability of our genomic approach to
identify responsive cancers, as we know from clinical trials
that PLX4032 has an 80% response rate in melanoma with
mutant B-RAF (Flaherty et al, 2010). A drug response signature
was developed from treated and untreated cells using the
approach detailed above. The signature for PLX4032 yielded a
signature with 200 probes representing 157 unique genes. The
heatmap and LOOCV graph for the B-RAF inhibitor signature
are shown in Figure 4A and B. We then validated the ability of
the B-RAF inhibitor signature to predict sensitivity in cancer
cell lines, and show significant response in tumor cells with
activating B-RAF mutations versus those without mutation
(Supplementary Figure S3A).

We projected this signature into the panel of tumor cell lines
and identified high predicted sensitivity to the B-RAF inhibitor
PLX4032 in cell lines from melanoma, thyroid cancer, and
GI cancers and low predicted sensitivity in cell lines from small
cell lung cancer and neuroblastoma (Figure 4C). This inhibitor
is known to be active in tumors with the B-RAFV600E
mutation, and our findings are consistent with published data

Figure 4 PLX4032 signature and validation. (A) The heatmap columns are the GSE20051 samples with the five controls on the left and five treated samples on the
right. Each row is a probe in the signature. Red indicates upregulation and blue indicates downregulation of the gene. (B) LOOCV from the GSE20051 training set. Blue
samples (1–6) are the control samples. Red samples (7–12) are the PLX4032-treated samples. (C) Box-whisker plot for predicted PLX4032 sensitivity across GSK cell
lines for epithelial cancers stratified by cancer type. (D) Box-whisker plot for PLX4032 sensitivity across skin cancer types and normal skin in GSE7553. (Cancer and
normal types with two or fewer samples were excluded.) Median is indicated by a horizontal line.
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on B-RAF mutations in human cancer types. Specifically,
neuroblastoma does not have activating mutations in B-RAFor
in other members of the PI3K/RAS/RAF/MAPK cascade;
therefore, targeting B-RAF in these tumors may not be effective
(Dam et al, 2006). Also, RAF activation in small cell lung
cancer, in contrast to other cancers, has been shown to be
detrimental to cancer cell survival (Ravi et al, 1998). On the
other hand, PLX4032 is active in melanoma in clinical trials
and thyroid cancer in vitro, supporting the validity of our
in silico results (Flaherty et al, 2010; Kopetz et al, 2010; Xing
et al, 2011).

Next, we predict sensitivity of patient tumors compared with
normal tissue to assess drug specificity. Again, we see that
tumor types identified in our initial analysis across a panel
of cancer cell lines show high tissue specificity in our analysis
of matched normal and tumor samples (Supplementary
Figure S3B). Further, as matched normal skin and melanoma
cells are not present in the previous data set, we compared
normal skin cells versus melanoma using an independent data
set and see significant predicted sensitivity to the B-RAF
inhibitor in melanoma with little predicted sensitivity in
squamous cell cancer of the skin, basal cell cancer of the skin,
or normal skin (Po0.0001) (Figure 4D). Therefore, our
predictions of the optimal target population for the B-RAF
inhibitor correspond to the published and confirmed target
populations. Together, these findings highlight the ability
of our in silico genomic approach to identify relevant tumor
types for specific drugs.

Finally, in order to better understand the meaning of the
PLX4032 signature, we performed a Gene Ontology analysis of
the genes in the signature using http://gather.genome.duke.
edu. Gene Ontology categories with a disproportionate
number of genes in the signature are shown in Supplementary
Figure S3C. In particular, genes involved in ribosome biogen-
esis and rRNA metabolism (BRIX1, EXOSC2, EXOSC4), protein
amino-acid dephosphorylation (DUSP4, DUSP6, DUSP14,
and CDC25A), and regulation of the cell cycle (CCND1,
CCNE1, E2F4, and MYC) are dysregulated by PLX4032.

In vitro validation of drug response signature
predictions

While MATCH leverages genomic resources to guide
therapeutic selection for individual tumors in cases where a
drug’s ideal target population has not previously been defined,
a rapid means to validate MATCH predictions is warranted.
One method to confirm the accuracy of using drug response
signatures is to use in vitro dose-response studies on cancer
cell lines in which genomic analysis was used to predict drug
sensitivity. After projecting the drug response signatures in a
panel of breast cancer cell lines, we correlated predicted and
actual drug sensitivity. Following a comprehensive dose-
response analysis, we calculated the effective concentration
at which the growth rate is inhibited by 50% (EC50) for each
cell line and correlated this EC50 to the predicted sensitivity of
that cell line to drug treatment. As shown in Figure 5, there is a
significant correlation between actual (as determined by a cell
line’s EC50) and predicted sensitivity for VPA (P¼0.013).
No cell line predicted to be resistant (predicted sensitivity

o0.5) had an EC50 within three-fold of clinically achievable
concentration of VPA.

3D validation of drug response signature
predictions

Because breast cancer cell lines are known to have ‘drifted’
and, thus, maintain very different expression patterns and
phenotypes when compared with actual patient tumors, we
validated the genomic predictions for this agent in other model
systems: 3D culture of patient tumors and xenografts (Kenny
et al, 2007). First, we used short-term, 3D cultures of patient
breast tumor samples both from primary tumors and from
pleural effusions. The 3D culture microenvironment more
closely resembles the in vivo cellular microenvironment and
provides a more biologically relevant growth setting than
standard 2D microenvironments (Bissell and Labarge, 2005;
Griffith and Swartz, 2006). Importantly, this approach allowed
for growth of ER-positive tumors, which are difficult to
establish in xenograft models.

For 3D culture, the cytoxic effect of VPA treatment on
the tumor organoids was assessed by light microscopy
(a representative example is shown in Figure 6A). As shown
in a representative example of a triple negative (basal-like by
microarray) tumor predicted to be sensitive to VPA, tumor
organoids treated with VPA exhibited reduced structural
integrity and increased cellular scatter with increasing
concentrations of VPA. A marked increase in ethidium
bromide uptake was observed concomitantly with the loss of
organoid integrity, demonstrating a cytotoxic effect of VPA on
the primary tumor organoids.

A dose-response assay was carried out to determine the
relative sensitivity of tumor organoids to VPA treatment.
From the dose-response curves for each tumor, we determined
the EC50. Individual tumors of the more aggressive subtypes
of breast cancer (basal-like, HER2-overexpressing, and lumi-
nal B) show higher responsiveness than the less aggressive
subtypes (luminal A and normal-like). As shown in Figure 6B,
there is a statistically significant correlation between

Figure 5 Correlation of actual response to targeted therapeutics and predicted
response from drug response signatures. Breast cancer cell lines were treated
with VPA for 96 h and proliferation was assayed using a standard MTT
colorimetric method. Scatter plot shows the degree of correlation between
proliferation inhibition (EC50) and predicted sensitivity for each cell line.
Source data is available for this figure at www.nature.com/msb.
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the predicted sensitivity to VPA and EC50 (P¼0.006). These
studies validate both the genomic predictions and the utility of
3D culture of primary tumor samples for a rapid, efficient, and
relevant preclinical analysis of drug sensitivity.

In vivo validation of drug response signature
predictions

To further assess the accuracy of our predictions, we used mice
with tumor-specific xenografts derived from human breast
cancers. For this analysis, the gene expression patterns of
patient tumors were analyzed using our drug response
signature to VPA. We selected different patient tumors
predicted to have high or low sensitivity to VPA (Figure 7A)
to test our prediction in the corresponding mouse xenograft
models generated from these same tumors.

As shown in Figure 7B, the three tumors predicted to be
sensitive to VPA show a highly significant smaller size when
treated with VPA compared with placebo (Figure 7B,
Po0.0002 for each tumor). No change in tumor size after
treatment with VPA was seen in the tumors predicted to be
resistant (Figure 6B, P¼0.96 and P¼0.81). This is an important
finding, as it suggests that this genomic approach can
accurately predict the response of an individual patient’s
tumor to a targeted therapy. We next compared conventional
chemotherapy with VPA treatment in one tumor predicted
to be sensitive to VPA. Each group included 10 mice. In
this experiment, VPA decreased tumor growth significantly
more than doxorubicin (Po0.0001) (Supplementary
Figure S4), further highlighting the potential effectiveness of
VPA to inhibit tumor growth in vivo in a sensitive tumor.

Discussion

Clinical trial designs using unselected populations often fail to
identify significant responses that may be relevant only to a
subset of tumors. By using prior information, clinical trials can
be rationally designed to test therapeutic regimens in tumor
types identified as most likely to be responsive. However, prior
information is not always available. Therefore, we developed
MATCH as an unbiased genomic approach to predicting
drug sensitivity in individual tumors.

MATCH leverages the large amount of publicly available
genomic data to investigate optimal targeted therapy for
individual cancers. The example of VPA in breast cancer shows
the superiority of individualized genomic predictions over
simply using traditional cancer subtypes. Current methods to
classify breast cancer phenotypes utilize tumor pathology and
signaling pathway status to place the tumor into a molecular
subtype (Perou et al, 2000; Sorlie et al, 2001, 2003; Hu et al,
2006; Desmedt et al, 2008; Wirapati et al, 2008; Parker et al,
2009). However, the existing molecular subtypes are not
ideal as the sole categorization for defining breast cancer
therapy, as heterogeneity exists within each subtype (Di
Cosimo and Baselga, 2010; Foulkes et al, 2010). In fact, we
are learning that there is increased complexity among subtypes
in clinical course and response to therapy. For example, HER2/
ERBB2-overexpressing tumors differ in their natural history
and/or response to therapy based on lymphocyte-associated
genes, PTEN status, and PI3K pathway status (Alexe et al,
2007; Rody et al, 2009; Esteva et al, 2010). Thus, significant
heterogeneity remains uncharacterized even within breast
cancer subtypes, highlighting the need for approaches
investigating drug sensitivity or clinical phenotypes at the
individual patient level.

Figure 6 Patient tumor cell sensitivity to VPA in 3D culture. Primary tumor
and pleural effusion-derived breast cancer cells were embedded in Matrigel
and treated with VPA for 96 h. (A) The effect of VPA was assessed by light
microscopy (right panel) and fluorescent dye (left panel) to identify live (green)
and dead cells (red). (B) Correlation of EC50 of VPA and predicted response
from drug response signatures in the fresh tumor samples grown in 3D. Source
data is available for this figure at www.nature.com/msb.
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Although VPA had enriched sensitivity in the more
aggressive breast cancer subtypes, our studies show that there
is great variation in sensitivity of patient tumors to treatment
with VPA alone but that there is a definable population of
breast tumors that are markedly sensitive to VPA. VPA is
known to be a HDAC inhibitor, a class without any well-
defined biomarkers of response. VPA is of considerable interest
because it is oral, already FDA-approved for treatment of
epilepsy, and well tolerated over the long term. The low
toxicity of VPA makes this drug an ideal candidate to further
assess its potential in the treatment of selected tumors within
aggressive breast cancer subtypes, such as triple negative
tumors. VPA is currently being studied in clinical trials against
breast, lung, ovarian, thyroid, melanoma, prostate, and
cervical cancers (Michaelis et al, 2007). The fact that this drug

is being tested against so many different cancers without a
clear indication of potential efficacy highlights the need for a
more targeted approach to finding the populations of patients
who will respond. For example, trials of another HDAC
inhibitor, SAHA, in lung cancer have shown stable disease
but no responses, perhaps due to the small number of subjects
receiving therapeutic doses (Vansteenkiste et al, 2008; Traynor
et al, 2009). The ability to increase trial efficiency by excluding
people who will not respond could improve such trials. By
using MATCH to couple personalized computational predic-
tion with in vitro and in vivo validation work, as presented in
this study, a systematic methodology for streamlining identi-
fication of optimal therapeutic regimens can be leveraged in
the clinical setting. We use the genomic predictions to guide
our pharmacological studies, followed by experimental

Figure 7 In vivo validation of computationally predicted responsiveness to VPA using human breast cancer xenografts. (A) Predicted sensitivity of five breast tumors
(four basal and one luminal) to VPA. The gene expression patterns of the patient tumors were analyzed using in vitro drug response signatures to VPA. (B) In vivo
response to VPA treatment on xenografts generated from the primary tumors in (A). Blue and red lines: VPA group; black line: saline control group. Each group had five
mice. Tumor growth rates were plotted as the mean tumor volumes of each group±s.e.m. Source data is available for this figure at www.nature.com/msb.
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validation in actual patient tumor cells to determine clinical
significance before initiating a clinical trial. We then rapidly
verify the accuracy of these predictions using 2D in vitro cell
lines and 3D cell cultures generated from fresh tumors. In the
VPA example, we found significant correlation between
predicted and actual sensitivity in all experimental conditions.

MATCH has some limitations. First, effective doses of drugs
in vitro may not be the same as in vivo due to factors such as
increased protein binding in culture media or organ metabo-
lism. Thus, MATCH gives the relative sensitivity of individual
tumors but cannot determine absolute doses for use. Second,
MATCH cannot predict all off target effects and side effects of
drugs. Third, not all tumors predicted to be sensitive by
MATCH will be sufficiently sensitive to clinical doses of drugs.
MATCH is useful for identifying patient populations most
likely to respond (or not) to a drug. Identifying relevant
populations for a drug boosts the proportion of possible
responders in a trial population, decreasing the chance of
falsely negative trials.

MATCH leverages high-throughput pharmacogenomic
and individual-based tumor drug response analyses, and
serves to identify the appropriate cancer patients for specific
drug therapies. This rational approach to drug selection has
the potential to streamline preclinical testing, optimize clinical
trial design, and identify clinically useful biomarkers early in
drug development.

Materials and methods

Calculating drug sensitivity

The VPA response signature was defined using the Connectivity Map
build 1 (Lamb et al, 2006). The PLX4032 signature was defined using
samples from GSE20051 (Joseph et al, 2010). A detailed description of
the signature generation methods can be found at http://io.genetics.
utah.edu/files/bildres. In brief, Mas5 normalized gene expression data
from the Connectivity Map website were log normalized and then used
as the training set in the analysis. Each data set was also Mas5
normalized and then log transformed. Following normalization,
signature and data sets were quantile normalized, and 25% of probes
on the microarrays with the lowest expression and lowest variability
were prefiltered from the analysis. Distance weighted discrimination
standardization was used to correct for batch effects between data sets.
A Bayesian binary regression algorithm was then used on the training
set to generate a list of probes and weights relative to the first principle
component for calculating a metagene score that is then converted to a
probability. The probability output from the binary regression model
was subtracted from one, so that probabilities closer to one indicated
higher probability of sensitivity to the drug (Bild et al, 2006).
Parameters were optimized to minimize the P-value for a t-test
comparing the predictions of the treated and untreated samples in the
training set in the LOOCV analysis. To compare independently
collected and processed data sets, we log normalized and then linearly
transformed the binary regression output for each data set and for each
signature to span from 0 to 1. To enable complete reproduction of our
results, the input files, output files, and the binary regression program
used in this study are available at http://io.genetics.utah.edu/files/
bildres. The binary regression program is also available via a web
interface through a Genepattern module at http://genepattern.
genome.duke.edu/signature/. Genes and probes comprising the VPA
response signature are found in Supplementary Table S2. For signature
validation, CEL files were downloaded from GEO GSE1615, which
contain gene expression data for human ovarian cells before and after
treatment with VPA, GEO GSE7553, which contains gene expression
data for various skin cancers and normal skin, and from Connectivity
Map batches 2, 35, 44, 56, 63, 70, 626, 757, and 767 (Wood et al, 2005).

Study population and analysis of expression data
for multiple cancer types

CEL files were downloaded from GEO for data set GSE5364, which
contain gene expression data for tumor and adjacent normal tissues for
breast, colon, esophagus, lung, liver, and thyroid cancers, and from
CaBIG for the woost-00041 data set, which contains gene expression
data from over 300 different cell lines provided by Glaxo-Smith-
Kline (GSK), https://array.nci.nih.gov/caarray/project/woost-00041
(Yu et al, 2008). All data were mas5 normalized, and samples with a
ratio 43 between probes at the 30 and 50 end of GAPDH were
considered potentially degraded and excluded from further analysis.
We excluded sarcomas and hematopoietic malignancies from our
analysis as our signatures are generated with epithelial cells.
VPA sensitivity predictions were then generated as described above.
For duplicate and triplicate samples in the GSK panel, final predictions
were averaged.

Study population and analysis of expression data
for breast cancer subtypes

Breast cancer samples from 11 microarray studies were employed in
this analysis (Supplementary Table S1). Duplicate samples from GEO
data sets gse6532, gse7390, and gse3494 and cell line and normal
samples from gse7904 were removed. As not all public data sets had
clinical annotations, intrinsic breast cancer subtypes were assigned as
described previously (Sorlie et al, 2001). Briefly, a training set of 259
samples representing the five subtypes (luminal A, luminal B, HER2-
overexpressing, basal-like, and normal-like) and 306 genes were used
to build a corresponding set of five centroids (Hu et al, 2006). Features
were assigned using Entrez Gene identifiers and duplicate identifiers
were collapsed to the mean. Each test case was then compared with the
five standardized centroids using Spearman’s rank correlation and
assigned the subtype of the nearest centroid.

Dose-response assays

Breast cancer cell lines obtained from ATCC (HCC1806, HCC1428,
HCC1143, BT549, BT474, MDA-MB-361, MDA-MB-435s, MDA-MB-231,
MDA-MB-453, SKBR3, ZR75, CAMA I, MCF7, Hs578t, T47D) were
seeded in 384 plates (NUNC) in MEBM media (Lonza) containing 5%
fetal bovine serum (GIBCO), at a density to yield 80% confluency in
control treated wells at 96 h post-treatment (as determined by growth
curves). After 24 h, VPA (Calbiochem) was added at 10 doses ranging
from 64 to 0.25 mM. A BIOMEK 3000 (Beckman Coulter) robot was
used to seed the cells and dispense the drug. After 96 h, CellTiter-Blue
Reagent (Promega) was added to test cell viability. After 2 h of
incubation at 371C, the fluorescence was recorded (560(20)Ex/
590(10)Em) using a Victor3V 1420 Multilabel Counter (Perkin-Elmer)
plate reader.

Breast cancer pleural effusion collection, growth
in 3D cultures, and drug response assays

All research involving human samples have been approved by the
authors’ institutional review board. With informed consent, breast
tumor samples were collected from patients at the University of Utah.
After obtaining written informed consent, pleural effusion samples
were collected from excess fluid obtained at the time of therapeutic
thoracenteses or solid tumor samples were collected from mastec-
tomies or lumpectomies. Malignant cells from the pleural effusion or
solid tumors were either used to isolate RNA or grown in 3D cultures to
form organoid structures. Prior to embedding in BD Matrigel Matrix,
Growth Factor Reduced (BD Biosciences), solid tumors were incubated
overnight in tissue mix media, MEBM containing 10% fetal bovine
serum, collagenase type III (1500 U/ml) (Worthington), and hyalur-
onidase (1000 U/ml) (Sigma). The single cells from either solid tumor
or pleural effusion were then re-suspended in complete media and
plated in a 24-well ultra low attachment tissue culture plate for 24 h at
371C in 5% CO2 to form organoid structures. Cells were diluted in
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media and added to matrigel for a total volume of 4:1 matrix to media.
A total of 30 ml was then seeded into a 96-well half-area assay plate at
104 cells/well. After 24 h, VPA was added at a range of dosages
determined by our drug response assay. After 96 h, viability was
determined as above. Images were taken using an Olympus IX81-ZDC
DSU with ORCAER camera and Slidebook 5.0 software

In vivo drug treatment experiments

Triple negative breast cancers were obtained from Stanford University
Hospital with informed consent. Tumor tissue was frozen on dry ice for
RNA isolation and microarray analysis. Tumors were minced and then
implanted into the number 2 and/or number 4 mammary fat pads of
5–10 female NOD/SCID mice (NOD.CB17–Prkdcscid/J, Jackson
Laboratory West). When tumor xenografts grew 45 mm in diameter,
mice were stratified by tumor size and randomized into two or three
treatment groups of 5–10 mice each: (1) a VPA group, receiving daily
intraperitoneal administration of VPA (400 mg/kg) for up to 4 weeks;
(2) a control group, receiving daily intraperitoneal administration of
control vehicle (sterile saline) for up to 4 weeks; and, in another set of
experiments, (3) a doxorubicin group, receiving intraperitoneal
administration of doxorubicin (2 mg/kg) at time zero and at 3 weeks.
Tumors were measured twice a week with a caliper in two dimensions.
Tumor size (M) was calculated as M¼a2b/2, where a is the maximum
width and b is the maximum length. Means of tumor volume in the
same treatment group were calculated, and growth curves were
established as a function of time. All animal care was in accordance
with Stanford University and IACUC guidelines.

Microarray data sets

All novel microarray data sets are posted on GEO under accession
GSE18331. CEL files for the cell lines used in the 2D culture
experiments have previously been made available as GSE3156.
All input files, program files, and output files are posted at http://
io.genetics.utah.edu/files/bildres. Affymetrix U133A 2.0 microarrays
were used according to the manufacturer’s protocols.

Statistics

Means were compared with t-tests or with ANOVAwith post-test t-tests
using Bonferroni multiple comparison testing, except where indicated.
Correlations were calculated using Spearman’s r. Drug-response
graphs are plotted as means with SEM, fitted to an exponential curve,
and compared with MANOVA. We considered Po0.05 statistically
significant. Calculations were done using MATLAB, R, and Graphpad
Prism version 4.02.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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