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KEY WORDS Abstract Autoimmune or infectious diseases often instigate the undesirable damages to tissues or or-
gans to trigger immune-related diseases, which involve plenty of immune cells, pathogens and autoanti-
bodies. Nanomedicine has a great potential in modulating immune system. Particularly, biomimetic
nanomodulators can be designed for prevention, diagnosis and therapy to achieve a better targeted immu-
notherapy. With the development of materials science and bioengineering, a wide range of membrane-
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Nanomodulators;
Immune system;
Bioengineering;

Immunotherapy; coated nanomodulators are available. Herein, we summarize recent advancements of bioinspired
Autoimmune; membrane-coated nanoplatform for systemic protection against immune-related diseases including auto-
Infectious diseases immune and infectious diseases. We also rethink the challenges or limitations in the progress of the ther-

apeutic nanoplatform, and discuss the further application of the nanomodulators in the view of
translational medicine for combating immune-related diseases.
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1. Introduction

Autoimmune diseases [e.g., theumatoid arthritis (RA), systemic
lupus erythematosus (SLE) and multiple sclerosis (MS)] and in-
fectious diseases [e.g., corona virus disease 2019 (COVID-19),
acquired immune deficiency syndrome (AIDS) and various bac-
terial infections] have emerged as serious threats to human
health' . These diseases are often progressed with immune sys-
tem dysfunction or hyperactivation, causing tremendous suffering
to patients with a high fatality rate* ®. For example, due to the
emergence of severe acute respiratory syndrome corona virus 2
(SARS-CoV-2), human immune system is invaded and attacked,
especially in restraining immune cell responses and antibodies
secretion, resulting in the failure of virus clearance and thousands
of death® ®. Autoimmune diseases are frequently associated with
the loss of B cell or T cell tolerance, which result in the pathology
that immune cells actively infiltrate or attack normal tissues and
organs”'’. Nowadays, numerous drugs including small chemicals
or therapeutic antibodies have been developed to overcome the
immune diseases, the clinical response remains unsatisfactory
largely due to non-diseases specificity, heterogeneity or awkward
drug delivery''"'>. And worse, tremendous adverse effects
including autoimmunity, overused drug resistance and system
inflammation caused by the long-term administration have
aroused many concerns. Even though the symptom and severity of
the three major immune-related diseases are different, they exhibit
some similar denominators in the dysfunction of immune ho-
meostasis'”. Thus, there is an urgent need to develop innovative,
versatile and practical therapeutic strategies to reshape the im-
mune microenvironment and normalize immune homeostasis.
Immunotherapy has been chosen as a classical clinical strategy
for treating immune diseases. Amounts of immune modulating
drugs are being approved in clinical or preclinical research. None-
theless, one key limitation of current immunotherapies is the multi-
faceted immune network, as it often involves intricate immune
microenvironment communications between pathogens, cytokines
and infiltrated immune cells, and conventional immunotherapy
cannot achieve the desired outcomes'®. The progress of nano-
medicine provides an incomparable approach to exploiting novel
solutions to the predicaments. For the autoimmune diseases, various
inflammatory factors or autoantigens can pathologically activate
immune cells including T cells, macrophages and neutrophils to
release cytokines (e.g., TNF-o, IL-1 and IL-6) and stimulate
downstream effector cells to attack normal tissues or organs through
the ligand-receptors interactions in the immune micro-
environment'*'®, Cell membrane derived from the involved im-
mune cells may be fabricated as a broad-spectrum anti-inflammation
nanoplatform by leveraging the existed receptors to neutralize
multiple cytokines instead of one'”'®. In the infectious diseases,
such as COVID-19, the virus can evade from CD4" or CD8™ T cells
and attach itself to lung epithelial cell membrane and then the spike
protein (S protein) binds to the angiotensin-converting enzyme 2
(ACE2) to inject its viral genomes into the infected cell prior to
replication, then cause the dysfunction of lung”'’. Using ACE2
anchored membrane as a nanodecoy to neutralize the virus would
ameliorate immune cell stress and enhance immune response.
Considering the fact that multiple immune cells play a key role in the
progression of these diseases, employing the membrane derived
from the relevant cells-coated nanoparticle as an immunomodulator
would be feasible by mimicking the properties of the source cells.

Briefly, the membrane-coated nanoparticles are characterized
by the typical core—shell structure’’', with a synthetic inner core
and outer layer bioinspired membrane including cell mem-
brane”? 24, bacterial membrane” >’ or exosome>" >°. Moreover,
bioinspired membrane-camouflaged nanoparticles completely
inherit the properties of the source cells and thus can bind in-
flammatory cytokines, participate in immune interactions and
regulate immune response. It has been elucidated that due to the
existence of membrane proteins such as CD47, PD-L1 and other
engineering ligands, the bioinspired membrane-based nanoplat-
form can avoid being systemically cleared by macrophages or
improve tissue biodistribution and half-life by targeting the
disease-related sites'>'**. Compared with conventional immu-
notherapy, bioinspired membrane-based nanomodulator has mul-
tifunctions not only by integrating the functions of outer
membrane and the drugs in the inner cores which have the
controlled release effect, but also can produce synergistic effects
with the outer membrane in the immune environment™*~**,

Cell membrane-based nanomodulator has shown unprece-
dented efficacy in treating various autoimmune diseases, virus and
bacterial infections’'. However, there is still much space to extend
cell membrane-coated nanoplatform to address broad-spectrum
diseases and benefit more patients. In this review, we briefly
retrospect the burgeoning nanotechnology, summarize the sources
of cell membrane and introduce the methods of coating. We
discuss the different types of bioinspired membrane-coated
nanoparticles to function as nanodecoy-immunotherapy, vaccine-
immunotherapy, sono-immunotherapy, chemo-immunotherapy
and other novel immunotherapies. We also summarize their ap-
plications in immune-related diseases including autoimmune dis-
eases and infectious diseases, along with their special features and
advantages (Scheme 1). Moreover, we rethink the current in-
adequacies and challenges in translation, and provide a trans-
lational perspective on the field of cell membrane-coated
nanoplatform. Undoubtedly, with the development of nanotech-
nology and biomedicine, the application of the cell membrane-
coated nanoparticles will carry forward as time progresses, and
we also conclude with discussion on the directions of clinical
translation in future.

2. Advancement of membrane coating nanoplatform

In 2011, the first study about the red cell membrane camou-
flaged PLGA nanoparticle (RBC-NPs) was reported, and the
RBC-NPs faultlessly inherit the properties of source cells
including surface marker proteins CD47 and other receptor
proteins®'. Due to the proteins, compared with conventional li-
posomes or other synthetic carriers, membrane-coated nano-
particles can significantly prolong the circulation time by
evading systemic clearance mediated by macrophages. More-
over, the outer layer can protect the drug loaded inner core from
poor stability by avoiding being degraded by the low-pH gastric
acid in some cases. Importantly, it can achieve personalized
treatment through gene engineering-modified membrane, and
enhance disease-targeting accumulation and reduce non-
targeting tissue accumulation. With the development of mate-
rials engineering, miscellaneous types of membrane have been
derived to fabricate 20—500 nm-sized membrane-coated nano-
particles through the processes of sonication, physical extrusion
or microfluidic fabrication® *. Encouraged by the success,
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more researchers have devoted their attention to the study of
bioinspired membrane-coated nanoplatform.

2.1.  The sources of bioinspired membrane and nanomaterials
Bioinspired membrane wrapped onto the synthetic nanoparticles may

derive from different cultured cells, extracted exosome and even
bacteria. Especially, more than thirty kinds of membrane have been

Dj
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developed in immune-related diseases due to their membrane func-
tions, including RBC, platelet, immune cells, cancer cells, stem cells,
exosomes, bacteria, hybrid cell membrane, and genetic/chemical
engineering cell membrane®”**?!, Meanwhile, various nano-
materials including polymer, silica, gold, iron oxide, nanogel,
quantum dot/up-conversion material (QD/UC), metal-organic
frameworks (MOF), protein complexes, oncolytic virus and chips
have been prepared’'**. According to the different diseases or the
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Bioinspired membrane-based nanomodulators for targeted therapy in autoimmune diseases, virus infections and bacterial infections.

After rational engineering, various bioinspired membranes can be wrapped over the inner cores, which successfully inherit the biofunctions (e.g.,
adhesion molecules: CD47, LFA-1 and ICAM-1; key receptors: IL-1R, TNF-aR and DRS; engineering proteins: TRAIL and other specific
antibodies) of the source cells. Meanwhile the multifarious inner cores can be designed for delivering various immune modulating drugs or
adjuvants. According to the desired application or the type of the diseases, specific membrane and the inner nanoparticles can be integrated for
immune activation in antiviral or antibacterial therapy, and for immunosuppression in autoimmune diseases.
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Figure 1  Bioinspired membrane-based nanoparticles. Various cell types or exosomes have been applied as sources of membranes to wrap onto
nanoparticles. Each kind of membrane can possess unique properties to provide functionalities to inner nanocores, the resultant nanoparticles can
function as nanodecoy-, vaccine-, photo-, sono-, chemo-immunotherapy and the other novel immunotherapy to regulate immune response for
virus or bacteria clearance, and autoimmune normalization.

treatments, we can choose the suitable sources of membrane and
nanomaterial to construct the resultant cell membrane-coated nano-
particles for immune activation in infectious diseases, and immu-
nosuppression in autoimmune diseases (Fig. 1).

2.2.  Methods of coating technology

Currently, there are three main different methods used to manu-
facture cell membrane-coated nanoparticles, including physical
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extrusion, sonication, or microfluidic electroporation. Moreover,
amounts of novel technologies, such as viscoelastic flows, have
sprung up to facilitate the development of cell membrane-coated
nanoparticles. Here, we briefly introduce these methods and
discuss its advantages or disadvantages.

Initially, bioinspired membrane-coated nanoparticles were
fabricated by mechanical extrusion in which the derived vehicles
and inner nanocores were co-extruded successively through
different apertures (400, 200, 100 or 50 nm) of porous poly-
carbonate membrane by using an Avanti mini extruder’’. Overall,
mechanical extrusion is a convenient and effective method, but it
is hard to control mechanical forces during the extrusion process,
which often leads to the destruction of the porous membrane. Very
recently, sonication has also been applied in the field of cell
membrane-coated nanoparticles. By using the ultrasonic energy,
the obtained cell membranes are breaking into pieces, and then
cocultured with nanocores under sonication*'. Consequently, the
approach can largely generate cell membrane-coated nano-
particles, but the method of sonication cannot ensure the diameter
uniformity of resultant NPs. Moreover, the power and time of
sonication have to be controlled seriously, otherwise the mem-
brane proteins on the surface would be carbonized to lose its
biofunctions. Microfluidic electroporation has been developed for
fabricating cell membrane-coated nanoparticles recently’’.
Viscoelastic flow has also been applied in separating and obtaining
different size of exosomes or vesicles’. In a small volume of
samples, it is challengeable to isolate small exosomes from large
membrane vesicles. Moreover, the method can be also used to
directly isolate exosomes from cell culture media, serum and urine
in a size-dependent and label-free manner. Overall, these methods
may also help construct a versatile nanoplatform to promote
exosome or extracellular vesicle applications in various immune
diseases.

2.3.  Characterization of bioinspired membrane-coated
nanoparticles

To determine whether cell membrane is successfully coated onto
the nanoparticle, physicochemical and biological properties are
evaluated by different methods, including the diameter of core—shell
NPs, surface charge and protein composition. At present, the most
intuitive approach to confirm the success of cell membrane coating
on bare nanoparticle is to use transmission electron microscopy
(TEM) or scanning electron microscopy (SEM) image. The diam-
eter of cell membrane is about 8—10 nm, and thus we can see that the
16—25-nm increase in the coated nanoparticle compared with bare
nanoparticle®’. TEM/SEM images can also be used to observe the
morphology of membrane-coated NP. The size distribution of
nanoparticle can further be evaluated by dynamic light scattering
(DLS) instrument, which can intuitively exhibit the intensity of
diameter. Another important parameter of the coated nanoparticles
is zeta potential ({, mV), which can reflect the change of surface
potential regarding the particles before and after the coating pro-
cess'*. Normally, the potential of bare cell membrane vesicles is
about —30 mV, and will have an effect on the integral charge, which
illustrates whether the vesicles are coated on the nanomaterials core.
Importantly, the membrane biofunction has to be confirmed, and
thus marker proteins and receptors would be detected by Western
blotting*”. In short, due to the existence of membrane proteins, it can
protect the nanoparticles from being eliminated by immune system,

and thus enhance the ability of immune regulation as shown in
Table 1I4,3(),42,48,4‘),57,(17,(18,75,78,81,87 100

3. Bioinspired membrane coating nanoplatform in
autoimmune disease therapy

3.1.  Nanodecoy-immunotherapy in autoimmune diseases

Nowadays, autoimmune diseases include a series of more than 80
illnesses and affect millions of people worldwide** **, exhibiting
a common pathogenesis: immune system is disordered and results
in attacks on normal tissues or organs. Unfortunately, the inci-
dence rate of these diseases is still increasing with the changes of
lifestyle or environment™. Even though current treatments of
autoimmune diseases improve greatly with the use of novel bi-
ologicals or small molecular chemicals, the therapeutic outcome
has still been limited by the facts that the diseases often progress
before a clinical diagnosis and the complexity of cytokine or
immune system interactions'***. What’s worse, traditional small
chemicals are difficult to be penetrated into the inflammatory
tissues or organs. Whereas, bioinspired membrane-based nano-
particles can be as nanodecoys to absorb various cytokines and
thus can be as a broad-spectrum therapeutic nanoplatform because
of its targeted immune regulation and drug delivery, which has
showed a promising potential in various autoimmune diseases
treatments.

3.1.1. Rheumatoid arthritis
Rheumatoid arthritis is one of the most common chronic auto-
immune diseases, which often involves various immune cells (e.g.,
autoantigen specific CD8™ T cells, neutrophils and macrophages)
infiltration and cytokines secretion in the joint*>*®. The micro-
environment of RA is like tumor microenvironment (TME), which
has hypoxia and high pressure making traditional drugs hard to
penetrate into inflammatory tissues in depth'’. Moreover, inhib-
iting one or a few cytokines cannot be enough to reverse the RA
progression. Thus, immune cell or engineering-modified cell
membrane-based NPs were developed to modulate the immune
system and overcome these limitations for a better RA treatment.
Bioinspired membrane-coated nanoplatform can be used as a
nanodecoy to neutralize inflammatory cytokines and thus decrease
immune cells infiltration. Neutrophil plays a key role in cartilage
destruction and bone erosion in RA progression'**’. Thereby,
suppressing neutrophil activation may be a promising approach for
RA management. In one study, neutrophil membrane was
extracted and coated onto the PLGA core to format neutrophil-NP
as a nanodecoy for joint protection (Fig. 2A and D). Firstly, the
membrane receptors including TNF-aR, IL-1R and the functional
membrane protein lymphocyte function-associated antigen-1
(LFA-1) were detected on the core—shell NPs by Western blotting.
Due to the existence of surface receptors, the neutrophil-NPs
exhibited a strong affinity to cytokines including IL-18
(ICsp = 188 pg/mL) and TNF-a (ICsy = 1327 pg/mL), which
can act as a decoy to neutralize these inflammatory cytokines,
decrease neutrophil activation and provide the possibility for
further application in vivo. In collagen-induced arthritis (CIA) and
human transgenic mouse model, neutrophil-NP, PBS, anti-IL-13
and anti-TNF-a were separately administrated into the mice by
knee injection according to the schedule, and the results showed
that neutrophil-NP-treated group had a stronger cartilage protec-
tion. It is confirmed by the lower knee diameter change compared
with control group, even comparable to the treatments of clinical
approved drugs anti-IL-18 and anti-TNF-a. Moreover, the histo-
logical results also confirmed that neutrophil-NP can inhibit
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Table 1  Applications of bioinspired membrane-based nanomodulator.
Sources Application Diseases Key molecules Ref.
Neutrophil Cytokines neutralization RA IL-1R; TNF-aR 14
HUVECs-TRAIL Active targeting; drug delivery; cytokines RA TRAIL; DRS; IL-1R; TNF-aR 42
neutralization
RBCs Autoantibodies neutralization AIHA; DIA RBC antibody receptors 48
Pathological antibodies neutralization pSS; SLE; autoimmune- RBC-BCR 57
thyroiditis
Virus clearance Influenza HA; sialic acids 75
Toxins neutralization MRSA infections a-toxin; wSP 88,90
Toxins vaccine Bacterial infection PFTs; Hla 89,96
MSCs-exosome Drug delivery MS IDO; mRNAs; HSP70 30
Platelet Autoantibodies neutralization ITP Antibodies receptors 49,98
Drug delivery; bacteria binding Bacterial infection Vancomycin 99,100
T cells HIV neutralization HIV/AID CD4 receptor; CCR4/5 68
receptors
C6/36 ZIKV neutralization ZIKYV infection ZIKV receptors 78
PHH-hNTCP HBYV neutralization HBYV infection hNTCP; HBVpreS/2 81
THP-1/293T SARS-CoV-2 neutralization COVID-19 ACE2; IL-6R 67
HEK-293T-L.2 Vaccine; immune activation HPV HPV16-L2 87
HEK-293T Drug delivery; sono-immunotherapy Bacterial infection TPPS, ROS 97
Macrophage Endotoxin/cytokines neutralization Bacterial infection Virulence factors 90,91
Toxins vaccine Bacterial infection Anti-Pas I1gG 92,95
E. coli Anti-bacterial vaccine Bacterial infection CD40; CD80; CD86 93,94

RA: rheumatoid arthritis; IL-1R: IL-1 receptor; DRS: death receptor 5; AIHA: autoimmune hemolytic anemia; DIA: drug-induced anemia; pSS:
Sjogren’s syndrome; SLE: systemic lupus erythematosus; HA: hyaluronic acid; MRSA: methicillin-resistant Staphylococcus aureus; wSP: whole
secreted proteins; PFTs: pore forming toxins; Hla: a-haemolysin; MS: multiple sclerosis; IDO: indoleamine 2,3-dioxygenase; ITP: immune
thrombocytopenia purpura; CCR: C-C chemokine receptor; PHH: primary human hepatocytes; hNTCP: human sodium taurocholate co-transporting
polypeptide; ACE2: angiotensin-converting enzyme 2; HPV: human papillomavirus; TPPS: meso-tetrakis (4-sulfonatophenyl) porphyrin; ROS:

reactive oxygen species.

immune cell infiltration and thus alleviate joint damage in the
three RA mice models.

Bioinspired membrane-coated nanoplatform can also be used
as a targeted delivery carrier for RA treatment. During the pro-
gression of RA, inflammatory macrophages overexpress death
receptor 5 (DRS), which provides an unparalleled possibility to
develop a novel method by targeting inflamed M1 macrophage.
Compared with bare cell membrane vesicle, gene engineering-
modified cell membrane not only can bind to the corresponding
receptors on the immune cells, but also can be used for specific
targeting, treatment and imaging. In a recent study, gene
engineering-modified cell membrane expressing TNF-related
apoptosis-inducing ligand (TRAIL) was extracted and coated
onto the HCQ-loaded PLGA nanoparticles (TU-NPs) to specif-
ically induce inflammatory M1 macrophages apoptosis and
simultaneously deliver anti-RA drugs for a targeted therapy
(Fig. 2E and G)**. One highlight of the research is that TU-NPs
can bind to DRS of M1 macrophages to induce its apoptosis and
then decrease inflammatory cytokines secretion. In vivo targeting
experiment, CIA mice were injected intravenously with free ICG,
ICG-labeled U-NP and TU-NP, and obviously TU-NP-treated
mice showed significant fluorescence intensity and photoacoustic
signal, which means that TU-NP had a superior RA targeting
ability than U-NP. In the following therapeutic and prophylactic
study, TU-NP can powerfully reverse the RA progression from the
MRI facts that TU-NPs-treated mice showed lowest T1 weight
signals and CT results that TU-NPs-treated mice exhibited least
bone erosion. In short, displaying functional proteins or antibody
on cell membrane to regulate immune system may be superior
than that of bare cell membrane, which proposing a potential
strategy for immunotherapy.

3.1.2.  Type Il immune hypersensitivities

Type II immune hypersensitivities diseases such as autoimmune
hemolytic anemia (AIHA), drug-induced anemia (DIA) and im-
mune thrombocytopenia purpura (ITP) are characterized by the
production of pathological autoantibodies, which result in the
damage of platelets, red blood cells or other immune cells***’.
The diseases can lead to the destruction of normal tissues or un-
controlled bleeding that even can cause the death of patients™.
However, current treatments for these autoimmune blood diseases
remain relatively nontargeting, even wide use of including sys-
temic glucocorticoids, cytotoxic drugs, and B cell depleting
monoclonal antibodies®”>'. Even though much progress has been
made with the use of present therapies, its efficacy remains un-
satisfied and along with serious adverse effects, highlighting the
desideratum for a better targeted immunotherapy.

Based on the pathomechanism that autoantibodies mainly
attack RBCs, how to clear the autoantibodies is the priority. In a
recent study, a core—shell nanoparticle as antibody nanosponge
(ANS) by fusing RBCs membrane onto the PLGA cores was
designed (Fig. 3A and C)**. With inheriting the properties of
RBCs membrane, these autoantibodies can be effectively
absorbed to the surface of ANS, disrupting AIHA advancement
in a low-toxic manner. The results showed that RBC-ANS can
reduce RBC-bound autoantibodies in a dose-dependent manner,
for example, ~60% and ~95% reduction can be separately
achieved with 100 pg and 1 mg of RBC-ANS. To know whether
RBC-ANS can target the antibodies in vivo, anemia disease
model was induced by i.p. injection of 500 pg anti-RBCs.
Meanwhile, the equivalent anti-RBCs preincubated with 5 mg
of RBC-ANS for 5 min was subsequently injected into the
treated group mice as a contrast. It demonstrated that anti-RBCs
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Bioinspired membraned coated nanoplatform as nanodecoy in autoimmune diseases therapy. (A) Illustration of neutrophil-NPs

designed for neutralizing cytokines, inhibiting inflammation and protecting joint. (B) Characterization of neutrophil-NPs including TEM
image (left) and western blotting (right). Scale bar, 100 nm. (C) Binding capacity assay of neutrophil-NPs with IL-18 and TNF-«. (D) Fluo-
rescence images of a cross-section of mouse joints stimulated with recombinant mouse IL-16 and incubated with neutrophil-NPs or RBC-NPs.
Scale bar, 100 pum. Reprinted with the permission from Ref. 14. Copyright © 2018, Nature Publishing Group. (E) Schematic illustration of TU-
NPs designed for targeting RA immunotherapy by coating TRAIL-expressing membrane onto HCQ-loaded PLGA cores. (F) Reconstructed 3D
images of PA showed that TU-NPs could penetrate deeper into the inflamed tissues than that of ICG or U-NPs at 12 h post injection. (G) MRI and
CT images of arthritic paws in different groups. The red arrow represents the erosion or destruction of joints. Reprinted with the permission from

Ref. 42. Copyright © 2020, Elsevier.

were neutralized by the RBC-ANS and then the circulating
RBCs were protected from being trapped. To further verify the
potential application of RBC-ANS in clinics, the authors
established a clinically relevant anemia mouse model by daily
injection (i.p.) anti-RBCs. In the following treatment, RBC-
ANS-treated group showed a more enhanced efficacy for
neutralizing autoantibodies and postponing anemia progress
compared with other treatments.

As described previously, enormous autoantibodies for deleting
platelets are responsible for immune thrombocytopenia purpura
(ITP), which can make people suffer the coagulation disorders.
Inspired by previous works, leverage the biological membrane as a
sponge to neutralize the antiantibodies may also produce unex-
pected outcomes in ITP therapy. In a recent study, platelet
membrane-coated nanoparticles (PNPs) for specially clearing anti-

platelet antibodies were manufactured (Fig. 3D and F)*’. Because
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Figure 3  Bioinspired membraned coated nanoplatform as nanodecoy in autoimmune diseases therapy. (A) Schematic representation of RBC-
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27 pg) and its specific binding capacity. (C) Different concentrations of RBC-ANS coincubated with anti-RBCs illustrated dose-related inhibition
of RBC agglutination by RBC-ANS. Reprinted with the permission from Ref. 48. Copyright © 2014, PNAS. (D) Schematic of platelet membrane-
coated nanoparticles (PNPs) for the treatment of ITP. (E) In vivo neutralization of anti-platelet antibody activity by PNPs. (F) In vivo treatment of
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the PNPs outer layer was intact platelet membrane, it completely autoantibodies. Both in vitro or in vivo, PNPs exhibited a superior
inherited the surface receptors or adhesion proteins of native pathological autoantibody binding capacity, thus protecting model
platelet, which endow them with nanodecoy for binding mice from ITP.
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3.1.3. B cells-related autoimmune diseases

Hyperactivation of B cells is often involved in autoimmunity and a
large number of autoimmune diseases are of B cell origin, such as
primary Sjogren’s syndrome (pSS), SLE and autoimmune
thyroiditis™**. The activated B cells secrete larger amounts of
pathological autoantibodies leading to the progression of the
diseases™. Thus, specifically depleting the active B cells or
plasmocyte may represent a promising approach to slowing dis-
eases progress. Current monoclonal antibodies such as Rituxan
and Belimumab have achieved some positive effects in
clinics™°, whereas the drug response remains unsatisfied
because of heterogeneity of autoantigens in patients. Subse-
quently, more broad-spectrum strategies that can neutralize these
autoantibodies should be developed. In one study, a method for the
specific targeting of activated B cell populations by utilizing the
nanoparticles covered with RBCs membrane expressing their
cognate antigens was designed (Fig. 3G and H)*’. Meanwhile, the
researchers successfully implemented multi-functionalization of
nanoparticles (RBC-NPs) with the homogeneous antigens
expressed on the cells attacked by the immune B cells in the
disease progression. In vitro experiments, B cell hybridomas were
firstly used to confirm that RBC-NPs can be specially bound to an
RBC antigen-specific hybridoma. In vivo experiments, two murine
models were established to test the targeting ability. The results
showed that alloimmune B cells exhibited a more enhanced af-
finity to hRBC-NPs than naive RBC or PEG-NPs. To further
evaluate whether hRBC-NPs can distinguish antigen-specific B
cells generated in vivo, autoimmune murine model was estab-
lished through sensitizing with rRBCs and anti-CD25 for 3 weeks.
It was demonstrated that nanoparticles fused with RBC membrane
decreased autoactivated B cells and could be applied to verify
autoantigen specific B cells. Collectively, the bioinspired strategy
would provide a practical approach to improving immunotherapy
of a wide range of autoimmune diseases that are presently difficult
to manage in clinics.

3.2.  Bio-immunotherapy in autoimmune diseases

3.2.1.  Multiple sclerosis

Multiple sclerosis (MS) is a T cell-mediated autoimmune disease
that affects the brain and central nervous system, which often
leads to inflammation and a wide range of symptoms throughout
the body including paralysis, vision loss, and mobility prob-
lems™°. The disease progresses with enormous migration of
autoreactive lymphocytes across the blood—brain barrier (BBB)”.
Increased active T and B lymphocytes, plasma cells, macrophages,
and especially T-helper 1 cells (Thl) are recruited into brain
where they can kill human neurons®. Currently, there is no cure
for MS other than the drug that can slow the progression and
relieve symptoms, and most of the drugs are found to hardly
across the BBB, which proposes a great challenge for MS
treatment’”.

Exosomes are a kind of membrane enclosed vesicles with a
diameter range from 30 to 200 nm, which play an important role on
intercellular communications especially in physiological and
pathological conditions®'. Recently, exosomes have attracted much
attention from clinicians and researchers because of their special
characteristics including long circulation time, low immunoge-
nicity compared to that of source cells and large cargo of various
nucleic acids, lipids or proteins, which involves in immune system
modulation®'. Thereby, many studies have focused on the thera-
peutic function of exosomes in MS therapy. In a recent study, the

extracted mesenchymal stem cell-derived exosomes (MSCs-exo-
somes) were found to be as a nanoplatform for MS treatment
through intravenous injection of the exosomes (Fig. 4A and 0)*°.
Compared with native MSC exosome (Native-Exo), exosome from
MSCs induced by IFN-y (IFN+v-Exo) can relieve the basic symp-
tom, reduce demyelination and neuroinflammation, and largely
upregulate the proportion of CD4*CD25"FOXP3™" regulatory T
cells (Tregs) in the experimental autoimmune encephalomyelitis
(EAE) mouse model. Moreover, the study also verified that IFNvy-
Exo can suppress peripheral blood mononuclear cells (PBMCs)
activation and inhibit pro-inflammatory cells Th1 and Th17 secrete
cytokines in the spinal cord. On the contrary, IFNy-Exo even can
increase the levels of immunosuppressive cytokines indoleamine
2,3-dioxygenase (IDO), which is responsible for inhibiting T cell
function. To further investigate the mechanisms of the inhibiting
effect of IFNvy-Exo, deep RNA sequencing and proteomic analysis
were performed to illustrate the enrichment of anti-inflammatory
RNAs (mRNAs and noncoding RNAs) and neuroprotective pro-
teins (MIC-1, Gal-1 and HSP70). Similar to these findings, re-
searchers also manipulated exosomes derived from bone marrow
mesenchymal stem cells (BMSCs) to treat EAE rat models and the
results showed that it can significantly attenuate inflammation and
demyelination of the CNS in EAE rats by regulating the polarization
of microglia. Further analysis revealed that the exosomes can enter
into the spinal cord and induce microglia toward M2 phenotype
polarization (anti-inflammatory cytokines IL-10 and TGF-@) rather
than M1 phenotype (pro-inflammatory cytokines TNF-« and IL-
12). To target delivery anti-inflammatory cytokines to the recip-
ient microglia or inflammatory macrophages, genetic engineering
has been applied to create a novel and multifunctional exosome and
also achieved positive effects®”. Overall, engineered exosomes-
based immunomodulator may be used as a promising therapeutic
nanoplatform for CNS-related autoimmune diseases.

4. Bioinspired membrane coating nanoplatform in virus
infections

4.1.  Nanodecoy-immunotherapy in virus infection

Infectious diseases including virus and bacterial infection are
often accompanied with an abnormal immune response and have
been a major cause of lethality worldwide®°'. As for infectious
diseases, they share a common pathological feature that the
pathogen must attach itself to cellular surfaces for initiating dis-
ease further progress® °’. Considering the specific binding af-
finity between infectious pathogens and cells, nanoparticles
covered with desired cell membrane as a nanodecoy are herein
developed for virus/bacteria neutralization or clearance.

4.1.1.  Unmodified membrane used for virus clearance

HIV continues to be one of the most dangerous viruses with nearly
two million people newly infected every year, which has caused a
great global health challenge®®. HIV actively attacks the immune
cells expressing CD4 and thus cause immune system dysfunctions
or deficiency, which leads to the acquired immunodeficiency
syndrome (AIDS) and aggrandizes a risk of other infectious dis-
eases and cancers®. When the virus initially binds to target cells,
its envelope glycoproteins, mainly gpl20 would interact with
CD4, and also can bind to the coreceptors C—C chemokine re-
ceptor type 5 (CCRS) or C-X-C chemokine receptor type 4
(CXCR4) on the infected cells’®”!. However, current antiretrovi-
ral therapy can inhibit plasma virus to some extent, the residual
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Bioinspired membraned coated nanoplatform as chemo-immunotherapy in autoimmune diseases therapy. (A) Scheme of MSC

derived exosome in the treatment of EAE. (B) Immunohistochemistry of CD4"FOXP3™" cells and DAPI in spinal cord sections of EAE mice after
injection of PBS, Native-Exo, and IFNy-Exo. Scale bar, 100 um. (C) Quantification of CD4*FOXP3™ or CD8TFOXP3™ in the FOXP3-eGFP
mice splenocytes after stimulated by anti-CD3™ IL-2 with or without TGF@. Reprinted with the permission from Ref. 30. Copyright © 2019,

American Chemical Society.

HIV persists in latent cells, which poses a large barrier for viral
extermination®. In a recent study, the constructed T-cell-mem-
brane covered nanoparticles (TNPs) can effectively inherit
parental CD4™" T cells properties and functions to target and fuse
with the viruses, and subsequently inhibit viral entry into and
damage of the target cells (Fig. SA and B)°®. TNPs have a high
affinity and binding capacity to HIV gpl20, and this was
confirmed by the immunobinding assays. Recombinant HIV-1
gp120;s (gpl120 of X4 strain) and HIV-1 gp120g, (gp120 of
RS strain) were separately incubated with DiD labeled TNPs, and
the results showed that the binding effect was dose-dependent.

Compared with PEG-NP or RBC-NP, which had little affinity to
gp120, TNP showed an enhanced HIV envelope protein binding
ability. Moreover, TNPs can be as T cells decoys to bind with HIV
gp120 and thus protect CD4™ T cells from gp120-mediated cell
apoptosis with the confirmation of decreased CD4 " T cells death,
whereas RBC-NP or PEG-NP had little effect even comparable to
free gp120. To further test the neutralization effect of the virus on
PBMC:s, 200 TCIDs virus was incubated with TNPs with various
concentrations and the neutralization effect was authenticated
through checking HIV p24 antigen production. Surprisingly, TNPs
can largely decrease antigen p24 production in the medium of
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Figure 5

Nanodecoy-immunotherapy in virus infection. (A) Scheme of TNPs designed for HIV clearance. (B) Different concentrations and

strains of TNPs on the inhibition of HIV infection. Reprinted with the permission from Ref. 68. Copyright © 2018, Wiley. (C) Scheme of RBC-
mNPs for influenza virus clearance and (D) isolation. (E) TEM images of influenza virus samples captured by RBC-mNPs. Reprinted with the
permission from Ref. 75. Copyright © 2017, American Chemical Society. (F) Scheme of NDs adsorbing ZIKV. (G) TEM image of a single ND
that adsorbs ZIKV. Red arrows indicate ZIKV. Scale bar, 100 nm. (H) NDs inhibit ZIKV infection and improve the survival rates. Reprinted with
the permission from Ref. 78. Copyright © 2019, American Chemical Society.

PBMCs after incubation with HIVy; 4.3 or HIVg, in a dose-
dependent manner. It showed that ICsy value for TNPs toward
inhibiting X4 tropic HIVNi4.3 and RS tropic HIVg, strain on
PBMCs were separately 0.49 and 0.32 mg/mL. Similar to that of
PBMCs, TNPs also exhibited an enhanced ability of inhibiting
HIV infection (ICso = 0.41 mg/mL) on human-monocyte derived
macrophages (MDMs) with a negligible toxicity. Overall, the re-
searchers utilized the extracted CD4" T cell membranes to cover
onto PLGA cores and thus constructed biomimetic TNPs as HIV
nanodecoys, which highlighted the potential of TNPs in substan-
tially attenuating viral infectivity.

Influenza can occur annually, which leads to the death and
complications especially in the elderly and children with a huge
social economic cost’”. For the influenza viruses, they usually
are negative-sense, single-stranded RNA viruses, indicating its
high frequency mutations and thus make it hard to exploit
special drugs or vaccines for the clear target’”. Even though
influenza viruses have various types or subtypes, they enter into

the host cells all by the interactions between the viral HA pro-
teins and sialic acids, which are abundantly expressed on the
surfaces of RBCs’*. Considering that, Chen et al.”” designed
RBCs membrane-coated magnetic nanoparticles (RBC-mNP) for
influenza virus targeting and isolation (Fig. 5C and E). Through
the single emulsion process, 10-nm iron oxide nanoparticles
were loaded into the PLGA cores, which endows them with
proper magnetic properties. Then resultant nanoparticles were
further fused with RBC membrane, completely inheriting the
surface sialic acids with confirmation by DLS data, TEM images
and immunogold staining. Whereafter, influenza viruses were
separately mixed with RBC-NP and PEG-NP at a 1:1 ratio, and
TEM or cryo-EM images showed that the viruses can be
absorbed or attached on the RBC-NP through monovalent and
polyvalent manner. In contrast, it did not observe PEG-NP
induce the adhesion interactions with viruses. This can be
explained by the special target binding due to the existence of
viral HA proteins and RBC sialic acids.
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Zika virus (ZIKV) is a single-stranded RNA virus and from the
Flaviviridae family and the consequences of ZIKV infection are
devastating’®. ZIKV infection is observed to be involved in
devastating neurological complications through infecting neural
stem cells, and mainly includes microcephaly in mice or human
fetuses’’. To date, no vaccine or specific treatment is approved to
address the issues. Based on the fact that ZIKV invades the host
cells firstly through its envelope proteins (E protein) to bind the
membrane receptors of host cell and trigger the following repli-
cation and thus cell membrane-based nanoparticle can be as host-
mimicking nanodecoy for ZIKV absorption’’. Rao et al.”®
designed Aedes albopictus (C6/36) membrane covered gelatin
nanoparticles (GNP) as nanodecoy (ND) for ZIKV elimination
(Fig. 5F and H). The results showed that NDs-treated group can
significantly block ZIKA pass the BBB and placental blood barrier
(PBB), and thus improve the survival rate. In short, NDs can be as
an effective nanoplatform for trapping and distancing ZIKV from
the fetal brain and attenuated the ZIKV-caused fetal microcephaly

in pregnant A129 mice. More importantly, the outer wrapping cell
membranes endow NDs with advanced biocompatibility, long
half-time and immune evasion, which guarantee the safety and
availability of NDs in intricate microenvironment in vivo.

4.1.2.  Gene engineering-modified membrane used for virus
clearance

Chronic hepatitis B virus (HBV) infection is a serious public health
issue and approximately 350 million people are chronically infected
worldwide”. Particularly in China, HBV imperils patients and 25%
patients with HBV infection would die suffering from hepatitis,
cirrhosis, or hepatocellular carcinoma. Nevertheless, current clinical
treatments or therapeutics cannot completely clear HBV in chronic
infected patients. This is because that HBV is too crafty to be detected
by the innate immune system and thus can escape immune recogni-
tion and subsequent elimination®. More urgently, functional cure is
scarcely achieved in the infected patients with use of present
approved anti-HBV drugs. Therefore, it is of crucial importance to
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develop a novel anti-HBV strategy. In a new study, human sodium
taurocholate co-transporting polypeptide (W(NTCP), the HBV specific
receptor, was co-expressed on the parental cell through gene engi-
neering and the resultant membrane was applied for further HBV
neutralization research (Fig. 6A and C)*!. The derived vesicles
hNTCP-MVs exhibited a high affinity to HBV-PreS2 and HBV virion
and it can effectively inhibit HBV virion binding and invading to host
cells, with the confirmation of reduced HBV DNA and surface an-
tigen (HBsAg) in the medium when incubated with hNTCP over-
expressing cells after HBV infection. Moreover, 0.1 mg/mL hNTCP-
MVs can significantly decrease about 76% HBsAg and 73% HBV
DNA in the medium 3 days post infection. Whereas, equivalent
control-MVs had a negligible effect on HBV infection and it was
further confirmed in the HBV-Ae/Ba stable cells (genotype A/B with
replication-competent HBV genome stably integrated). Through vein
injection of 500 pg hNTCP-MVs in the Hu-FRGS mice upon the
infection, it can obviously inhibit serum HBsAg and HBV DNA
replication at 20 dpi while control-M Vs cannot achieve it in human-
liver-chimeric mouse model (Hu-FRGS). After the treatment, IHC
staining revealed that ANTCP-MVs may also prevent the extended
expression of HBsAg and HBV core antigen (HBcAg) in the model
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mice liver lobes with a negligible system toxicity. Overall, taking
advantaging of gene engineering to anchor specific receptor on the
parental cells and the subsequent MVs against virus infection, which
can specifically recognize and neutralize pathogens, would be a
promising strategy in future infectious diseases.

Similar to the known coronaviruses, SARS-CoV-2 is a
spherical virion with a diameter ranging from 80 to 120 nm®’.
The outer layer of the virus is the structural protein, including
spike (S) protein, envelope (E) protein and membrane (M) pro-
tein. Especially, S protein consisting of S1 and S2 subunit, has
been reported to be the most important protein during the
infection®®, which can bind to the human angiotensin-converting
enzyme 2 (ACE2) on the surface of pulmonary or other gastro-
intestinal epithelial cells and then invade the host cells mediated
by the subsequent fusion. Moreover, the virus binding to the re-
ceptor human ACE2 mainly depends on its receptor-binding
domain (RBD) and catalytical activation by proteases® .
Based on previous works, a cell membrane based nanosponge as a
bioinspired countermeasure to the SARS-CoV-2 was fabricated
(Fig. 6D and F)*’. In the design, ACE2 was anchored onto the
membrane of 293T cells through gene engineering and then the
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Bioinspired membraned coated nanoplatform as vaccine-immunotherapy for virus clearance. (A) Illustration showing the generation

of virus-mimetic nanovesicles (VMV) for anchoring anti-tumor epitopes or enveloped-virus glycoprotein to VMYV surface. (B) The results of mice
(n = 5) immunized three times with 100 ng of VMV-12 or 1.33 pg of L2 peptide with incomplete Freund’s adjuvant (IFA) or alum adjuvant via
i.v., i.m., or s.c. administration. (C) The change in fluorescence intensity at different time points post-injection suggested longer exposure time of
VMV-L2 over free L2 peptide to immune cell. (D) SPET/CT images at 1, 3, and 5 h after i.v. injection of **™Tc labeled L2 peptide and VMV-L2.
The spleen and bladder are indicated by white arrow and red circle. Reprinted with the permission from Ref. 87. Copyright © 2015, PNAS.



Biomimetic nanomedicine targeting for autoimmune and infectious diseases therapy 1139

derived vesicles were fused with human monocytes (THP-1)
vesicles to prepare the novel virus nanodecoy. The strategy
against SARS-CoV-2 has a powerful two-step approach by
inheriting the properties of the two source cells, the first step is to
capture the virus through harnessing the ACE2 receptors, and the
following step is to neutralize the boosted inflammatory cytokines
induced by the virus infection. To test its antiviral ability, pseu-
dotyped SARS-CoV-2, SARS-CoV, strains of WIV1 and Rs3367
were incubated with the different nanoparticles including 293T-
Ves, THP1-Ves, ACE2-Ves and the nanodecoy at the indicated
concentrations. The results showed that the nanodecoys can
significantly inhibit pseudotyped virus infection. Authentic
SARS-CoV-2 was also assayed and showed similar results.
Furthermore, due to the coexistence of cytokines receptors such
as IL-6R and GM-CSFR (granulocyte—macrophage colony-
stimulating factor), it can largely suppress inflammatory cyto-
kines and ameliorate lung injury in the acute pneumonia mouse
model. In short, the novel nanodecoy platform provides a
promising and broad-spectrum antiviral approach against virus
infection, which is superior than other conventional therapies
presently in terms of the progress for COVID-19 due to the fact
that the nanodecoy can target different variant virus.

4.2. Vaccine-immunotherapy for virus clearance

Human papillomavirus (HPV) is a double-stranded circular DNA
virus, which can transmit through skin-to-skin or mucosa-to-mucosa
contact and enter the body via cutaneous or mucosal trauma, and
ultimately cause infectious diseases” . HPV infection is considered to
be a causative factor for various cancers of the anogenital region and
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oropharynx, such as skin carcinogenesis and cervical cancer®.
However, HPV can evade from the immunosurveillance by various
mechanisms, and herein vaccine-immunotherapy would be a prom-
ising technique for protecting body from HPV infection.

Inspired by the fact that most enveloped viruses hijack a host cell
membrane and then release through the budding process that requires
cell membrane participation, genetically engineered HPV16 viral
antigen L2 to anchor onto cell membrane, then produced large
amounts of virus-mimetic nanovesicles (VMVs-16L2) inheriting the
properties of natural virus in size, shape and immunogenicity
(Fig. 7A and D)*". In vivo experiments, when vaccinated mice with
VMVs-16L2, the high level of antibody titer targets L2 was detected
and estimated about 7—8 times higher total antibody titers and
~10.5-fold higher neutralizing antibody titers than that of free L2
peptide, and thus can produce a superior protective effect. More
importantly, the established vaccine nanoplatform can be further
extended in other virus infections. Overall, due to the advantages of
functionally displaying antigen epitopes or viral envelope glyco-
proteins onto cell membrane and the resultant VMVs-antigens, the
straightforward, multifunctional and controlled nanobiotechnology
platform can be used to fabricate various antigen delivery system
against plenty of enveloped viruses.

5. Bioinspired membrane coating nanoplatform in bacterial
infection

5.1.  Nanodecoy-immunotherapy in bacterial infection

Bacterial infection has become a serious threat to human health
worldwide, and closely related to the host immune system. In
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Bioinspired membrane-based nanotherapeutics as nanodecoy-immunotherapy in bacterial infection. (A) Illustration of preparing

RBC-NS to target MRSA toxin-induced toxic shock in mice. RBC-NS can act as nanodecoys to absorb and detain hemolytic toxins in MRSA
culture and therefore protect mice from toxic shock induced by these toxins. Reprinted with the permission from Ref. 90. Copyright © 2019,
Wiley. (B) Schematic representation of using M@-NPs to neutralize endotoxins and proinflammatory cytokines as a two-step process for sepsis
management. Reprinted with the permission from Ref. 92. Copyright © 2017, PNAS.
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addition to causing increased antibiotic resistance, the bacteria are
good at adapting to its host by evading almost every aspect of the
immune system®”, Most of the bacteria initially adhere themselves
to the host cells and tissues, improving their infectious rate and
mediating the immune escape®. Therefore, taking advantage of
the underlying infection mechanism and developing a new
approach to overcoming it may help inhibit bacterial infection.
Recently, cell membrane based nanotherapeutics have displayed
its unique advantages in the field of anti-bacteria.

Sepsis is one of the most devastating diseases caused by bac-
terial infections with an uncontrolled systemic inflammatory
response. Patients with sepsis may suffer from multiple organ
dysfunctions or failures if not treated properly. In a recent study,
RBC membranes-coated PLGA cores as detoxication nanosponges
(RBC-NS) have been manufactured, which can neutralize mem-
brane damaging toxins and divert them away from their cellular
targets (Fig. 8A)". Particularly in toxin-challenged mice model,
the nanosponges significantly reduce the toxicity of staphylo-
coccal alpha-haemolysin (a-toxin) and herein improve the sur-
vival rate. Extensively, the nanosponges also can be used in the
infection caused by methicillin-resistant Staphylococcus aureus
(MRSA). In MRSA whole secreted proteins (wSP) challenged
mice model, the RBC membrane-based nanosponges bestow sig-
nificant survival benefits against wSP-induced lethality. Moreover,
in the MRSA sublethal dosage mice models, the RBC-NS obvi-
ously alleviate lung damages and suppress the activation of nu-
clear factor kappa B in the spleen. In short, these results can
identify that RBC-NS can be used as the treatment strategy for
severe MRSA infections and its derived diseases.

Moreover, the endotoxin (mainly referred to as LPS) released
from dead or lytic bacteria can be as a pathogen-associated mo-
lecular pattern (PAMP) and then captured or trapped by immune
cells (monocytes and macrophages), immune cells membrane
inherited receptors or proteins thus can be as a target for endo-
toxins’'. In a recent study, macrophage membrane was extracted
and wrapped onto PLGA cores to be as endotoxins decoys (M®-
NPs), and M®-NPs have been verified to effectively inhibit LPS
and the progress of sepsis (Fig. 8B)’%. Because of the outer layer
of source cell membrane, M®-NPs can specifically bind to LPS
through its surface LPS-binding proteins and thus divert LPS away
from targeting macrophages that would otherwise trigger the
engagement of pattern recognition receptor (PRR) CD14. Mean-
while, due to the inhibition, M®-NPs can further avert sepsis
cascade, including decrease LPS-induced nitric oxide (NO) pro-
duction, PRR Toll-like receptor 4 (TLR4) and the subsequent
nuclear factor-kB (NF-«B) transcription factor activation. In vitro
studies, when incubated with M®-NPs, the inflammatory cyto-
kines (IL-6, TNF-«, and IFN-v) in the medium stimulated by LPS
were significantly decreased. Compared with RBC-NPs or bare
PEG-NPs, M®-NPs demonstrated a more enhanced protective
efficacy, revealing its superior functions of macrophage mem-
branes for endotoxins/LPS neutralization. In Escherichia coli
challenged mouse model, mice received M®-NPs injection
showed a lower proinflammatory cytokines levels through inhib-
iting the bacterial dissemination, and subsequently achieved an
improved survival rate, whereas RBC-NPs and PEG-NPs treat-
ments were not observed similar results.

5.2, Vaccine-immunotherapy in bacterial infection

Particularly, bacterial outer membranes are ideal antigen derived
materials because of the enrichment properties of immunogenicity

and unique adjuvant, which can extremely active innate immunity
and elicit adaptive immune responses’>. Inspired by the
advancement of nanotechnology, bacterial membranes were
collected and coated onto gold nanoparticles to be as an anti-
bacterial vaccine (Fig. 9A and B)’*. In the study, E. coli outer
membrane vesicles (OMVs) were extracted and distinctly wrapped
onto small gold nanoparticles (AuNPs) with a diameter about
30—50 nm. This is because that the AuNPs have unique size and
shape and would be precisely tailored to improve immune
response rate. Other than the obviously intensive stability, the
subsequent bacterial membrane-coated AuNPs (BM-AuNPs) can
trigger a quick activation and maturation of DCs (indicated by the
overexpression CD40, CD80 and CD86) in vivo when injected
subcutaneously. Moreover, the BM-AuNPs also stimulate accel-
erated secretion of interferon gamma (INF-y) and interleukin-17
(IL-17), but not interleukin-4 (IL-4) in vivo, which means that it
can specifically induce Th1l and Th17 preferential cell responses
to eradicate the source bacteria. Collectively, the study novelly
utilized bacterial outer membranes to wrap synthetic inner cores,
showing a significant potential for antibacterial vaccines in
translation.

Similar to that of previous work, cell membrane-coated
nanoparticle integrated bacteria-related antigens may be used as
vaccine to prevent bacterial infection by activating the immune
system to target pathogen-associated antigens. Recently, macro-
phage membrane anchored various cytolysins or proteins secreted
by gram-negative bacteria was covered onto PLGA cores as
multiantigen nanotoxoid vaccine, which can enhance potent im-
munity against antibiotic-resistant bacteria (Fig. 9C and D)’°. In
the design, biomimetic nanovaccine take full advantages of the
specific function of macrophages in eradicating pathogens and
their natural binding for various virulence factors secreted by the
bacteria. Both in in vitro and in vivo tests, M®-toxoid vaccine
showed that it can effectively display various Pseudomonas aer-
uginosa antigens without toxicity to major tissue or organs. When
used in mice pneumonia models, M@-toxoid vaccine demonstrates
an enhanced protection efficacy through triggering strong humoral
immune responses against live bacterial infection even immunized
by the subcutaneous (subQ) or intranasal (IN) route. Collectively,
macrophage membrane-based nanoparticles either as endotoxins
decoys or vaccine, both can be as a promising solution to bacterial
infections, and the nanoplatform has a favorable potential trans-
lational application in clinics.

Moreover, vaccine is also an effective approach to active im-
mune response to eradicate toxins. Current toxin vaccines are
mainly manufactured by using inactivated bacterial toxins through
routinely chemical or heat denaturation, which would disrupt
toxins’ spatial conformation and the subsequent reduction of
immunogenicity.

To better boost immune response to toxin without damages to
body, cell membrane-based toxin-integrate strategy that can
completely retain PFTs immunogenicity was developed (Fig. 9E and
F)’°. In the design, RBCs membrane anchored staphylococcal a-
haemolysin (Hla), a model toxin, was wrapped onto PLGA cores
(nanotoxoid) Surprisingly, through the spontaneous trap interaction
between Hla and RBCs membrane, nanotoxoid can neutralize Hla
virulence without compromised immunogenicity. On the other hand,
nanotoxoid showed a high accumulation in the lymphatic drainage
with a time-dependent manner when injected intravenously, meaning
that it can be as a high-efficiency Hla deliver system to active immune
response. Compared with traditional heat-denatured vaccine, mice
immunized with nanotoxoid showed an enhanced protective immune
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Reprinted with the permission from Ref. 96. Copyright © 2013, Nature Publishing Group.
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Figure 10  Bioinspired membrane-based nanotherapeutics as sono-immunotherapy in bacterial infection. (A) Schematic illustration of ANVs
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from Ref. 97. Copyright © 2019, Wiley.

response against Hla-induced virulence. In Hla-challenged mice
models, nanotoxoid significantly improved the survival rate nearly
100% while other treatments cannot achieve it. Looking to the future,
the nanovaccine platform can broaden its application field for
different toxins’ invasion by warping the nanoparticle core with
desired cell membrane.

5.3.  Sono-immunotherapy in bacterial infection

Sono-immunotherapy may be also a feasible solution to bacterial
infection. Recently, a novel sonodynamic therapy (SDT) based on
target nanovesicles against multidrug-resistant (MDR) bacteria was
exploited (Fig. 10A and C)°”. In the study, a-toxin antibody against
MRSA was genetically displayed on the surface of cell that endowed

the resultant nanovesicles (ANVs) with the ability of bacteria target
and virulence capture. More importantly, a common sonosensitizer
meso-tetrakis (4-sulfonatophenyl) porphyrin (TPPS) was encapsu-
lated into the vesicles, in order to take advantage of the reactive ox-
ygen species (ROS) produced under ultrasound activation to kill
MRSA. Compared with traditional passive toxins absorption or
competitively block the binding of pathogens to host cells by source
bacteria or cell membrane, ANVs-TPPS therapy can actively
recognize and eradicate virulence. Furthermore, due to the properties
of TPPS, FL and PA images can be distinctly acquired to illustrate
ANVs-TPPS target the MRSA infectious sites and prolong circula-
tion time of TPPs, and hence guide the following therapeutic regi-
ment. In vivo treatment, ANVs-TPPS combined with US can more
obviously inhibit MRSA myositis when compared with that of bare
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Figure 11  Bioinspired membrane-based nanotherapeutics as chemo-immunotherapy in bacterial infection. (A) Scheme of platelet membrane
coated vancomycin-loaded nanoparticles (PNPs) to target MRSA. (B) SEM images of MRSA252 bacteria after incubation with PBS (top left),
bare NPs (top right), RBCNPs (bottom left), and PNPs (bottom right). Scale bar, 1 pm. (C) Normalized fluorescence intensity of dye-loaded
nanoformulation retained on MRSA252 based on flow cytometric analysis, and in vitro antimicrobial efficacy of the indicated treatments. (D)
In vivo antimicrobial efficacy of the indicated treatments at the same concentration of vancomycin 10 mg/kg and its bacterial loads in the major
organs. Reprinted with the permission from Ref. 100. Copyright © 2015, Nature Publishing Group.

NVs-TPPS, and this was confirmed by the obtained MRI, PA antivirulence immunotherapy, meanwhile guided the visualization
(oxyhemoglobin saturation) and HE images. Overall, the work firstly therapy, which proposed a train of thought for developing antibiotic-
achieved a dual-mode therapy with combining antibacterial SDT and free nanotheranostics.
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5.4.  Chemo-immunotherapy in bacterial infection

Pathogenic bacteria can also attach themselves to platelet and then
release various toxins to damage platelets and aggravate bacterial
infection’. Especiall, MRSA can release a-toxin to make
platelet aggression and the resultant inflammation, which in turn
help MRSA colonization and avoid being cleared by immune
system”’. Considering the facts, researchers successfully con-
structed platelet membrane-based drug delivery system (PNPs), in
which platelet membrane was wrapped onto the vancomycin
loaded nanocores to target MRSA (Fig. 11A and D)'°’. PNPs
showed a superior binding capacity with MRSA than red blood
cell membrane-coated nanoparticles (RBCNP) or bare nano-
particles, when cocultured with MRSA. In the MRSA challenged
mouse model, vancomycin-loaded PNPs-treated mice exhibited an
enhanced bacterial inhibition, even in the major organs than that
of free vancomycin or bare vancomycin-loaded nanocores. In
short, the novel antibacterial strategy extended antibiotic potency
through integrating targeted drug delivery and the biofunctions of
platelet membrane.

6. Challenges for clinical translation

Immune suppression or activation-based bioinspired membrane
coating nanoplatform have achieved much progress in targeted
immunotherapy, however, technical limitations hindering the
translation are still remained to be resolved. Statistically
analyzing the previous researches, most studies have only been
performed in mice, indicating that the following attentions have
to be paid to promote its clinical translation. However, much
attention should also be paid to its potential side effects,
including the overuse of membrane-coated NPs caused cyto-
toxicity after the chemical or other modifications or produce
pernicious inflammation via the unknown conjunctions with the
various immune cells, leading to pathological cytokines or an-
tibodies release.

6.1. Broadening sources of cell membrane

Presently, the source of cell membranes is narrow and broadening
the membrane origin is necessary. As described previously, in the
diseases of virus infection, bacterial infection and autoimmune
diseases, immune cells or other disease-related cells are markedly
involved in the progression. It broadens the application of bio-
inspired membrane-based nano-immunomodulator to target these
diseases. However, currently used membranes are mainly from
cell culture system in laboratory, not reflecting the real cell phe-
notypes changes or membrane proteins expression in the disease
condition, and these may weaken its targeting ability, and thus it is
important to regulate the culture conditions to conform to the
actual situation. On the other hand, patient-derived cells also can
be tailored to improve immunotherapy and enhance disease tar-
geting ability'*' ' In some cases, certain kinds of cells are hard
to acquire directly, and stem cells or induced pluripotent stem
cells (iPSCs) can be induced to differentiate into the desired cell
types. For example, BMSCs have already been induced to chon-
drocyte and its derivates have been applied in RA or OA stud-
ies'%719  Therefore, we should pay more attention on the
diseases derived membrane vesicles or exosomes for its further
clinical translations.

6.2.  Improving the methods of membrane extraction and coating

To acquire high purity and quality membrane, the undesired
intracellular proteins or organelles should be removed clearly.
However, current methods of membrane extraction or coating
mainly including sonication, gradient centrifugation and me-
chanical extrusion are difficult to achieve it.

These may largely limit the application and novel method or
technology has to be developed. For example, microfluidic soni-
cation or microfluidic viscoelastic flows technology has displayed
its unique role in high purity of extracellular vesicles sorting
dependent on the size. Moreover, to meet clinical translational
need, large-scale and quick production of functional membrane
under a standardized operation protocol is necessary. Similar to
that of previous study, present technology cannot achieve it
effectively. Whereas, GMP standards for clinical use of stem cells,
DCs and T cells have been built, and this would help promote high
quality membrane-coated NPs production ultimately.

6.3.  Displaying multifunctional protein on the cell membrane

Membrane proteins are of crucial importance to maintain cells
signaling communications and adhesion, and mediate the targeting
and drug delivery efficacy of bioinspired membrane-coated nano-
particles. Nonetheless, during the process of cell lysis, sonication,
centrifugation and extrusion, some key proteins or membrane uni-
formity would be damaged. To better target the disease-related sites,
the functional proteins may help it improve targeting ability or
enhance therapeutic efficacy, and surface engineering or modifying
cell membrane is indispensable. Chemical modification and gene
engineering are the two common protocols, but it often brings about
unknown risks or worries for clinic translation. Therefore, how to
produce quality controllable, cost-effective and reproducible is
meaningful. At present, the production of the approved immuno-
therapies including DC-based vaccines'?”'% and CAR-T cells' %' '°
may give us a hint to improve or develop novel modification methods
for achieving clinical requirements.

7. Conclusions

Bioinspired membrane coating nanoplatform, as a nano-
immunomodulator, which inherits both cell membrane properties
and nanomaterial functional versatilities for targeted immuno-
therapy, offers new therapeutic strategy for immune-related dis-
eases. Compared with liposomes or other synthetic vehicles, cell
membrane systems hold superior disease-targeting ability through
modulating the interactions between the nanoparticle surface
membrane proteins and the infiltrating immune cells, hence we
could take advantage of the payload release at the immune
microenvironment. Due to the unique biocompatibility, cell
membranes have been extended in immunologic adjuvant delivery
(e.g., CpG and alum nanoparticles), antivirus, antibacterial
infection, and autoimmune diseases therapy. Because of the fact
that the entire cell membrane is translocated onto the surface of
synthetic inner cores, it dutifully preserves the membrane bio-
functions, including cytokines binding, immune evasion and dis-
ease targeting. Moreover, cell membrane can be further
engineered to express or display our desired receptors or proteins
to enhance immune modulation and acquire a better immuno-
therapy. There is still much space for improving understanding the
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mechanisms of complexed immune microenvironment, and
advancing techniques to precisely manipulate bioinspired
membrane-based system for eliciting multiantigen antiviral and
antibacterial immune response, and alleviating autoimmune
response. Considering the intricacy and heterogeneity of the
patient-personalized immune microenvironment, and its resultant
immune cellular interactions, it would be encouragingly
rewarding yet challenging for the translation of bioinspired
membrane-coated nano-immunoregulators into clinics in the
future. Hopefully, increasing attention will be paid to the devel-
opment of bioinspired membrane-coated nanoplatform, and these
can largely promote present techniques and would provide sig-
nificant changes for clinical management of infectious diseases
and autoimmune diseases.
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