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Granulocyte colony-stimulating factor receptor (GCSFR) is a critical regulator

of granulopoiesis. Studies have shown significant upregulation of GCSFR in a

variety of cancers and cell types and have recognized GCSFR as a cytokine

receptor capable of influencing both myeloid and non-myeloid immune cells,

supporting pro-tumoral actions. This systematic review aims to summarize the

available literature examining the mechanisms that control GCSFR signaling,

regulation, and surface expression with emphasis on how these mechanisms

may be dysregulated in cancer. Experiments with different cancer cell lines

from breast cancer, bladder cancer, glioma, and neuroblastoma are used to

review the biological function and underlying mechanisms of increased GCSFR

expression with emphasis on actions related to tumor proliferation, migration,

and metastasis, primarily acting through the JAK/STAT pathway. Evidence is

also presented that demonstrates a differential physiological response to

aberrant GCSFR signal transduction in different organs. The lifecycle of the

receptor is also reviewed to support future work defining how this signaling axis

becomes dysregulated in malignancies.

KEYWORDS
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Introduction

Granulocyte colony-stimulating factor (GCSF) is a pleiotropic cytokine expressed by

the gene transcript CSF3. GCSF is a hematopoietic growth factor that regulates the

viability, proliferation, and differentiation of granulocytic precursors and the function of

neutrophils by signaling through its receptor granulocyte colony-stimulating factor

receptor (GCSFR) encoded by CSF3R. Both GCSF and GCSFR play important roles as

chemical mediators that regulate immune cell homeostasis and coordinators of signal-
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dependent and non-specific immune responses upon microbial

invasion. Cytokine signaling contributes to the effective first line

of chemical defense against microbial invasion, resulting in

chemotactic signaling to recruit neutrophils and natural killer

cells to circulate in the blood and extravasate into interstitial

spaces and epithelial surfaces. Because GCSF increases

neutrophil mobilization and maturation, a recombinant

human GCSF (rh-GCSF) has been used in clinical practice to

prevent and treat neutropenia. In this capacity, it has proven

highly effective in decreasing the frequency of febrile

neutropenia among pat ients undergoing cytotoxic

chemotherapy (1, 2). Consequently, the effects of GCSF on

granulopoietic mobilization and differentiation have been

evaluated extensively. However, investigators have also begun

research into potentially unanticipated pro-tumor effects of

GCSF in patients with malignancy, given the development of a

broader understanding of the effects of this cytokine on non-

immune cells. Recent studies have uncovered a potential

oncogenic role for aberrant GCSFR expression and signaling

in many hematologic malignancies and several solid cancers.

Specifically, overexpression of GCSFR has been identified in

nasopharyngeal, oral cavity, breast, colorectal, and ovarian

cancer cells with data suggesting a potential role for GCSFR in

cancer progression (3–6). Furthermore, an emerging body of

evidence suggests that tumor microenvironments are regulated

by increased GCSF signaling between tumor cells and adjacent

immune cells in the development and progression of

gastrointestinal (GI) cancers, which have also been noted to

have increased GCSFR expression (7, 8).

Due to the evidence suggesting pro-tumor effects from

dysregulated GCSFR signaling, here we seek to summarize

what is known about GCSFR structure, signaling, and

processing to inform future studies of the role played by GCSF

in cancer. Studies performed in healthy cells are leveraged to

further understand how the signal transduction pathways that

GCSFR stimulates in normal tissues are co-opted in cancer cells.

Increased understanding of the regulatory effect of GCSFR on

cellular proliferation response patterns is important to guide

additional studies into GCSFR’s contribution to oncogenesis and

progression of malignancies. This review will discuss recent

advances in our understanding of the mechanisms behind the

receptor-driven signal transduction in various organ systems

and cancerous cell lines to further understand the link between

the upregulation of GCSFR and cancer pathogenesis.
Structure

GCSFR is an 813-amino acid protein encoded by CSF3R

gene and is a member of the class I cytokine receptor family (9).

The receptor is a single transmembrane protein comprised of

several functional extracellular and intracellular domains. As

seen in Figure 1, the extracellular region contains an
Frontiers in Oncology 02
immunoglobulin (Ig)-like domain, a cytokine receptor

homologous (CRH) domain, and three fibronectin type III

(FNIII) domains (10). The intracellular region contains three

distinct motifs called Box 1, Box 2, and Box 3 and four tyrosine

residues (704, 729, 744, and 764) that are essential for mitogenic

signal transduction. GCSF requires four highly conserved

cysteine residues in the N-terminal half region and the

WSXWS motif in the cytokine receptor-homologous (CRH)

domain to bind GCSFR and initiate signal transduction (11).

Additionally, these four cysteine residues in combination with

an additional four cysteine residues at the N-terminal provide

eight potential sites for N-linked glycosylation (12).
Isoforms

Seven messenger RNA (mRNA) isoforms (Class I through

VII) can result from alternative splicing of CSF3R. While it is

unclear which isoforms are expressed in non-hematopoietic

cells, the only class I (the canonical type) and class IV

(differentiation defective) GCSFR isoforms are detectable in

hematopoietic cells (13). Functional mapping studies highlight

the importance of the 87-amino acid residues of the carboxy-

terminal region in the receptor that allow the signaling for

cellular maturation and the 96-amino acid residues of the

proximal membrane region that allow the signaling for cellular

proliferation. Class IV GCSFR, which is expressed prominently

in patients with acute myeloid leukemia (AML), contains a

truncation of 87 amino acids at position 725 of the C-terminal

along with dileucine residues required for normal receptor

internalization, which are replaced by a unique 34-amino acid

sequence (9, 14). These changes are thought to result in receptor

overexpression due to a lack of normal internalization. Increased

expression of Class IV GCSFR has also been linked to increased

incidence of AML relapse (15).
Signal transduction

The immune response to pathogenic microbial invasions is

triggered by the finely tuned cascading signal transductions of

neighboring cells. GCSF and GCSFR play an integral role in an

adaptive immune response through their immunomodulation

effect. However, many investigators have also found that GCSFR

signaling is increased in multiple cancers as compared to

expression levels in healthy cells.

Activation of the receptor enhances the rate of cellular

proliferation through the initiation of a cascade of intracellular

signaling that is propagated by many factors, among which are

Src and a tyrosine kinase protein, Janus Kinase (JAK). This

results in the downstream activation of the transcription factors

of signal transducers and activators of transcription (STAT)

family. Suppressors of cytokine signaling proteins (SOCS) are
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critical negative regulators of GCSFR that inhibit the JAK/STAT

pathway in a feedback loop. These proteins are primarily

involved in the signal transduction pathways that GCSFR

triggers, and stringent regulation of these proteins is integral

for maintaining optimal expression of the receptor. Timely

regulated initiation of the expression of GCSFR plays a central

role in the sequence of events that lead to lineage divergence and

in the establishment of malignancies (16). While the role played

by GCSFR in neutrophil maturation and signaling is widely

known, more recent work has shown considerable effects of

GCSFR signaling in a wide variety of immune and non-immune

cells. The results of signal transduction through GCSFR are also

found to be dependent on both ligand concentration and

cell location.

Like the interleukin-6 (IL-6) activation pathway, GCSF

binding to GCSFR activates the signal transduction pathways

by primarily inducing tyrosine phosphorylation of the receptor,

which activates the JAK/STAT pathway (Figure 2). GCSFR has

no intrinsic tyrosine kinase activity. However, upon GCSF

binding, four conserved tyrosine residues in the cytoplasmic

domain develop an increased affinity to STAT3, the adapter

proteins Src homology and collagen homology (Shc), growth

factor receptor bound protein 2, and suppressor of cytokine
Frontiers in Oncology 03
signaling 3 (SOCS3) after being phosphorylated by JAK1, JAK2,

and Tyrosine kinase-2 Tyrosine kinase-2 (TYK2) (17). The

cellular signal is propagated further when JAK2 recruits

another tyrosine kinase, Lyn protein, a key inducing factor for

the mitogenic behavior of GCSFR. Lyn, which directly binds to

Casita B-lineage Lymphoma or Cbl, an E3 ubiquitin-protein

ligase, couples Lyn to Phosphoinositide-3 kinase (PI3) (18, 19).

While JAKs are phosphorylated as a result of the GCSF

ligation of GCSFR, STATs are simultaneously activated and

traffic downstream signals. Like JAK proteins, STAT proteins

have important tyrosine residue sites that need to be successfully

phosphorylated to be activated. There is extensive evidence that

the tyrosine residues in the membrane-proximal cytoplasmic

region of GCSFR, Y704 and Y744, are integral for STAT

activation via a direct docking mechanism at those sites (20).

Three distinctive STAT proteins are involved in this activation

step: STAT1, 3, and 5. While all three play roles in the activation

of cellular proliferation, each of the three has a distinct

mechanism of action. Phosphorylated STAT1 (pSTAT1)

controls the dormant stem cell’s entry into the cell cycle and

stimulation of interferon (IFN) for an inflammatory response.

Phosphorylated STAT3 (pSTAT3) acts as a mediator and a key

regulator of pluripotent cell maintenance. Phosphorylated
FIGURE 1

Overall GCSFR Structure.
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STAT5 (pSTAT5) acts as a downstream messenger that induces

the activation of the erythropoietin receptor (EPOR) in the

setting of basal GCSFR activity (21, 22). STAT3 activation is

required for GCSF-dependent granulocytic differentiation and

regulation as the protein leads to sustained GCSF-induced

proliferation in certain myeloid cell lines. This is demonstrated

by the fact that reduced STAT3 signaling led to the loss of stem

cell maintenance, while STAT5 and STAT1 largely affected

cellular survival (23). STAT3 seems to hold greater importance

in the signal transduction process, as it is expressed in greater

amount than STAT5 and STAT1 in GCSF/GCSFR-dependent

signaling (24, 25). Consistently, past findings differentiate

STAT3 from STAT5 as the major proponent for oncogenesis

in solid tumors. It has been detected in solid tumors at

significantly increased levels, while STAT5 is found at higher

levels in hematological malignancies. However, there is

emerging evidence that shows STAT5 having a wider role in

mediating solid tumorigenesis than previously thought.

Although STAT5 has not been included in Figure 2, as it is

not yet confirmed to be a potent oncogene in solid tumors, an

increased expression level of STAT5 was notably found in lung

cancer cells, promoting the survival of cancerous cells via the

tyrosine-protein kinase ABL2 and transcriptional coactivator

TAZ signaling axis (26, 27).

For STAT5 and STAT1, conserved Box 1 and Box 2 motifs in

the cytoplasmic domain of GCSFR are required for activation

(28, 29). Mutational analyses of the mouse GCSFR cytoplasmic

domain elucidated the importance of conserved Box 1 and 2

sequence motifs in GCSF-mediated receptor growth signaling.

These motifs are located at the carboxy-terminal end of the

receptor close to the membrane-proximal 53 amino acids of the

cytoplasmic domain and act as a latching site for tyrosine-

specific phosphorylation of the transcriptional regulator p75c-
Frontiers in Oncology 04
rel in Ba/F3 transformants—a process integral for GCSFR growth

signal transduction (30). However, STAT3 does not rely on the

conserved motifs for activation. Instead, it acts through tyrosine-

dependent and tyrosine-independent mechanisms for activation

depending on the ligand concentration (Figure 3). Recently, a

comparison of STAT3 activation between wild-type (WT)

GCSFR with the deletion mutants d715 and Y704F suggests

STAT3 activation has an alternate mechanism of activation at

low GCSF concentrations. At low concentrations, STAT3

activation is mediated by the phosphorylation of the Y704 and

744 sites by receptor-associated JAK kinase family members,

leading to dimerization mediated by reciprocal Src homology 2

(SH2)-pY705 motif interactions and then nuclear translocations

and binding to specific DNA elements of CSF3R (31). Possible

explanations for these two sites acting as the major docking sites

may be that they allow more efficient phosphorylation or have

higher affinity than the putative intermediate docking protein

(32). In contrast, GCSFR is activated independently from

intracellular tyrosine at the saturating concentrations of GCSF

(100 ng/ml) (15). Under these high ligand concentration

conditions, STAT3 activation is mediated by a mechanism

involving the C-terminal region of the full-length GCSFR,

removing the need for the tyrosine docking sites. The evidence

suggests that emergency granulopoiesis in response to high levels

of GCSF may be accomplished through an independent

signaling pathway mediated by the distal region of GCSFR

without the requirement of phosphotyrosine residues.

Unlike STAT3, STAT1 and STAT5 can be activated when a

ligand binds to their receptors in the absence of receptor tyrosine

phosphorylation. It is currently thought that JAK1 and JAK2 recruit

and phosphorylate STAT1 and STAT5, respectively, in a direct

manner. The expression of STAT5 is carefully regulated by Src

homology phosphatase-1 (SHP1). A comparison of SHP1WT and
FIGURE 2

General Overview of GCSFR Signal Pathways. Adapted from “Hippo Pathway in Mammals”, by BioRender.com (2022). Retrieved from https://app.
biorender.com/biorender-templates.
frontiersin.org
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SHP1mut expression in 32D cells, which are murine pre-B cells that

require the cytokine for growth and survival, led to the finding that

SHP1 directly regulates the intensity of GCSF-mediated

proliferation in a negative manner through direct association with

Y729 and indirect interaction with phosphorylated Y729 of GCSFR

carboxy terminus. Although the SH2 domain of SHP1 did not

interact with phosphorylated tyrosine residues in an in vitro binding

assay, Src homology phosphatase-2 (SHP2) still maintained its

regulation on proliferation at the expense of GCSF-induced

differentiation (31, 33). This could possibly be explained by the

fact that STAT5 has three active isoforms: STAT5A, STAT5B, and

STAT5p80. While STAT5A and STAT5B bind to the proliferation-

specific domain of GCSFR, STAT5p80 binds to phosphorylated

Y704 of GCSFR, which is essential for differentiation (28, 34). The

activated STAT5 is now able to behave similarly as STAT3 in that it

is able to cause STAT5 dimerization and attract transcription

factors like lymphoid enhancer-binding factor-1 (LEF1) and C/

EBPa to the nucleus (35, 36). Investigations using samples from

congenital neutropenia (CN) patients with and without AML

revealed that higher levels of phosphorylated STAT5 and LEF1

were found in CN patients who developed AML subsequently than

in CN patients who did not develop AML. Furthermore, a recent

study on breast cancer gene-1 (BRCA1) associated with ovarian

cancers revealed a role for STAT5 in mediating solid tumorigenesis.

Upregulated STAT5 inhibited the transcription factor p21, a cell-

cycle inhibitor, leading to increased proliferation of ovarian

carcinomas (37). Furthermore, studies on JAK2 V617F mutations,
Frontiers in Oncology 05
acquired somatic mutations often found in patients with

myeloproliferative cancers, revealed that STAT5 over-activation

can also cause increased cell proliferative behavior in non-

myeloid cells such as mammary cells (38). A point mutation in

JAK2 allowed constitutive activation of JAK2 in epithelial

mammary cells, which led to hyperactivation of STAT5 that

eventually enhanced the proliferation of epithelial memory cells.

These findings highlight a greater role for STAT5 in the oncogenesis

of both solid tumors and hematopoietic cancers.

Similar to STAT5, STAT1 activation is dependent on the

successful formation of STAT1 homodimers by reciprocal

phosphotyrosine–SH2 domain interactions, which allows for

translocation of the homodimers to the nucleus, which is

followed by binding to the promoters of the targeted genes

(39). STAT1 is tightly regulated, as its response is rapid and

transiently activated in response to ligand stimulation. It is also

subjected to regulation by SHP1 and SHP2 in a negative

regulatory manner. Both phosphatases reduce JAK/STAT1

signaling by inactivating the interferon receptors and JAKs

through dephosphorylation (18, 23).

In earlier paragraphs, secondary GCSFR regulators specific

to each protein were explored, but SOCS proteins are the

primary regulators of GCSFR. While STAT signaling regulates

the intensity of signal transduction induced by GCSF, members

of the SOCS family control the duration of the signal. STAT

activation induces the expression of SOCS, and in turn, SOCS

inhibits the signaling cascade in a classic negative feedback loop.
FIGURE 3

STAT3 Activation Mechanisms. Adapted from “Cytokine Signaling through the JAK-STAT Pathway”, by BioRender.com (2022). Retrieved from
https://app.biorender.com/biorender-templates.
frontiersin.org
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While there are eight proteins in the SOCS family, SOCS1 and

SOCS3 are currently at the center of interest, as they are unique

in the SOCS family for their particularly short N-terminal

domain, which allows direct interaction with JAKs to inhibit

the catalytic activity. SOCS1 and SOCS3 have two described

mechanisms of inhibition. First, the SH2 domain of SOCS3

directly binds to the phosphorylated activation loop of JAK and

the killer-cell immunoglobulin-like receptor (KIR) domain,

which then blocks the active site of JAK. Second, the elongin

B/C heterodimer and ternary complex-bound SOCS box domain

interact with Cullin 5 (CUL5) to form the scaffold of an E3

ubiquitin ligase that ubiquitinates both JAKs and GCSFR,

marking them for degradation by proteasomes. (Figure 4) (40).

The complex signal transductions and physiological effects

driven by the GCSF/GCSFR system were recently investigated

using a global GCSF knockout mouse model by Zhang et al. to

determine how GCSF signaling modulates the physiological

effect of non-alcoholic fatty liver disease (NAFLD). Overall,

GCSF deficiency in mice alleviated a high-fat diet (HFD) and

palmitic acid (PA) induced obesity, hepatic steatosis, and insulin

resistance. A comparison of isolated primary hepatocytes from

both GCSF knockout (−/−) and WT (+/+) mice treated with

either an HFD or a standard-chow diet (SCD) revealed that

administration of exogenous GCSF significantly aggravated

palmitic acid-induced lipid accumulation in both the GCSF

knockout (−/−) and WT (+/+) mouse samples. The model also

showed a physiological difference in GCSF−/− mice having

significantly lower liver weight, a lower mass of epididymal

white adipose tissue, and a lesser extent of hepatic steatosis than

their control littermates after 13 weeks of HFD feeding before

the introduction of exogenous GCSF (41). These findings were

confirmed by intrahepatic triglyceride content from hepatic and

cellular triglyceride assay, hematoxylin and eosin staining, and
Frontiers in Oncology 06
oil red O staining from the histological analysis. With the use of

serine–threonine kinase (Akt) and glycogen synthase kinase-3

(GSK3) as markers for insulin sensitivity and glucose tolerance,

Wes t e rn b lo t t ing showed s i gn ifican t l y inc r ea sed

phosphorylation of JAK1/2, STAT3, Akt, and GSK3 in the

livers of HFD-fed GCSF−/− mice exposed to exogenous GCSF

treatment. Consistently, decreased SOCS3 was detected in these

mice, suggesting that GCSFR may be able to regulate lipid

metabolism and insulin sensitivity via JAK/STAT3 signaling to

modulate NAFLD. Immune cells in the liver through

immunohistochemical staining and flow cytometry using

myeloperoxidase as a marker for neutrophils and F4/80 for

macrophages were also compared between GCSF−/− mice and

WT prior to GCSF treatment.. Both neutrophils and

macrophages were significantly decreased in the livers of

HFD-fed GCSF−/− mice compared to WT, suggesting an

alternate pathway in which GCSFR can indirectly affect the

development of NAFLD by regulating the production and

mobilization of neutrophils in the absence of GCSF (41). This

study identifies the importance of GCSFR regulation in the

presence of GCSF in response to diet-induced changes in

hepatocyte metabolism. The study also suggests that increased

GCSFR deregulates JAK/STAT/SOCS signal pathway, which can

bring immunomodulation that may attenuate the hepatic

metabolism process (41, 42).
Signal modulation

Whether GCSFR is susceptible to typical receptor translational

modification remains investigated. However, emerging evidence

suggests several mechanisms play functional roles in regulating the

receptor. Specifically, C-mannosylation regulates the receptor by
FIGURE 4

SOCS Inhibition Mechanisms. Adapted from “Cytokine Receptor Families”, by BioRender.com (2022). Retrieved from https://app.biorender.com/
biorender-templates.
frontiersin.org
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modulating its signaling. A post-translational modification that

occurs intracellularly in the endoplasmic reticulum before protein

folding and secretion, C-mannosylation regulates protein folding,

guidance of substrate of proteins, and cellular signaling. Thismode

of protein modification has been found to be functional in

regulating the downstream signaling of GCSFR. In the receptor,

C-mannosylation atW318 regulates granulocytic differentiation in

myeloid 32D cells and affects GCSF-dependent downstream

signaling by changing ligand binding capability. Investigators

used transduction of myeloid 32D cells with WT or W318F

GCSFR expressing lentivirus to show that the absence of this C-

mannosylation site on GCSFR resulted in lower phosphorylation

levels of STAT3 compared toWT-expressing cells aswell as a lower

number of differentiated cells (43). The in vitro experiment also

confirmed thatC-mannosylation regulates the JAK/STATpathway

by affecting the capability of ligand binding without any change in

the cell surface localization of GCSFR, resulting in myeloid cell

differentiation (44).
Regulation of granulocyte
colony-stimulating factor
receptor expression

Initially, it was thought that GCSFR was expressed only on

myeloid and hematopoietic stem cells. However, GCSFR has been

shown to be expressed on epithelial cells, endothelial cells, ganglion

cells, neurons, cardiomyocytes, andnumerous cancer cell lines (45–

48). Furthermore, the expression of GCSF and GCSFR is increased

in several types of solid tumors including breast cancer, bladder

cancer, GI cancers, and gliomas (8, 49–51). While GCSFR

regulation has primarily been studied in myeloid cells, here we

will discuss what is also known about GCSFR regulation in both

myeloid and non-myeloid cells. By understanding how GCSFR

expression is regulated, we will have greater insight into why and

how dysregulation occurs in tumor development.
Regulators of transcription

The first barrier to transcriptional activation is chromatin

accessibility. Physical access to chromatin is regulated through

the topological organization of DNA binding proteins like

nucleosomes and other chromatin binding factors (52). Post-

translational modifications of nucleosomes contribute to

chromatin accessibility, which can restrict or promote

transcription factor binding. Early investigations of the

methylation status of GCSFR promotors suggest that

hypermethylation of the HpaII restriction site inhibits

GCSFR transcription.

Examination of methylation patterns in lymphocytes that

lacked GCSFR expression revealed hypermethylation of the
Frontiers in Oncology 07
promoter region of GCSFR gene, while macrophages, known

to have high levels of GCSFR expression, exhibited

hypomethylation of the promoter region. Lastly, granulocytes

and monocytes exhibited no methylation (53). Taken together,

these data suggest that GCSFR promotor methylation is a critical

regulator of GCSFR expression. While histone remodelers, like

SWI/SNF-related, matrix-associated, actin-dependent regulator

of chromatin, subfamily D, member 2 (SMARCD2), and STAT5,

have been shown to contribute to the regulation of GCSF-

induced differentiation of neutrophil granulocytes, the histone

remodeler(s) involved in GCSFR specific modifications and

whether they are conserved among cell types remain a mystery

(54, 55).

Transcription factors also play a critical role in regulating gene

expression. CCAAT/enhancer-binding proteins (C/EBPs) are a

family of transcription factors that increase the transcription of

numerous genes involved in proliferation, differentiation, and

survival by binding the promotor regions of target genes (56).

Currently, there are six known distinct C/EBPs (C/EBPa, C/EBPb,
C/EBPg, C/EBP00190, C/EBPd, and C/EBPz). Several of these
factors are critical for granulopoiesis including C/EBPa, which is

also critical for the differentiation of several cell types including

hepatocytes, adipocytes, lung cells, and ovarian cells (57). C/EBPa
binds a GCAAT site found in the promotor region of CSF3R in

myeloid nuclear extracts, and mutations in the site reduce

promotor activity by 60% (58). C/EBPa (−/−) mice exhibited

undetectable levels of GCSFR mRNA, supporting a critical role of

this transcription factor (59). While one group found undetectable

levels of GCSFR mRNA in C/EBPa KO mice, another group of

investigators found that cell lines established in the fetal liver of C/

EBPa (−/−) mice expressed GCSFR mRNA, which increased with

the addition of granulocyte-macrophage colony-stimulating factor

(GM-CSF), suggesting a mechanism of GCSFR expression

independent of C/EBPa (60). Rat sarcoma virus (RAS) signaling

enhances the ability of C/EBPa to transactivate the GCSFR

promotor by phosphorylation of S248 of the C/EBPa
transactivation domain in the U937 myeloid cell line and 293T

embryonic kidney cells. Furthermore, PKC blocks this activation

(61). C/EBP00190 can also regulate GCSFR when transiently

transfected into HeLa cells, suggesting a potential additional level

of regulation (57).

Two additional transcription factors have been identified

that are involved in the regulation of GCSFR. PU.1, an ETS-

family transcription factor encoded by the Spi1 gene, is a key

differentiation regulator that can alter the expression of

thousands of genes involved in hematopoiesis including

GCSFR (62, 63). PU.1 binds a purine-rich DNA sequence (5′-
GAGGAA-3′) called the PU-box located at +36 and +43 in the 5′
untranslated region of the GCSFR promotor. Mutation of this

region reduces promoter activity by 75%. Additionally, C/EBPa
physically interacts with and activates PU.1 distal enhancer in

myeloid differentiation, suggesting an additional level of

transcriptional complexity (64). Interestingly, when promoter
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activity was monitored by luciferase assay, activity increases

were observed in NB4 and HL60 leukemic cell lines but not in

the non-myeloid cell lines, Jurkat or BJAB (65–67). Later studies

discovered an interaction between C/EBP00190 and activating

transcription factor 4 (ATF4) at CEBP binding sites of the

GCSFR promoter (Figure 5) (68). Investigators used a

luciferase reporter construct in Jurkat cells to demonstrate that

homodimers of C/EBP00190 and heterodimers of C/EBP00190

activate the GCSFR promotor equally well, whereas C/EBPa
transcription is inhibited upon heterodimerization with ATF4

(68). These data suggest complicated and cell type-specific

regulation of GCSFR expression. Many of these studies were

done during the time when GCSFR was thought to be expressed

explicitly in myeloid cells with later studies performed in

lymphocytes. A more recent study found an additional step of

GCSFR expression regulation in a neutrophilic granule protein

(NGP) neuroblastoma subpopulation of CD144+ cells (3).

STAT3, which is activated through GCSF signaling, directly

regulates GCSFR expression, suggesting a feed-forward loop.

Whether these transcription factors are involved in GCSFR

regulation in epithelial cells and fibroblasts within tumor

microenvironments remains unknown.
Translational regulation

MicroRNAs (miRs), short non-coding RNA molecules, bind

to target mRNAs and allow translational repression and gene

silencing. miRs play regulatory roles in cellular processes from

proliferation to apoptosis at the translation stage. In relation to

GCSFR, miRs play a critical role in combatting truncated GCSFR

variants, which is important, as defective receptors have been

shown to confer resistance to apoptosis and contribute to

oncologic transformation. Currently, several miRs have been

shown to regulate GCSFR expression, and dysregulation of

expression in miRs are linked to diseases.

The miR-155 is highly expressed in hematopoietic

progenitor cells and several hematological malignancies.

Patients with severe congenital neutropenia (SCN), who have

higher levels of class IV GCSFR, are also found to have higher

levels of miR-155. Itkin et al. demonstrated that miR-155 was

aberrantly upregulated in a STAT5-dependent manner for

individuals with a greater level of class IV GCSFR, suggesting

that upregulated miR-155 can increase the risk of de novo

leukemia or leukemia relapse for these individuals. The pro-

tumor effects mediated by miR-155 upregulation include the

suppression of growth factor independent-1 transcription

repressor, which is crucial for myeloid differentiation and

tumor suppression, and tumor protein p53 inducible nuclear

protein-1, which has anti-proliferative and pro-apoptotic

activities. Additionally, miR-155 indirectly promotes the

secretion of C-C chemokine ligand-2 (CCL2), a strong

chemotactic factor important for regulating macrophage
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recruitment and polarization during inflammation (69). The

miR-155-mediated CCL2 upregulation was found to upregulate

GCSF-induced mobilization via C-X-C motif chemokine-12/C-

X-C motif chemokine receptor 4 (CXCL12-CXCR4) signaling

axis and STAT5 activation when class IV GCSFR was present

(70). This finding highlights the pro-tumorigenic implications of

miR-155-mediated GCSF and GCSFR expression and increased

leukemogenicity in SCN patients.

While miRNAs can regulate GCSFR expression, signaling

through the GCSF axis can also increase the expression of pro-

tumor miRNAs. Recent work by Zhang et al. demonstrated that

GCSF treatment on the HCT-8 colon cancer cell line resulted in a

gradual increase of miR-125b expression in a time-dependent

manner (71). Previous studies suggest that miR-125b can act in a

pro-metas tas i s manner by modulat ing the tumor

microenvironment via promotion of apoptosis and epithelial to

mesenchymal transition (72). A recent analysis of colorectal cancer

(CRC) patient samples with or without node metastasis confirmed

that samples from patients with metastasis had higher expression of

miR-125b. Further work on the HCT-8 cell line by ectopically

expressing miR-125b in the cell line revealed that ectopic miR-125b

could significantly promote migration and invasion of CRC cells,

indicated by the transwell migration array and Matrigel invasion

array. The finding was consistent with tumors of mice injected with

CRC cells with overexpressed miR-125b metastasizing in the liver

and lung (71, 73). The migration speed of HCT-8 cells also

increased in a dependently of in miR-125b overexpression, as the

wound healing assay showed much faster wound healing than that

of the control. Zhang et al. performed a dual-luciferase activity assay

and identified myeloid cell leukemia-1 (MCL1), an inhibitor of

apoptosis that contains 3′-UTR putative target sequences for miR-

125b, to be the direct target of this translational modification. The

result revealed miR-125b inhibiting the relative luciferase activity of

WT MCL1 3′-UTR constructs with firefly luciferase vector when

co-transfected with miR-125b mimics, suggesting that miR-125b

directly binds to 3′-UTR of MCL1 to inhibit its expression (71).

While the exact mechanism by which miR-125b acts in CRC

initiation and progression is unclear, different studies have

identified the increased presence of miR-125 in breast and liver

cancers, suggesting that miR-125-induced inhibition of MCL1

protein may selectively promote apoptosis-resistant cancer cells,

which then can have greater metastatic potential than the cancer

cells susceptible to apoptosis, in various organs (73).
Trafficking and post-translational
modifications

Localization

Protein localization requires the accumulation of a protein at a

destined site to produce cellular signaling and is an important step

for signal trafficking. Endocytosis is one method by which signal
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transductions are modulated in terms of intensity and duration. In

some disease processes, receptor trafficking can become altered,

resulting in hampered receptor signaling pathways. Enhanced green

fluorescent protein (EGFP)-tagged WT GCSFR demonstrated

ligand-induced spontaneous receptor internalization with

predominant localization in the Golgi apparatus, late endosomes,

and lysosomes (74). Positions at 749–755 and 756–769 in the C-

terminal region of GCSFR aid in the internalization of the receptor

via their dileucine internalization motif, which is dependent on

phosphorylation of a serine residue at position −4 to −5 upstream of

the dileucine pair. The phosphorylation of this serine residue

facilitates the interaction with activator protein-2 (AP2) (75).

Internalization of the receptor has a synergizing effect on JAK

activation. Additionally, the integrity of a crucial tryptophan residue

(W650) in the juxta-membrane region of the receptor for JAK

activation is found to further stabilize the internalization process.
Recycling

The fate of internalized receptors includes receptor

degradation and recycling. Receptor recycling plays an

important regulatory role in signal activation and overall

signal trafficking. In WT GCSFR, GCSF binding of the

receptor results in receptor internalization followed by

endosome formation as presented in Figure 6. During this

process, downstream signaling continues. The receptor inside

the endosome now faces either degradation or recycling. If

recycled, the early endosome undertakes a dynamic system for

sorting and re-exporting membrane components via the

endoplasmic reticulum and Golgi apparatus, respectively.

Understanding the mechanism of recycling helps in

determining the composition of the plasma membrane and the

mechanisms of normal cellular homeostasis.
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Damaged endosomal recycling is often linked to a variety of

diseases, including cancer and neutropenia. Vacuolar protein

sorting 45 homolog (VPS45) deficiency is often found in patients

with serious infections and diseases including CN, bone marrow

fibrosis, and extramedullary renal hematopoiesis. VPS45, a

member of the secretory/mammalian uncoordinated 18 (SM)

family, is a critical regulator that orchestrates trafficking through

the endosomal system and promotes the recycling of cell surface

receptors. Loss of VPS45 results in the trapping of GCSFR in

endosomes and impaired lysosomal delivery (76). Linked to

hypo-responsiveness to GCSF due to impaired trafficking of

GCSFR, the absence of VPS45 reduced trafficking of colocalized

GCSFR with lysosome-associated membrane glycoprotein-2

(LAMP2)-positive late endosomes, showing a sustained

accumulation of receptor in early endosomes (77). The

accumulation indicated that the absence of VPS45 arrests early

endosomal activity in sorting receptors for recycling or

degradation. Interestingly, past research draws a closer

relationship between T224A mutation in VPS45 gene that

abolishes its gene expression in SCN patients who are often

susceptible to dysregulated GCSFR (76).

In GCSFR, phosphorylation of the immediate upstream

serine residue at 749 of carboxyl terminus (S749), positioned

four residues downstream of the dileucine motif, is found to be a

crucial determinant in the switch from slow constitutive

endocytosis to fast, ligand-induced endocytosis (74). A mutation

of the leucine in internalization motif-1 to alanine (L753754A) has

been shown to elicit a significant reduction in GCSFR

internalization, suggesting that the upstream leucine residue plays

an integral role in both localization and internalization of the

receptor (43). The internalization rate of WT GCSFR was

compared to receptor mutants S749A and S749D that mimic an

unphosphorylated lysine residue and a phosphorylated residue,

respectively. Both WT and S749D GCSFR had internalized
FIGURE 5

Transcription Factors of GCSFR (CSF3R). Adapted from “CREB Signaling Pathway”, by BioRender.com (2022). Retrieved from https://app.
biorender.com/biorender-templates.
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approximately 60% of the surface GCSFR within 5 min of

incubation at 37°C, while only 20% of the cells expressing S749A

were internalized at that timepoint. Both S749A S749D GCSFR

mutant cells were not affected by spontaneous internalization of

anti-GCSFR antibodies when compared with WT GCSFR cells,

indicating that the phosphorylation of S749 is important in

determining the rate of ligand-mediated GCSFR internalization

but is not sufficient by itself to catalyze the internalization rate in the

absence of GCSF (77, 78).
Degradation

The degradation mechanisms of GCSFR are similar to most

cell surface protein processing and include glycosylation and

targeted ubiquitination. Derangements in the degradation

process of GCSFR are found in patients with SCN and AML,

which increase in GCSFR induces hypersensitivity and enhanced

growth response to GCSF. (79–81).

Degradation of GCSFR begins with ubiquitination

modulated by O-glycosylation. The cluster of threonine

residues proximal to amino acid position 618 is an important

site for glycosylation. The glycosylated wild-type GCSFR is

expressed at the cell surface and triggers ligand-dependent

tyrosine phosphorylation (82). The phosphorylation then leads

to ubiquitination for proteasomal degradation. At this step,

JAK2 levels decrease to limit the signaling (83). Additionally,

O-linked glycosylation decreases the dimerization of the

receptor due to its bulky charged group, which sterically

hinders the process. A recent finding elucidates a novel avenue

of aberrant signaling of GCSFR when the degradation signal is

compromised. Threonine residue at the 618 (T618) site of the

proximal membrane region of the receptor, a part of the O-
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linked glycosylation cluster, is an important motif for

endocytosis and degradation. Truncation in T618 directly

prevents O-glycosylation of the receptor and increases receptor

dimerization, highlighting the receptor’s ability to be activated in

a ligand-independent manner when T618 is compromised (84).

Point mutation analysis of T618I mutant confirmed that this

mutation prevented O-glycosylation of the receptor (82). Cells

expressing the membrane-proximal CSF3R T618I mutation

exhibited high rates of growth in the absence or presence of

ligand without any change over the concentration gradient (85).

This finding was consistent with previous reports that showed

the T618I mutation causing rodent bone marrow colony

formation in the absence of GCSF (86). The ligand-

independent nature of T618 mutant underscores the relative

potency of the truncation mutation and further highlights the

importance of the threonine cluster in the function and

regulation of GCSFR signaling.

The receptor is also susceptible todegradation throughSOCS3-

driven lysosomal degradation, in which ubiquitination of specific

lysine residues in the conserved juxta-membranemotif plays a large

role in regulating degradation. Unlike glycosylation, which partly

inhibits JAK kinase activity, ubiquitination of the lysine residue at

position 632 of juxta-membrane (K632) drives lysosomal

degradation and targets STAT5 by downregulating and

attenuating phosphorylation activity (Figure 4) (87). Covalent

bonding of ubiquitin to a cytoplasmic lysine residue in GCSFR

attracts lysosomal sorting effectors and proteins such as the

hepatocyte growth factor regulated tyrosine kinase substrate,

endocytic adaptor proteins (epsins), and the endosomal sorting

complex required for transport machinery (ESCRT) complexes to

create a binding site for membrane phosphoinositides.

Subsequently, EAP45/Vps36 interacts with this complex to sort

cargo proteins to the luminal vesicles of endosomes. SOCS’s innate
FIGURE 6

GCSFR Degradation and Recycle Mechanisms. Adapted from “Endocytosis and Exocytosis with Membrane Rupture (Layout)”, by BioRender.com
(2022). Retrieved from https://app.biorender.com/biorender-templates.
frontiersin.org
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ability to inhibit phosphorylation strengthens the effect of this

downregulation pathway on GCSFR (39). Additionally, the lysine

residue in the receptor holds importance in regulating the GCSFR-

stimulated signal transduction.A lysine lackingGCSFRmutation is

strongly associated with prolonged receptor expression, leading to

unregulated cellular proliferation. Comparing the STAT

phosphorylation activity between WT whole cell lysates and

K762R/GCSFR transfectants, immunoblot analysis showed rapid

diminishment of phosphorylation of both STAT3 and STAT5 in

the WT compared to the mutated GCSFR counterpart 2 h post-

GCSF stimulation. Akt signaling pathway, an important pathway

for cell survival andproliferation, was also found to have prolonged

activation in K762R mutants as compared to WT GCSFR

transfectants in which Akt activity was undetected at 60 min (79).

Other biological inhibitors for degradation have been

identified including methyl-b-cyclodextrin, hyperosmotic

sucrose, severely reduced internalization-defective GCSFR

mutants like D715, and GCSFR deletion mutations, which are

often found in patients with neutropenia. Degradation inhibitors

like MG132 and Bafilomycin-A take a more direct approach to

restore GCSFR protein levels by preventing degradation.

MG132, an effective reversible proteasome inhibitor, can

readily permeate through the cell membrane and selectively

inhibit proteosome machinery by attaching its peptide

aldehydes to the lysosomal cysteine domain of proteases.

Bafilomycin-A, a macrolide antibiotic, inhibits GCSFR

degradation through acidification of either the extra cellular

environment or intracellular organelles, denaturing lysosomes

by specifically targeting vacuolar-type hydrogen ATPase (V-

ATPase) (88).
Protein interactions

The GCSFR-driven signal transduction mechanism is

complex. Its ability to contribute to proliferation and cellular

differentiation signaling in different organs is a testament to the

versatility of the receptor and highlights the potential for

deleterious effects when GCSFR is upregulated. The in vitro

investigation of GCSFR in hepatocytes discussed in the Signal

Transduction section of this review reflects the organ specificity

of GCSFR-stimulated signal transduction and highlights the vast

presence of GCSFR in the human body. In the liver, GCSFR

regulates hepatic lipid metabolism through downstream

signaling activation of the JAK/STAT/SOCS pathway. GCSFR

activation induced expression of SOCS3, which then inhibited

JAK activation and limited STAT3 phosphorylation, negatively

regulating GCSF response (41). This negative feedback pathway

had a direct influence on instigating hepatic steatosis by

inhibiting the expression of Akt and GSK3, which evoke

insulin insensitivity, highlighting the intracellular interplay

between organ-specific proteins and the GCSFR-mediated

signaling proteins (89).
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GCSFR is known to interact with transmembrane proteins

involved in signal transduction pathways of cells to maintain

healthy homeostasis. One of these interactions is with integrin

a9b1. This transmembrane protein is often found in the

epithelium and aids in the translation of extracellular signals

that change cell behavior, specifically cell adhesion and

migration (90). a9b1 is also prominently expressed on human

neutrophils and mediates neutrophil migration through vascular

cell adhesion molecule-1 (VCAM1) and tenascin-C (TNC).

a9b1 improves the responsiveness of GCSFR to GCSF and

promotes stimulation of the cascading signaling pathway by

directly interacting with GCSFR. Comparing ltga9 WT and

ltga9−/− bone marrow cells revealed that the STAT3

phosphorylation resulting from GCSF stimulation was

significantly reduced in a9-deficient cells (91). While the

specific mechanism remains unclear, the permissive role of

a9b1 in the GCSFR-signaling pathway as indicated in the

study suggests a9b1 is important for granulopoiesis, especially

in enhancing the activation of STAT3.

Another important protein interaction of the receptor is

with E6-associated protein (E6AP), a ligase protein best known

for ubiquitinating the transcription factor p53. E6AP targets

GCSFR for ubiquitin-mediated proteasome degradation,

attenuating the receptor’s function (88). GCSFR and E6AP are

co-localized together in the cells, and the co-localization is

enhanced in the presence of the proteasome inhibitor MG132

both in vitro and in vivo (88). E6AP is also found to promote

early degradation of GCSFR, reducing the GCSFR signaling

indicated by reduced STAT3 phosphorylation. Investigators

determined the half-life of GCSFR in the presence and absence

of E6AP by inhibition of de novo protein synthesis with

cycloheximide. E6AP markedly reduced the half-life of

GCSFR, while the half-life of T718 GCSFR mutant was

modestly affected, highlighting the importance of the protein–

protein interaction between E6AP and GCSFR (88, 92). The

study further implicates the possibility of E6AP as an effective

GCSFR inhibitor to treat GCSFR upregulated diseases.
Receptor expression and response
to granulocyte colony-stimulating
factor in non-myeloid cells

Previously established understanding of GCSFR implicates

that the receptor can interact with non-immune cells in different

organs. In recent years, the receptor and its substrate have been

detected on the surface of other microvascular murine

endothelial cells originating from the thymus, brain, heart, and

skin, as well as other non-hematopoietic cells (3, 5, 78). In the

endothelial cells of different organs, GCSFR is expressed at

similar levels as in myeloid cells and acts similarly in aiding

the cellular proliferation and migration of cells (93). The
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signaling mechanism of rh-GCSF and the receptor (rh-GCSFR)

in the ovarian adenocarcinoma cell line, HEY, allows a better

understanding of GCSFR functioning beyond its typical role.

The in vitro model of rh-GCSFR in HEY constructed by

Brandsetter et al. showed the active participation of the receptor

in mediating mitogen-activated pathway (MAP). To

demonstrate this, proliferative and differential signals were

induced via GCSFR, and a similar signal transduction

mechanism was shown in the model. Y646, 744, and 764 sites

were important for activating JAK kinases and activating p21Ras/

MAP kinases. Upon exogenous GCSF stimulation of HEY cell

lines, AP-1-(c-Jun/c-Fos) regulated gene accumulated and

upregulated CSF3R expression by 40% (94). Three MAP

kinase groups were involved in MAP: p38 kinases, the

extracellularly regulated kinases (ERKs), and the c-Jun N-

terminal kinases (JNKs) found in stress-activated pathways.

Two methods by which these proteins are activated were

identified: stress-associated and non-stress-associated

pathways. Although these two pathways result in increased

proliferation, the stress-associated pathway involves the JNKs

and p38 kinases that are activated in response to inflammation.

The non-stress-associated pathway involves cytokine activation

of ERKs, which can phosphorylate c-jun, an integral component

of AP-1 complexes that regulate transcriptional activity (95).

In addition to its proliferative role, the retinal ganglion cell

(RGC) axotomy model used by Frank et al., highlights the

receptor’s neuroprotective nature in RGCs. Its constitutive

expression in RGCs aids in the survival, differentiation, and

proliferation of neutrophilic lineage cells. The investigators

demonstrated that GCSF-mediated GCSFR expression

protected RGCs from degeneration after transection of the

optic nerve in a rat model (47). GCSFR-driven activation of

RAS/RAF/ERK or PI3K/Akt kinases is understood to inhibit

apoptosis through inhibition of caspase and by activating

neurotrophins, potentially explaining this protective effect (96).

Regeneration of skeletal and cardiac muscle cells links

proliferation of cells to cellular inflammatory response

mediated by GCSFR upregulation. Examining rodent embryos

using immunostaining, GCSFR expression was demonstrated to

be increased at the period when early skeletal myocytes began

differentiating and the expression of the receptor was affected by

the autocrine GCSF signaling as myoblasts developed (97). A

serial histological analysis up to 28 days after injury (inducing

stress by injecting cardiotoxin directly into rodent femoral

muscle cells) demonstrated the synchronous nature of

inflammatory response and upregulation of GCSFR to protect

cells and prevent apoptosis. GCSFR expression was observed via

immunofluorescence on day 5 after cardiotoxin injection. Day 5

corresponded to the same day the skeletal muscle progenitor

cells or satellite cells (SCs) began proliferating, confirming that

increased expression of GCSFR coincides with the proliferation

period of cells (97). Furthermore, in the isolated myofiber

samples of day 5, 94.4% of activated SCs or migrating SCs into
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the injured site with syndecan-4 (SDC4) activation showed

increased expression of GCSFR. This suggests that both

activated SCs and inflammatory factors were present at the

same time GCSFR expression increased during the first

cellular proliferation (98). Upon the activation of GCSFR, the

same important signal trafficking proteins seen in myeloid cells

like ERK, JNK, p38MAPK, Akt, and STATs were activated. The

level of expression of these proteins paralleled with the

upregulation level of GCSFR, promoting the proliferation of

myoblasts (97). A similar expression pattern of GCSFR was

shown in post-myocardial infarction (MI) cardiomyocytes.

Additionally, upregulation of the receptor in myocardial

infarction cardiomyocytes and cardiac fibroblasts of cultured

rodent cardiomyocytes evoked similar protective and anti-

apoptotic roles for the damaged cells via the JAK/STAT

pathway by producing angiogenic factors (99).

While these findings highlight the cell-protective

characteristics of GCSFR signaling in cells, they also implicate

the damning concern that GCSFR signaling can inhibit the

cellular apoptosis mechanism to encourage cancer cells to

grow (96).
Cancer

It is evident that unbridled expression of GCSFR causes

unnecessary and possibly dangerous cellular proliferation and

differentiation through complex downstream signal

transduction. Its ability to induce proliferation pathways led

investigators to look closely at GCSFR functioning in human

tumor cells to better understand the relationship between

upregulated GCSFR and different cancers. Wojtukiewicz et al.

reported the detection of high GCSFR expression in 20 out of 28

assessed breast cancer tissue samples. Immunoblotting showed

high GCSFR expression on the endothelial cells (ECs) of small

blood vessels supplying breast cancers in those 20 samples,

suggesting the possibility of GCSFR aiding in the proliferation

and migration of ECs by supporting angiogenesis in breast

cancers. Furthermore, co-expression of GCSFR with vascular

endothelial growth factor (VEGF), VEGF receptor, and tissue

factors were found in those samples, highlighting the interplay

between the receptors for angiogenesis promotion and in

providing mitogenic support for the progression of malignant

cells. Similar to breast cancer, higher expression of GCSFR is

found in nasopharyngeal, oral cavity, colorectal, gastric, and

ovarian cancers, solidifying the relationship between increased

levels of GCSFR expression and solid tumors (5, 8, 10, 84).

Many investigators have demonstrated a link between the

overexpression of GCSFR and pro-tumor effects in numerous

cancers such as neuroblastoma and CRC (3, 51, 99). In the

central nervous system, endogenously expressed GCSFR was

found to be upregulated in response to external stress-related

stimulation such as nerve injuries or hypoxia, a common feature
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of the tumor microenvironment (100). An in vitro mechanical

scratch neuronal injury model showed upregulation of GCSFR

in spinal cord capillaries compared to the control sample. The

model also highlighted the functioning of nucleophosmin-1

(NPM1), a neuron-specific protein, that was increased

alongside GCSFR to reduce apoptosis by inactivating caspase-

activated DNase (48). Xenograft and allograft murine models of

neuroblastoma showed increased GCSFR expression promoting

the proliferation and metastasis of neuroblastoma through

GCSF-dependent phosphorylation of STAT3 signaling in

CD114+ cells. Agarwel et al. reported a positive feedback loop

between GCSFR and STAT3-mediated transcription of

CSF3R (3).

Upregulation of GCSFR is also detected in glioma. While

GCSF and GCSFR expressions were not detected in the normal

brain cortex or primary cultured astrocytes, they were widely

expressed in glioma samples (101). This finding suggests that

GCSFR expression may facilitate both autocrine and paracrine

modes of stimulation and maintenance of glioma. Using a

bromodeoxyuridine incorporation assay, the investigators

demonstrated a significant increase in proliferating glioma

cells with exogenous GCSF treatment. Specifical ly,

bromodeoxyuridine (BrdU)-positive cells were increased by

50% in GCSF-treated groups compared to groups without

GCSF treatment (78). Treatment of primary cell cultures

derived from glioblastoma patients and the glioma cell lines

T98G, U251, and U87 with GCSFR antibody resulted in a

significant decrease in the frequency of BrdU-positive cells and

colony formation rate by an average of 15% compared to those

without treatment (78).

The same behavior can be seen in bladder carcinomas in

which tumor cells’ continuous expression of GCSF and GCSFR

allowed for a functional autocrine/paracrine signaling loop that

promotes the survival and growth of bladder cancer cells. This

upregulation bolstered poorly differentiated proliferation as

observed in multiple epithelial cancers and was a significant

defining factor of the invasiveness of cancer. Higher GCSFR

expression was also associated with the presence of lymph node

metastasis in gastric cancers. In cultured gastric cancer cells

(SGC7901), GCSFR increased proliferating cell nuclear antigen

levels and induced cell proliferation. Wound healing assays have

confirmed that GCSFR also increases migration in gastric cancer

(49). Transfection of TCC-SUP bladder cancer cells that innately

lack expression of GCSF and the receptor with full-length

GCSFR resulted in a twofold increase in the proliferation rate

with a sustained increase of cell survival through abrogation of

apoptosis in a GCSF dose-dependent manner (102). Both the

GCSFR transfected TCC-SUP and 5637-GR bladder cancer cells

had increased survivin, a STAT-regulated gene known to

mediate pro-survival functions in cells.

GCSFR is also seen cross-interacting with components within

tumor stromal cells to promote tumor migration. In breast and
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pancreatic cancer cells, cancer-associated fibroblasts (CAFs) are

most frequently found in tumor stroma not only promoting tumor

progression but also inducing therapeutic resistance (103). CXCL12

signaling, known to upregulate GCSF-induced mobilization, also

induces activation of CAFs, resulting in increased breast cancer

stem cells (104, 105). While the specific interplay between GCSFR

and CAFs remains elusive, this finding suggests a close interaction

between the two. Day et al. observed GCSFR interacting with

mesenchymal-lineage stromal cells in the bone marrow, CXCL12-

abundant reticular cells (CAR), and osteoblasts, decreasing their

capacity to support B lymphopoiesis. GCSFR was also associated

with CAR expansion and support of osteogenic lineage

commitment (106). However, GCSFR suppressed the production

of multiple B-cell trophic factors by CAR osteoblasts, along with

other cytokine factors like interleukin-6, a pro-inflammatory

cytokine, and interleukin-7, hematopoietic growth factor (106).

In addition to increased proliferation of tumor cells, recent

findings suggest that GCSFR promotes a microenvironment

favorable for sol id tumor cel ls to metastasize via

immunomodulation (107, 108). Karagiannidis et al.

subcutaneously injected GCSFR−/− mice with the murine

colon cancer cell line, MC38, to investigate the role of GCSF

signaling. They found that the GCSFR−/− mice had slower

tumor growth and hypothesized that this may be due to a lack

of GCSF signaling in the immune cells. The authors also noted a

decrease in T cell-associated cytokine production in these

GCSFR−/− mice. Real-time quantitative reverse transcription

polymerase chain reaction (qRT-PCR) with RNA extracted from

CD4+ T cells isolated from spleens of GCSFR−/− mice showed

an increase in interferon-gamma (IFNy), which is associated

with antitumor activity, and in interleukin-17 (IL-17A), which

can be indicative of T-cell activation. These mice also showed a

decrease in interleukin-10 (IL-10) at the mRNA level, which is

indicative of regulatory T cells associated with poor anti-tumor

response (108). The expression of IFNy and IL-17A, generally

considered markers of cytotoxic CD8+ responses and of Th17

helper cells, respectively, were found favorable as compared to

the WT, while IL-10 level decreased in the absence of GCSFR.

Conversely, GCSF treatment on WT CD4+ cells significantly

decreased IL-17A production but increased IL-10 production.

These findings suggest that GCSFR directly affects T-cell

phenotype and cytokine production in a GCSF-dependent

manner. In in vitro studies, GCSFR−/− spleen-derived CD4+ T

cells had decreased levels of the gene forkhead box P3 (FoxP3),

the transcription factor for T-regulatory cells. This was

consistent with an increase of IL-10 and expression level of

FoxP3 in WT mice subjected to MC38 tumor injection, as

compared to IL-10 and FoxP3 levels in the GCSFR−/− mice

(108). Multiplex cytokine analysis of conditioned media from

cultures confirmed that IL-10 production was increased in WT

mice as compared to cultures using tumor tissues from GCSFR

−/− mice. This is consistent with previous studies that reported
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an IL-10 serum level increase in human patients with

progressing CRC (73, 108). These data suggest complicated

regulation of GCSFR on the immune system. The pro-

tumorigenic role of GCSFR in inhibiting CD4 and CD8 T-cell

responses by promoting IL-10 is recognized to play an important

role in shaping the tumor microenvironment.
Conclusion

Although GCSF has been widely used in clinics to successfully

treat and prevent febrile neutropenia, a complete understanding of

the complex results of GCSF signaling remains lacking. This review

summarizes the available data regarding GCSFR structure,

signaling, and regulation with emphasis on the role played by the

receptor in diseases such as cancer. An emerging body of evidence

reveals an adverse role played by GCSFR signaling in various

cancers. Available evidence also shows that GCSFR activates the

JAK/STAT pathway to drive the proliferation of both myeloid and

non-myeloid cells. Because of this and the fact that recombinant

GCSF is administered to patients with malignancy, there is an

urgent need to increase our understanding of the multiple roles

played by this pleiotropic cytokine beyond the well-known effects

on neutrophil mobilization.
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