
Sequence analysis

ntHash2: recursive spaced seed hashing for nucleotide

sequences

Parham Kazemi 1,2,*, Johnathan Wong1, Vladimir Nikoli�c1, Hamid Mohamadi3,

René L. Warren 1 and Inanç Birol 1,4,*

1Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 4S6, Canada, 2Faculty of

Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada, 3Amazon Web Services Inc., Seattle, WA 98109, USA and
4Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada

*To whom correspondence should be addressed.

Associate Editor: Peter Robinson

Received on May 11, 2022; revised on July 21, 2022; editorial decision on August 12, 2022

Abstract

Motivation: Spaced seeds are robust alternatives to k-mers in analyzing nucleotide sequences with high base mis-
match rates. Hashing is also crucial for efficiently storing abundant sequence data. Here, we introduce ntHash2, a
fast algorithm for spaced seed hashing that can be integrated into various bioinformatics tools for efficient sequence
analysis with applications in genome research.

Results: ntHash2 is up to 2.1� faster at hashing various spaced seeds than the previous version and 3.8� faster than
conventional hashing algorithms with naı̈ve adaptation. Additionally, we reduced the collision rate of ntHash for lon-
ger k-mer lengths and improved the uniformity of the hash distribution by modifying the canonical hashing
mechanism.

Availability and implementation: ntHash2 is freely available online at github.com/bcgsc/ntHash under an MIT
license.

Contact: pkazemi@bcgsc.ca or ibirol@bcgsc.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Many applications in bioinformatics utilize hashing algorithms to effi-
ciently populate and query various data structures. Previously, we intro-
duced ntHash (Mohamadi et al., 2016), a recursive function for hashing
consecutive substrings of length k (k-mers) in nucleotide sequences.

With the advent of high-throughput sequencing and rise in popular-
ity of Illumina, Inc. (San Diego, USA) short-read sequencing,
k-mer-based analysis solutions have flourished. Even though they
show versatility in normalizing highly accurate sequencing data,
k-mers fail to distinguish between similar sequences that may exist due
to polymorphisms or arise from sequencing errors. Error tolerance is
particularly important today as long reads technologies offered by
Oxford Nanopore Technologies PLC (Oxford, UK) or Pacific
Biosciences of California, Inc. (Menlo Park, CA, USA) gain in popular-
ity, despite their appreciable error rates. To allow a deterministic level
of tolerance for base mismatches, k-mers can be replaced by spaced
seeds, i.e. patterns of ‘care’ and ‘do not care’ positions. Spaced seeds
are used routinely in sequence analysis applications, such as homology
search (Ma et al., 2002) and classification (Chu et al., 2020).

Few algorithms are optimized for spaced seed hashing.
Typically, users take the inefficient approach of replacing ‘do not
care’ positions with an ignored character and then employ a k-mer

hashing algorithm to hash the masked string. In this work, we devel-
oped an efficient spaced seed hashing method by leveraging the
properties of recursive hashing.

2 Methods

In ntHash (Mohamadi et al., 2016), one initially computes a 64-bit
hash value for the first k-mer in a longer sequence. Subsequent hash
values are then generated by removing the first character of the pre-
vious k-mer and including the next character in the sequence using
left rotation (rol) and XOR operations (Supplementary Section S1).
However, since rol64 xð Þ ¼ x when storing rotation outputs in 64-bit
words, this raises the issue of rotational periodicity and leads to
increased hash collision rates for higher values of k. We address this
issue in ntHash2 by replacing rol with a new function called srol,
short for split rotation. To compute the srol of a 64-bit word x, we
first split x into d1; . . . ;dn-bit sub-words (

P
di ¼ 64 and

8i; j : gcd di; dj

� �
¼ 1), rotate the sub-words separately, and finally

join the results according to their placement in x. Hence, the period
of srol is lcmðd1; . . . ; dnÞ, which makes it more suitable than rol
for bioinformatics applications with longer k-mer lengths
(Supplementary Section S2).

VC The Author(s) 2022. Published by Oxford University Press. 4812

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 38(20), 2022, 4812–4813

https://doi.org/10.1093/bioinformatics/btac564

Advance Access Publication Date: 24 August 2022

Applications Note

https://orcid.org/0000-0002-2126-5644
https://orcid.org/0000-0002-9890-2293
https://orcid.org/0000-0003-0950-7839
http://www.github.com/bcgsc/ntHash
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac564#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac564#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac564#supplementary-data
https://academic.oup.com/


To improve the uniformity of hash distribution, we define the ca-
nonical hash value of each seed as the sum of the forward-strand
and reverse-complement hashes as a replacement for the minimum
of the hashes, which was used in the previous version
(Supplementary Section S3).

The main novelty of ntHash2 is our approach to spaced seed
hashing. Let s be a spaced seed composed of w 1s (seed weight) and
k�w 0s as ‘care’ and ‘do not care’ positions, respectively. We de-
fine a block as a consecutive run of 1s flanked by 0s or the seed’s
ends. First, we store the indices of the first ‘1’ in each block and the
first ‘0’ after the block in a list B. Blocks of size one, or monomers,
are stored and encoded separately to prevent excess XOR opera-
tions. To find a hash value for the first jsj characters, we iterate over
block ranges and include the characters using srol and XOR opera-
tions with time complexity of OðwÞ. We then generate each subse-
quent hash by removing the character respective to the blocks’ first
indices and including the characters pointed by the second indices,
taking Oð Bj jÞ time. We finally include the positions stored in the list
of monomers, resulting in two XOR operations for each block and
one for each monomer. For faster computation, ntHash2 redefines
blocks as stretches of 0s if the number of predicted XOR operations
is fewer for excluding 0s from the hash value (Supplementary
Section S4).

As before, ntHash2 can perform reverse-complement hashing
without requiring extra iterations by swapping the corresponding in-
dices in the blocks. Additionally, ntHash2 can generate multiple
hashes per spaced seed, roll backwards in the input sequence
and process a stream of characters in real-time (Supplementary
Section S5).

3 Results and discussion

We evaluate ntHash2 using randomly generated sequences to show
its independence from the nature of the data. The spaced seeds used
in our experiments showcase various conditions and their impact on
ntHash2’s performance (Supplementary Section S6). As expected,
run times scale linearly with respect to the number of processed sub-
strings, and hashing seeds with more blocks and monomers takes
more time (Fig. 1a).

We note that, uniform hash distribution would reduce the prob-
ability of collisions. To show the uniformity of ntHash2, we use the
Kolmogorov–Smirnov (K-S) test (Chakravarti et al., 1967). The
histogram of 106 k-mer hashes generated by ntHash2 from random
data is statistically indistinguishable from a uniform distribution
(K-S statistic of 0.0007 and P-value of 0.62, Fig. 1b).

Finally, we compare the performance ntHash2 with competing
algorithms. The previous version (ntHash1) produces hashes for

spaced seeds by removing the ‘do not care’ positions using XORs.
CityHash is a general-purpose hash function, which we adapted to
spaced seed hashing by replacing the ‘do not care’ positions in each
substring with an asterisk. Iterative Spaced Seed Hashing (ISSH)
(Petrucci et al., 2020) is a spaced seed hash function that reuses pre-
vious hashes based on the seed’s overlapping patterns. Because
CityHash and ISSH lack canonical hashing, we also fed the reverse-
complement of the input sequences to compare run times with
ntHash2. ntHash2 outperforms ntHash1 and CityHash at spaced
seed hashing by 1.2–2.1� and 2–3.8�, respectively (Fig. 1c).
Compared to ISSH, ntHash2 is up to 1.6� faster, other than seed 2
which has sj j=2 monomers and is one of the less-optimal input seeds
for ntHash2.

Overall, ntHash2 is a versatile and scalable spaced seed hashing
algorithm for nucleotide sequences with various use cases, such as
genome assembly and k-mer counting.

Funding

This work was supported by the National Institutes of Health

[2R01HG007182-04A1]. The content of this work is solely the responsibility

of the authors and does not necessarily represent the official views of the

National Institutes of Health.

Conflict of Interest: none declared.

Data availability

Scripts for generating the random data used in the experiments are
available online at github.com/bcgsc/ntHash. Additional data used
in the extended experiments (Supplementary Section 7) are available
in the supplementary information.

References

Chakravarti,I.M. et al. (1967) Handbook of Methods of Applied Statistics.

Vol. 1. John Wiley and Sons, New York, pp. 392–394.

Chu,J. et al. (2020) Mismatch-tolerant, alignment-free sequence classification

using multiple spaced seeds and multiindex bloom filters. Proc. Natl. Acad.

Sci. USA, 117, 16961–16968.

Ma,B. et al. (2002) PatternHunter: faster and more sensitive homology search.

Bioinformatics, 18, 440–445.

Mohamadi,H. et al. (2016) ntHash: recursive nucleotide hashing.

Bioinformatics, 32, 3492–3494.

Petrucci,E. et al. (2020) Iterative spaced seed hashing: closing the gap between

spaced seed hashing and k-mer Hashing. J. Comput. Biol., 27, 223–233.

Fig. 1. (a) Linear increase of the wall clock time required by ntHash2 to generate spaced seed hashes (Seeds 1–6) from 1 million random 1 kbp sequences (one hash value per

seed). Hashing spaced seeds with more blocks and monomers takes more time. (b) Histogram of a million k�mer hashes generated by ntHash2 from random 100�
mers: Hash values ðH) are distributed uniformly in the normalized 64-bit word space (x-axis). The mean and standard deviation of the bin counts are 1000 6 31.29, which is

close to the ideal value of 1000 hashes per bin. (c) Average wall clock time elapsed by ntHash2 and similar hashing algorithms on a unique dataset (106 random 1 kbp sequen-

ces) over 3 runs. Standard deviation was negligible (<500 ms for all tools). Spaced seed patterns (Seed1–Seed6) are described in Supplementary Section S6

ntHash2 4813

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac564#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac564#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac564#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac564#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac564#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac564#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac564#supplementary-data

