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Association of an ACSL1 gene variant with
polyunsaturated fatty acids in bovine skeletal muscle
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Abstract

Background: The intramuscular fat deposition and the fatty acid profiles of beef affect meat quality. High
proportions of unsaturated fatty acids are related to beef flavor and are beneficial for the nutritional value of meat.
Moreover, a variety of clinical and epidemiologic studies showed that particularly long-chain omega-3 fatty acids
from animal sources have a positive impact on human health and disease.

Results: To screen for genetic factors affecting fatty acid profiles in beef, we initially performed a microsatellite-
based genome scan in a F2 Charolais × German Holstein resource population and identified a quantitative trait
locus (QTL) for fatty acid composition in a region on bovine chromosome 27 where previously QTL affecting
marbling score had been detected in beef cattle populations. The long-chain acyl-CoA synthetase 1 (ACSL1) gene
was identified as the most plausible functional and positional candidate gene in the QTL interval due to its direct
impact on fatty acid metabolism and its position in the QTL interval. ACSL1 is necessary for synthesis of long-chain
acyl-CoA esters, fatty acid degradation and phospholipid remodeling. We validated the genomic annotation of the
bovine ACSL1 gene by in silico comparative sequence analysis and experimental verification. Re-sequencing of the
complete coding, exon-flanking intronic sequences, 3’ untranslated region (3’UTR) and partial promoter region of
the ACSL1 gene revealed three synonymous mutations in exons 6, 7, and 20, six noncoding intronic gene variants,
six polymorphisms in the promoter region, and four variants in the 3’ UTR region. The association analysis
identified the gene variant in intron 5 of the ACSL1 gene (c.481-233A>G) to be significantly associated with the
relative content of distinct fractions and ratios of fatty acids (e.g., n-3 fatty acids, polyunsaturated, n-3 long-chain
polyunsaturated fatty acids, trans vaccenic acid) in skeletal muscle. A tentative association of the ACSL1 gene
variant with intramuscular fat content indicated that an indirect effect on fatty acid composition via modulation of
total fat content of skeletal muscle cannot be excluded.

Conclusions: The initial QTL analysis suggested the ACSL1 gene as a positional and functional candidate gene for
fatty acid composition in bovine skeletal muscle. The findings of subsequent association analyses indicate that
ACSL1 or a separate gene in close proximity might play a functional role in mediating the lipid composition of
beef.

Background
In recent decades, the continuing accumulation of
knowledge and the increasing number of reports provid-
ing evidence regarding the beneficial health effects of
polyunsaturated fatty acids (PUFA) have attracted the
attention of the medical and public community. Consu-
mers are becoming increasingly aware of the relation-
ships between diet and health and also of the

importance of the diet for general physical and mental
wellbeing [1,2]. Many clinical and epidemiologic studies
have indicated a positive impact of long-chain omega-3
fatty acids (n-3 long-chain polyunsaturated fatty acids,
n-3 LC-PUFA) on human health and disease. Beneficial
effects of n-3 LC-PUFA are described in infant develop-
ment, cancer, and cardiovascular diseases (e.g., [3-6]),
lipid and glucose metabolism (e.g., [7-10]), inflammation
(e.g., [11,12]), and more recently, in various mental ill-
nesses including depression, attention-deficit hyperactiv-
ity disorder, and dementia (e.g.,[13]). It has been
demonstrated that diets containing higher levels of n-3
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LC-PUFA [namely DHA (docosahexaenoic acid; C22:6n-
3) and EPA (eicosapentaenoic acid; C20:5n-3)], may
reduce cardiovascular risk in diabetes by inhibiting pla-
telet aggregation, improving lipid profiles, and reducing
cardiovascular mortality. Thus, n-3 LC-PUFA were par-
ticularly recommended to people with diabetes and
metabolic disorders associated to obesity [5,14]. Their
beneficial health effects may be mediated through multi-
ple distinct mechanisms, including alterations in cell
membrane composition and function, gene expression,
or eicosanoid biosynthesis [15,16]. It is known that n-3
LC-PUFA can exert important metabolic effects due to
their ability to modulate the transcription of regulatory
genes with function in lipid metabolism [17-21].
The n-3 LC-PUFA, like DHA and EPA, are particu-

larly abundant in oily cold-water fish and seafood, how-
ever, they are also present in other animal products (e.
g., ruminant meat and milk) but in lower concentra-
tions. Increases of n-3 LC-PUFA content in the human
diet can be achieved by dietary supplementation, but
there is also a potential to alter the natural fatty acid
(FA) profile in food from animals. FA composition of
meat and milk reflects both, FA biosynthesis in the
respective animal tissue and FA composition of ingested
nutrients. A recent study showed that cattle and lambs
fed grass-diet in the period before slaughter had an
increased content of beneficial FAs in meat, and that
subsequent moderate consumption of the respective
meat had resulted in increased plasma and platelet n-3
LC-PUFA concentrations in healthy human individuals
[22]. A ruminant diet on grass, which is rich in a-linole-
nic acid (C18:3n-3, ALA) compared to cereal-based con-
centrate diet can influence the FA profile of meat in the
desired direction and improve its nutritional value
[23-25]. However, the link between nutritional intake of
FAs and its subsequent concentration in skeletal muscle
is stronger in monogastric animals (pigs, poultry) than
in ruminants due to hydrogenation of dietary FAs in the
rumen (e.g., [26]).
In addition to the environmental conditions, genetic

factors may also have a substantial effect on the variabil-
ity of FA composition in animal products, especially for
ruminants [27]. Consequently, genetic selection and
breeding of animals with favorably enriched n-3 LC-
PUFA content in skeletal muscle can provide a rich
source of the desired beneficial FAs for the human diet.
Therefore, it is necessary to elucidate the molecular-
genetic background of fatty acid composition in bovine
skeletal muscle for identifying the genes or gene variants
favorable for human nutrition.
Numerous quantitative trait loci (QTL) affecting meat

quality traits in cattle like marbling and FA composition
have been identified on a variety of bovine chromo-
somes (http://www.animalgenome.org/cgi-bin/gbrowse/

bovine/), which enabled subsequent identification of
positional candidate genes, which are located in the vici-
nity of identified QTL and have putative physiological
functions regarding FA synthesis in skeletal muscle.
These candidate genes for lipid-associated traits have
been studied for their possible role regarding phenotypic
variation observed between and within breeds. DNA
variants in a variety of genes involved in lipid synthesis
and FA metabolism have been found to influence FA
composition in bovine muscle tissue and carcass (SCD1,
[28-34], SREBP-1 [29], FASN [29,34-37], FABP4 and
LXRa [38], GH [29], ACACA [39], myostatin [40,41],
leptin [33]).
However, the biochemical processes and the molecular

background affecting the genetic variability of the com-
plex polygenic trait of FA composition are not yet com-
pletely understood, particularly with regard to European
cattle breeds, because the majority of recent studies
have been performed on the very specific genetic back-
ground of Japanese Black cattle.
Therefore, the aim of this study was to identify genetic

factors affecting the variation of FA composition in
bovine skeletal muscle. For our study, we took advan-
tage of a unique F2 resource population generated from
the major European cattle breeds Charolais and German
Holstein by means of embryo transfer and foster
mothers [42]. In previous studies, this population had
been shown to segregate for two major loci (NCAPG
and MSTN) associated with prenatal and pubertal
growth, postnatal body composition and general lipid
deposition [43,44].

Results and discussion
The animals from our resource cross population were
kept and fed at standardized uniform conditions and
slaughtered at the same age. Therefore, we can exclude
exogenous factors due to differences in herd, age, feed-
ing and gender. Consequently, differences in skeletal
muscle fatness or FA composition should be due to dif-
ferences in endogenous factors of the animals like the
genetic background. The primary focus of our study was
to discover phenotypic differences of FA composition in
skeletal muscle between the individual animals of the
resource population due to genetic variation.

QTL analysis and identification of ACSL1 as a positional
and functional candidate gene
An initial QTL analysis in the Charolais × German Hol-
stein cross population identified a QTL for FA composi-
tion on bovine chromosome 27 (BTA27) as exemplified
for n-3 LC-PUFA in Figure 1. In our study, the trait n-3
LC-PUFA represents n-3 PUFA exceeding a carbon
chain length of C18. The QTL interval corresponded to
a region, where previously QTL affecting marbling had
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been detected in a Bos indicus × Bos taurus cross and
two commercial US Angus populations [45,46]. The
QTL explained 20.5% variance in the model calculated
as the relative reduction of the residual variance due to
including the QTL in the model [47].
Furthermore, QTL for FA composition, myristic acid,

(C14:0) and oleic acid (C18:1) content, have been
reported in this chromosomal region in a Jersey ×
Limousin back-cross cattle population [48]. In our
study, the QTL interval affecting FA composition in ske-
letal muscle displayed a peak between 15 and 16 cM on
our genetic map of BTA27 corresponding to a genomic
position at approximately 16 Mb on the current bovine
genome assembly of the chromosome (NCBI mapviewer,
build 5.2, http://www.ncbi.nlm.nih.gov/projects/map-
view/map_search.cgi?taxid = 9913).
Based on its chromosomal position and integration

in biochemical pathways of lipid metabolism, we iden-
tified the acyl-CoA synthetase long-chain family mem-
ber 1 (ACSL1) gene as the most plausible positional
and functional candidate gene underlying the QTL
with effect on FA composition on BTA27. The ACSL1
gene is located exactly under the peak of the QTL
interval. Its protein, the ACSL1 enzyme, is known to
catalyze the first step of activation of long-chain (LC)
FAs by converting them into LC acyl CoA thioesters
for channeling towards chain elongation, triacylglycer-
ide synthesis or FA oxidation [49]. ACSL1 has a key
function in both the synthesis of cellular lipids and FA
degradation, and is also necessary for phospholipid
remodeling [50]. Due to its physiological biochemical
function, it can be suggested that ACSL1 plays an
important role in lipid metabolism, insulin resistance
and obesity. Recently, a study in humans reported that
a gene variant located in intron 1 of the ACSL1 gene

can influence the metabolic syndrome risk (character-
ized by insulin resistance, dyslipidaemia, abdominal
obesity and hypertension associated to type 2 diabetes),
and that this ACSL1 genotype-dependent effect can be
modulated by dietary PUFA intake suggesting a gene-
nutrient interaction [51].

Structure analysis and screening for polymorphisms of
the ACSL1 gene
Although sequences for the ACSL1 gene and protein
were deposited in the bovine genome databases, we
found inconsistencies regarding the structural annota-
tion of the gene in the bovine genome assemblies. A
correct and conclusive structural gene annotation is a
prerequisite for subsequent screening for gene variants
and analysis of their functional relevance. Therefore, the
first step of our study focused on the experimental con-
firmation of the structure of the ACSL1 gene on the
genomic and cDNA level. Experimental verification by
RT-PCR, re-sequencing and comparative sequence ana-
lyses confirmed the genomic annotation of the bovine
ACSL1 gene in the alternate UMD_3.1 genome assembly
(Figure 2), which is in contrast to the reference genome
assembly Btau4.2 (http://www.ncbi.nlm.nih.gov/projects/
mapview/map_search.cgi?taxid = 9913).
Re-sequencing of DNA from pools and individuals dif-

fering in IMF content and Δ9 desaturase activity index
included a total of 8.5 Kb of genomic DNA. Compara-
tive sequence analysis revealed a total of 19 single
nucleotide polymorphisms (SNPs) in the targeted gene
regions (Table 1). Three synonymous exonic (exons 6, 7
and 20), six intronic (introns 5, 6, 9, 13, 16 and 20), six
SNPs in the promoter region and four SNPs in the
3’UTR of the bovine ACSL1 gene were detected (Figure
2, Table 1). Eleven out of these SNPs identified in our

Figure 1 QTL for the relative content of n-3 long chain PUFA (n-3 LC PUFA) on BTA27. Solid boxes: ACSL1 c.481-233A>G effect not
included in the model, open boxes: ACSL1 c.481-233A>G included in the model as a fixed effect. LRT significance threshold is indicated by a
dashed line (a = 0.05: 7.23).
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study were novel and not previously represented in the
SNP database (version 133) at NCBI.

Association of ACSL1 gene variants with PUFA profile in
skeletal muscle
The association analysis included all exonic and intronic
ACSL1 gene variants (except for the one in intron 16)
and one SNP in the promoter region, which were iden-
tified by re-sequencing and validated by genotyping in

the Charolais × German Holstein resource population.
The nine SNPs analyzed in the Holstein × Charolais
cross bred population showed a minor allele frequency
≥ 0.2 in the analyzed data set (Table 1). Intragenic link-
age disequilibrium (LD) analysis revealed a strong LD
between the SNPs in intron 20, exon 20, intron 13 and
intron 9 (r2 >0.9), whereas there was only a moderate
LD (0.5 < r2 <0.6) between these SNPs and the one in
intron 5.

Figure 2 Structure of the bovine ACSL1 gene and detection of polymorphic sites. Reference mRNA sequence: NM_001076085.1. SNPs
included in the association analysis are bold framed.

Table 1 Identified SNPs within the ACSL1 locus and positions on the bovine genome assemblies

SNP ID
relative to
coding

sequence*

Gene
region

Variation relative to
reference sequence

Position on
NW_001494406.2

(Btau4.2)

Position on
NW_003104605.1

(UMD_3.1)

Allele
frequency

SNP accession number
(dbSNP, NCBI ss#)

c.-569_570del AC Promoter Indel TG 1918795 389858 Not analyzed ss469271165

c.-224_225del
GG

Promoter Indel (C)5-7 1918451 389615 Not analyzed ss469271166

c.-196G>A Promoter C>T 1918422 3894586 Not analyzed ss469271167

c.-167G>C Promoter C>G 1918393 3894557 Not analyzed ss469271168

c.-151G>C Promoter C>G 1918377 3894541 Not analyzed ss469271169

c.-122G>A Promoter C>T 1918348 3894512 0.67 (G)/0.33 (A) ss469271170

c.481-233A>G Intron 5 T>C 1876389 3852106 0.73 (A)/0.27 (G) ss469271171

c.516C>G Exon 6 G>C 1876121 3852284 0.57 (C)/0.43 (G) ss469271172

c.580+114C>G Intron 6 G>C 1875943 3852552 0.33 (C)/0.67 (G) ss469271173

c.584A>G Exon 7 T>C 1875838 3852001 0.07 (G)/0.94 (A) ss469271174

c.845-58T>G Intron 9 A>C 1871919 3848082 0.75 (T)/0.21 (G)
5

ss469271175

c.1267-100C>T Intron 13 G>A 1864210 3840373 0.24 (T)/0.76 (C) ss469271176

c.1525-131C>T Intron 16 G>A 1859370 3835533 Not analyzed ss469271177

c.1938T>G Exon 20 A>C Not annotated 3831586 0.75 (T)/0.25 (G) ss469271178

c.1959+56G>A Intron 20 C>T Not annotated 3831509 0.24 (A)/0.76 (G) ss469271179

c.2099+1023del
A

3’UTR Indel A 1853870 3829944 Not analyzed ss469271180

c.2099+1030
C>A

3’UTR C>A 1853863 3829937 Not analyzed ss469271181

c.2099+1032
A>C

3’UTR A>C 1853861 3829935 Not analyzed ss469271182

c.2099+1034
C>A

3’UTR C>A 1853859 3829933 Not analyzed ss469271183

*SNP nomenclature according to the translation start codon ATG, reference sequence NM_001076085.1. SNPs marked in bold were included in the association
analysis. Genomic positions of the SNPs were inferred from the current versions of the refererence and alternative bovine genome assemblies Btau4.2 and
UMD_3.1 available at NCBI (http://www.ncbi.nlm.nih.gov/genome/guide/cow/index.html).
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The association analysis with intragenic ACSL1 SNPs
revealed that the SNP located in intron 5 of the ACSL1
gene (c.481-233A>G) showed the most significant asso-
ciations with FA composition in skeletal muscle. The
gene variant ACSL1 c.481-233A>G was significantly
associated with the relative content of distinct fractions
of unsaturated FAs, n-3 FA, PUFA, n-3 LC-PUFA and
docosapentaenoic fatty acid (DPA) as well as with the
absolute content of total FA, MUFA, and trans vaccenic
acid (C18:1trans-11) in M. longissimus dorsi (Table 2).
The results revealed that the c.481-233A allele of this
gene variant is strongly associated with a higher relative
level of n-3 FA, PUFA, DPA, and n-3 LC-PUFA. In con-
trast, the c.481-233A allele showed a decreasing effect
on content of C18:1trans-11, total FA, and MUFA, and
tended to be associated with a lower IMF content in
skeletal muscle compared to the c.481-233G allele. The
c.481-233A allele had a higher freqeuncy (73%) in the
analyzed population compared to the alternative allele
(27%).
Although the c.481-233A allele tends to be associated

with a slightly lower total IMF content, the relative con-
tent of the FA fractions, n-3 FA, PUFA, DPA, and n-3
LC-PUFA, known to exert health-beneficial effects in
humans is highly increased indicating a higher nutri-
tional value for beef originating from animals with the
favorable ACSL1 allele.

The strongest allelic effect of the ACSL1 c.481-
233A>G locus was observed for n-3 FA content. This
trait also includes the polyunsaturated C18 fatty acids,
a-linolenic acid (ALA, C18:3n-3) and stearidonic acid
(C18:4n-3). The n-3-FA content is different to the trait
n-3 LC-PUFA, which exclusively comprises n-3 FA with
a chain length > C18. As an essential FA, ALA cannot
be synthesized by mammalian species and must be
obtained from the diet. The ALA concentration in skele-
tal muscle, therefore, could be linked to the dietary
absorption. However, the standardized concentrate-
based feeding regimen in our study provides uniform
feeding conditions for the animals. ALA is the precursor
for the n-3 FA pathway [52] by serving as parent FA for
the synthesis of stearidonic acid and n-3 LC-PUFA
(EPA, DPA, and DHA) via sequential steps of desatura-
tion and/or chain-elongation. The association of ACSL1
c.481-233A>G with DPA and with n-3 LC-PUFA (con-
taining n-3 FA exceeding a chain length of C18) could
suggest that a substantial proportion of their precursor
ALA might be activated and channeled to chain elonga-
tion processes.
The trait PUFA comprises both FA types, the n-6 and

n-3 FA. The ACSL1 c.481-233A>G variant showed no
significant impact on n-6 FA content and thus, its asso-
ciation with PUFA could be due to its effect on the
trait’s component n-3 FA.

Table 2 Association of the SNP in intron 5 of the ACSL1 gene (c.481-233A>G) with variation in intramuscular fatty acid
composition and fat content

Model without IMF as covariate Model with IMF as covariate

Trait* LRT p-
value

Effect allele
A

SE Effect allele
G

SE Var [%]
**

LRT p-
value

Effect allele
A

SE Effect allele
G

SE

Total FA [mg]*& 6.2 0.0130 3.70 0.07 3.88 0.07 3.8 0.0507

MUFA [mg]*& 5.9 0.0154 3.29 0.08 3.48 0.09 2.9 0.0874

n-3 FA [%]*# 9.7 0.0018a 0.16 0.05 0.01 0.06 11.4 5.8 0.0159 0.42 0.04 0.36 0.04

PUFA [%]*# 7.1 0.0079b 1.12 0.05 0.98 0.06 3.5 3.9 0.0477

n-3 LC PUFA [%]# 6.7 0.0099b 0.24 0.03 0.16 0.04 3.4 3.5 0.0628

C18:1trans-11 [mg]
*&

10.5 0.0012a 1.31 0.10 1.63 0.12 6.5 8.1 0.0045a 0.86 0.09 1.07 0.10

C22:5n-3 [%]# 7.2 0.0071
b

0.16 0.02 0.11 0.03 3.6 5.9 0.0150 0.27 0.02 0.23 0.02

PUFA/SFA* 7.3 0.0069b -0.79 0.06 -0.94 0.07 3.6 4.2 0.0407

P/S* 6.7 0.0099b -1.02 0.05 -1.15 0.06 3.2 3.2 0.0758

LA/ALA* 4.9 0.0265 1.03 0.03 0.97 0.03 1.9 0.1720

IMF [%] 3.1 0.0776 1.11 0.18 1.42 0.21 1.7

*Trait data log-transformed, &absolute content of fatty acids (mg/100 g of skeletal muscle), #relative content of fatty acids (percentage of the respective fatty acid
fraction relative to total fatty acid amount)

LTR: likelihood ratio test, p: significancy of allelic effects, Var: variance explained, SE: standard error, aq-value <0.05, bq-value <0.1, **% variance in the model
calculated as the relative reduction of the residual variance due to including the SNP in the model [47].

Allelic effects of the ACSL1 SNP (c.481-233A>G) on different FA fractions: n-3 fatty acids (n-3 FA = C18:3n-3 + C18:4n-3 + C20:5n-3 + C22:5n-3 + C22:6n-3), poly-
unsaturated fatty acids (PUFA = n-3 FA + n-6 FA [C18:2n-6 + C18:3n-6 + C20:2n-6 + C20:3n-6 + C20:4n-6 + C22:2n-6 + C22:4n-6]), n-3 long-chain PUFA (n-3 LC-
PUFA = C20:3n-3 + C22:6n-3 + C22:5n-3 + C20:5n-3), total FA, mono-unsaturated fatty acids (MUFA), docosapentaenoic fatty acid (DPA, C22:5n-3), trans vaccenic
acid (TVA, C18:1trans-11) and the ratios: PUFA/SFA (saturated fatty acids = C12:0 + C14:0 + C16:0 + C17:0 + C18:0 + C20:0 + C24:0), P/S (C18:2 n-6 + C18:3 n-3/
C14:0 + C16:0 + C18:0), LA/ALA (C18:2 n-6/C18:3 n-3), and the intramuscular fat content (IMF).
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Interestingly, the ACSL1 gene variant c.481-233A>G
that affected FA profiles in bovine skeletal muscle had
no significant influence on the ratio n-6/n-3 FA in this
tissue. Considering the standardized uniform feeding
regimen in our study, this result could support the find-
ings from other studies, which indicate that the n-6/n-3
FA ratio may be affected more by feeding than by genet-
ics [53,54]. In contrast, we found the ACSL1 gene var-
iant c.481-233A>G to be associated with the LA/ALA
(C18:2 n-6/C18:3 n-3) ratio. Furthermore, we observed
significant associations of this gene variant with the
ratios PUFA/SFA and P/S in our study, both represent-
ing characteristics of meat quality and widely used to
evaluate the nutritional value of meat fat content. Again,
the c.481-233A allele revealed an increasing effect on
these ratios compared to the c.481-233G allele.
In contrast to the increasing effect associated with the

c.481-233A allele on the relative content of the FA frac-
tions, n-3 FA, PUFA, DPA, and n-3 LC-PUFA, and the
PUFA/SFA and P/S ratios, we observed a decreasing
effect of this allele on the absolute content of the trans
vaccenic acid C18:1trans-11 in skeletal muscle in our
study. This effect was in concert with the associated
parallel decrease in total FA and MUFA content in the
tissue. The effect on C18:1trans-11 is of particular inter-
est, because trans vaccenic acid is a precursor of conju-
gated linoleic acid (CLAcis-9, trans-11) generation.
CLAs are believed to have several important physiologi-
cal functions, including anti-carcinogenic, anti-athero-
genic, immunomodulating, growth and lean body mass
promoting effects [55]. Thus, targeted selection of cattle
carrying the homozygous c.481-233A/c.481-233A geno-
type in the ACSL1 gene would possibly be accompanied
by detrimental effects on the CLA profile in skeletal
muscle.
There is the open question, whether the significant

effects of the ACSL1 gene variant c.481-233A>G on FA
composition were due to general fatness differences in
skeletal muscle, which is supported by several QTL for
marbling in the targeted chromosomal region, or
whether the effects were associated with the ACSL1
gene variant c.481-233A>G. Alternatively, the effects of
this gene variant might modulate the accumulation of
specific FAs in skeletal muscle. To address this issue, we
extended our association analysis and fitted IMF as a
covariate in the model. When adjusting for IMF (Table
2), the association of the ACSL1 gene variant c.481-
233A>G with absolute content of trans vaccenic acid in
skeletal muscle remained significant, whereas the other
associations dropped below a stringent threshold of sta-
tistical significance (Bonferroni q < 0.1) and were only
tentatively significant (e.g., for relative content of n-3
FA and DPA). Thus, we cannot exclude that variants in
the bovine ACSL1 gene may exert a substantial effect on

total intramuscular fat content, which indirectly affects
intramuscular composition of specific FA fractions.
However, as the results for trans vaccenic acid demon-
strate, it is suggested that there are also direct effects
associated with the ACSL1 gene variant c.481-233A>G
on intramuscular content of specific FAs.

Conclusions
Due to our observation that the c.481-233A>G SNP in
intron 5 of the ACSL1 gene cannot fully explain the
QTL variance (Figure 1), we conclude that this gene
variant is presumably not causal, but in LD to another
not yet detected polymorphism in its close vicinity
affecting FA composition in bovine skeletal muscle. Pre-
sumably, these effects are not exclusively the conse-
quence of variation in intramuscular fat content, but
due to effects on specific FA. Prior to selective breeding
of cattle carrying the desired genotype of the ACSL1
gene variant c.481-233A>G in order to produce meat
with specific FA profiles, the association between c.481-
233A>G and FA composition has to be confirmed in
the particular target cattle population.
Nevertheless, our results indicate that the ACSL1 gene

might play a functional role in mediating the FA com-
position in bovine skeletal muscle and provide a basis to
further elucidate the function of the ACSL1 gene and its
coordinated network with genes integrated in FA meta-
bolism to dissect the molecular background of lipid
composition of beef.

Methods
Animals and phenotypes
The generation of the Charolais × German Holstein
resource cross population (SEGFAM), details regarding
feeding and housing of the animals analyzed in our
study, have been previously described [43,44]. The ani-
mals were kept under standardized environmental and
feeding conditions in barn facilities at the Leibniz Insti-
tute for Farm Animal Biology (FBN). After birth, the
calves were fed a milk/replacer/hay/concentrate diet ad
libitum until day 121. Thereafter, the animals received a
feed ration of concentrates and chaffed hay with a hay
to concentrate ratio of 1:3 and an energy content of
12.7 MJ ME/kg dry matter fed ad libitum until slaugh-
ter. The animals were kept in a tight stall barn with
individual daily feed recording. At the age of 18 months
(547 days of age), the male animals were slaughtered,
and a detailed dissection of the carcass was performed.
A wide range of phenotypic data related to beef produc-
tion and beef quality including FA composition were
recorded including FA composition of selected skeletal
muscles.
Analysis of FA composition of lipids involving 26 dif-

ferent FAs in skeletal muscle (M. longissimus dorsi) was
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determined for 156 F2 bulls using capillary gas chroma-
tography as described previously [56]. The absolute
amount of FAs in skeletal muscle was determined from
2 g of skeletal muscle and calculated as mg/100 g tissue.
The relative content of individual fatty acids was calcu-
lated as percentage of the total amount of FAs extracted.
Based on the data obtained for individual fatty acids,
sums of specific fatty acid fractions were calculated:
saturated fatty acids (SFA), unsaturated fatty acids
(UFA), monounsaturated fatty acids (MUFA), trans fatty
acids (TFA), n-3 fatty acids (n-3 FA), n-6 fatty acids (n-
6 FA), polyunsaturated fatty acids (PUFA) and n-3 long-
chain PUFA (n-3 LC-PUFA). Furthermore, the ratios n-
6/n-3 FA, MUFA/SFA, PUFA/SFA, P/S and LA/ALA as
well as four different Δ9 desaturase indices [57] were
calculated. Intramuscular fat (IMF) content (percentage
in 100 g tissue) was ascertained in M. longissimus dorsi
by FoodScan Lab (FOSS) as described previously [56].
The phenotypic traits for FA composition of IMF
included in our study are summarized in Table 3.

QTL analysis
An initial QTL scan comprising 244 microsatellite mar-
kers [58] for variation of FA composition in skeletal
muscle had pinpointed a region on bovine chromosome
27 (BTA27) with effect on n-3 PUFA content in skeletal
muscle. Five microsatellite markers located on BTA27
(BM3507, RM209, BMS689, BM1857, BM203) had been
genotyped in all 733 P0, F1, and F2 individuals of the
Charolais × German Holstein resource population.
The respective QTL interval pointed to a chromoso-

mal region on BTA27 harboring the acyl-CoA synthetase
long-chain family member 1 (ACSL1) gene according to
the sequence assembly of the chromosome. Therefore,
in a second step of our analysis, nine intragenic ACSL1
SNPs (Figure 1) were added to the initial marker set. All
microsatellite markers and all genotyped ACSL1 SNPs
were included to calculate a genetic map using CRIMAP
Version 2.50 [59], incorporating modifications by Ian
Evans and Jill Maddox (University of Melbourne). The
resulting genetic map was applied in the QTL analyses
with a variance component QTL model as implemented
in Qxpak [60] and essentially as described previously
[43]:

y = Fb + Zu + Qg + e;

where y is a vector of phenotypes, b is a vector of the
fixed effects (slaughter year, NCAPG I442M genotype),
u is the vector of individual infinitesimal polygenic
effects, g is a vector of the additive QTL effects not
fixed within founder breeds; F, Z and Q represent the
incidence matrices for the fixed, polygenic and the QTL
effect, respectively, and e is the vector of random

residuals. An MCMC algorithm was used to calculate
identity-by-descent probabilities as implemented in
Qxpak. The NCAPG I442M mutation was included in
the model, because previous analyses had shown a
major effect of the mutation on carcass lipid deposition
and growth in the resource population [44].
Statistical significance of the QTL analyses was tested

by a likelihood-ratio test (LRT). Significance thresholds
for the LRT were determined according to [61], consid-
ering one chromosome with a length of 0.6 M and an
average marker density of 0.1 M. The significance
thresholds for false positive results with a = 0.05 and a
= 0.01 correspond to LRT values > 7.2 and LRT > 10.2,
respectively.

Structural analysis of the ACSL1 gene
The coding sequence of the bovine ACSL1 gene is
represented by the reference mRNA sequence
NM_001076085.1, which spans 3690 bp and is located
on BTA27.
At the beginning of our study, the previous bovine gen-

ome assembly Btau4.0 and the current reference assembly
Btau4.2 available at NCBI (http://blast.ncbi.nlm.nih.gov/
Blast.cgi?PAGE_TYPE=BlastSearch&PROG_DEF=-
blastn&BLAST_PROG_DEF=megaBlast&SHOW_DE-
FAULTS=on&BLAST_SPEC=OGP__9913__10708, [62])
annotated the bovine ACSL1 gene with a total of 19 pro-
tein-coding exons. In silico sequence analysis of the
respective mRNA and protein sequences
(NM_001076085.1 and NP_001069553) revealed that parts
of the sequences could not be aligned to the bovine gen-
ome reference assembly Btau4.2. This indicated an incom-
plete annotation of the bovine ACSL1 gene. However, in
the alternative bovine genome assembly Bos_tauru-
s_UMD3.1 (ftp://ftp.cbcb.umd.edu/pub/data/assembly/
Bos_taurus/Bos_taurus_UMD_3.1/, [63]) integrated into
the recent bovine genome assembly, Build 5.2, at NCBI
(http://www.ncbi.nlm.nih.gov/projects/mapview/map_-
search.cgi?taxid=9913), the bovine ACSL1 gene was anno-
tated with a total of 21 protein-coding exons, which is also
in agreement with the earlier bovine genome assembly,
version Btau3.1. Comparative sequence analysis between
gene and protein sequences of the bovine ACSL1 gene and
those of the orthologous human counterparts
(NM_001995.2 and NP_001986.2) and the current human
genome assembly Hsa37.2 (http://blast.ncbi.nlm.nih.gov/
Blast.cgi?PAGE_TYPE=BlastSearch&PROG_DEF=-
blastn&BLAST_PROG_DEF=megaBlast&SHOW_DE-
FAULTS=on&SHOW_DEFAULTS=on&BLAST_SPE-
C=OGP__9606__9558) showed that the mRNA and amino
acid sequences of both species display a high similarity
(88% and 91% identity, respectively), which supported the
annotation of the current Bos_taurus_UMD3.1 and the
earlier Btau3.1 assemblies.
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Table 3 Phenotypic traits characterizing fatty acid composition in skeletal muscle

Trivial name Abbreviation Mean of absolute
content (mg/100 g)

SD Mean of relative
content (%)

SD

Lauric acid C12:0 2.83* 1.80 0.10 0.04

Myristoleic acid C14:1cis-9 18.53 17.85 0.62 0.31

Myristic acid C14:0 92.12* 65.50 3.10* 0.66

Palmitoleic acid C16:1cis-9 109.33* 76.59 3.73 0.83

Palmitic acid C16:0 823.94* 490.88 28.77 1.86

Heptadecenoic acid C17:1cis-10 23.48* 12.51 0.85 0.18

Margaric acid C17:0 34.94* 18.13 1.26* 0.25

Stearic acid C18:0 373.40* 199.95 4.96* 1.80

Oleic acid C18:1cis-9 981.37* 578.52 34.35 2.60

Vaccenic acid C18:1cis-11 43.60* 30.60 13.41 1.65

trans Vaccenic acid C18:1trans-11 28.40* 20.18 1.52* 0.33

Linoleic acid (LA) C18:2n-6 121.45* 29.94 0.99* 0.43

Linolelaidic acid C18:2trans-9, trans-12 4.11* 3.39 0.11 0.13

Conjugated linoleic acid CLAcis-9, trans-11 5.99* 4.73 0.20 0.09

a-Linolenic acid (ALA) C18:3n-3 12.99 4.97 0.50* 0.14

Stearidonic acid (SDA) C18:4n-3 2.70 3.36 0.15 0.10

Arachidic acid C20:0 2.94 1.90 0.11 0.06

Eisosenoic acid C20:1n-9 4.21* 2.80 0.35 0.15

Eisosatrienoic acid (ETE) C20:3n-3 8.15* 1.86 0.11* 0.05

Arachidonic acid (AA) C20:4n-6 33.89 7.60 1.48* 0.74

Timnodonic acid, EPA C20:5n-3 2.41* 0.70 0.14* 0.03

Erucic acid C22:1n-9 0.46* 0.24 0.02* 0.01

Adrenic acid C22:4n-6 6.20 1.53 0.28 0.13

Clupadonic acid, DPA C22:5n-3 6.51* 1.34 0.26* 0.11

Cervonic acid, DHA C22:6n-3 0.92 0.45 0.04 0.03

Lignoceric acid C24:0 0.82 0.44 0.03* 0.02

∑ Saturated fatty acids SFA 1352.06* 777.93 47.55 2.38

∑ Unsaturated fatty acids UFA 1463.62* 777.61 52.45 2.38

∑ Polyunsaturated fatty acids PUFA 208.34* 44.62 8.57* 3.02

∑ Monounsaturated fatty acids MUFA 1208.85* 726.67 42.19* 3.16

∑ trans fatty acids TFA 43.92* 24.70 1.58 0.47

∑ n-3 fatty acids n-3FA 24.75 6.42 1.01* 0.35

∑ n-3 long-chain PUFA n-3 LCPUFA 9.58 2.21 0.42* 0.20

∑ n-6 fatty acids n-6FA 167.28* 34.88 6.94 2.64

∑ n-6 long-chain PUFA n-6 LCPUFA 40.09 8.62 1.78 0.85

∑ Total fatty acids FA 2743.81* 1524.08

Ratio n-6/n-3 n-6/n-3 6.96 1.42

Ratio MUFA/SFA MUFA/SFA 0.89 0.09

Ratio PUFA/SFA PUFA/SFA 0.18* 0.07

Ratio P/S P/S 0.12* 0.05

Ratio C18:2n-6/C18:3n-3 LA/ALA 9.86* 2.51

Δ9-desaturase index MUFA Δ9MUFA 46.39 2.56

Δ9-desaturase index C14 Δ9C14 16.31 6.65

Δ9-desaturase index C16 Δ9C16 11.40 2.08

Δ9-desaturase index C18 Δ9C18 72.16 3.34

Intramuscular fat content IMF 2.56 1.13

SD: standard deviation

*Data displaying distributions significantly different from normality (p < 0.01) were log-transformed.

SFA = C12:0 + C14:0 + C16:0 + C17:0 + C18:0 + C20:0 + C24:0

MUFA = C14:1 + C16:1 + C17:1 + C18:1 + C20:1 + C22:1 + C18:1cis-9 + C18:1cis-11 + C18:1trans-11

UFA = MUFA + PUFA
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An experimental confirmation of the bovine ACSL1
gene structure was required because of the inconsistent
annotation of the ACSL1 gene. Therefore, fragments
completely covering the coding region of the gene and
the 5’ und 3’ UTRs, including the respective critical
gene fragments with discordant structure annotation,
were validated in our study. Exon-flanking primers
(Table 4) were derived from the sequence contigs
NW_001494406.2 and NW_930554.1 and used for PCR-
amplification with genomic DNA and cDNA. Genomic
DNA was isolated from blood leucocytes using standard
methods. The cDNA was prepared from liver tissue of a
lactating cow. Total RNA extraction and cDNA synth-
esis by reverse transcription were performed as
described recently [43]. To amplify cDNA fragments of
the ACSL1 gene, PCR was performed with cDNA using
gene-fragment specific primers (Table 4). The PCR-
amplicons were isolated from agarose gels using the
NucleoSpin® Extract II kit (Macherey & Nagel) and
sequenced with PCR primers using BigDye© sequencing
chemistry on a capillary sequencer (MEGABACE, GE
Healthcare).

Screening for polymorphisms in the ACSL1 gene
Screening for polymorphisms was carried out by re-
sequencing and covered the complete coding sequence,
exon-flanking intronic regions, the 5’ and 3’ UTRs and
724 bp of the promoter of the ACSL1 gene. DNA pri-
mer pairs for PCR amplification and sequencing were
designed based on genomic contig sequences
(NW_001494406.2 and NW_930554.1) and the mRNA
sequence (NM_001076085.1), respectively (Table 4).
Four genomic DNA pools consisting of selected ani-

mals from the Charolais × Holstein resource population
differing in their intramuscular fat content and index of
delta 9-desaturase were established and subjected to
screening for gene variants by comparative re-sequen-
cing. The IMF pools contained DNA from sampling
time- and pedigree-matched animals with high (n = 5,
4.93 ± 1.73%) and low (n = 7, 1.78 ± 0.21%) IMF. The
Δ9 desaturase index pools consisted of DNA from

sampling time- and pedigree-matched animals with a
high (n = 7; 50.87 ± 0.89) or low (n = 6, 43.86 ± 0.95)
Δ9 desaturase index. Furthermore, two genomic DNA
samples from control individuals and two individual
DNA samples originating from extreme animals display-
ing the lowest (1.63%) and highest (6.09%) IMF were
included to validate the results received from the pools.
Genomic DNA was isolated from blood leucocytes

using standard methods. PCR with exon-flanking pri-
mers (Table 4) was performed with a total of 60 ng
genomic DNA as described above. The generated PCR
products were purified using the peqGOLD Cycle-Pure
Kit (PEQLAB) according to the manufacturer’s instruc-
tions and sequenced. Sequencing was performed on a
capillary sequencer (MEGABACE, GE Healthcare) with
primers used for targeted PCR amplification. To identify
variable DNA positions, the sequences were analyzed
meticulously by visual inspection of the sequencing pro-
files from DNA-pools and individuals’ DNA and by
sequence alignment to the reference cDNA sequence
(NM_001076085.1) as well as to the respective bovine
genome sequences. All SNPs identified by sequencing of
DNA pools were verified by single sample re-
sequencing.

SNP Genotyping
Out of the identified 19 ACSL1 SNPs (see Table 3, Fig-
ure 1), nine were genotyped in the Charolais × German
Holstein resource population: Two exonic SNPs
(c.516C>G, c.1938T>G) and five intronic SNPs (c.481-
233A>G, c.580+114C>G, c.845-58T>G, c.1267-100C>T,
c.1959+56G>A) were genotyped on an Illumina Beadsta-
tion [64] as part of a targeted 384 SNP GoldenGate
assay. The SNP in exon 7 (c.584A>G) was analyzed
using a PCR-RFLP assay with primers for amplification
of the targeted region (Table 4) and the restriction
enzyme SacI (Fermentas). The promoter SNP c.-
122G>A was genotyped by a Tetra-ARMS PCR assay
[65] and validated by direct sequencing. The respective
primers are given in Table 4. The NCAPG I442M muta-
tion was genotyped by PCR-RFLP [43].

Total FA = sum of all fatty acids determined

n-3FA = C18:3n-3 + C18:4n-3 + C20:3n-3 + C20:5n-3 + C22:5n-3 + C22:6n-3

n-6FA = C18:2n-6 + C18:3n-6 + C20:2n-6 + C20:3n-6 + C20:4n-6 + C22:2n-6 + C22:4n-6

PUFA = n-3FA + n-6FA

n-3 LC-PUFA = C20:3n-3 + C22:6n-3 + C22:5n-3 + C20:5n-3

TFA = C18:1trans-11 + C18:2trans-9, trans-12

LA/ALA = C18:2n-6/C18:3n-3

P/S = C18:2 n-6 + C18:3 n-3/C14:0 + C16:0 + C18:0

Δ9MUFA = [(C14:1 + C16:1 + C17:1 + C18:1cis-9 + CLAcis-9, trans-11)/(C14:1 + C16:1 + C17:1 + C18:1cis-9 +

C18:1trans-11 + C14:0 + C16:0 + C17:0 + C18:0 + CLAcis-9, trans-11)] × 100

Δ9C14 = [C14:1/(C14:0 + C14:1)] × 100

Δ9C16 = [C16:1/(C16:0 + C16:1)] × 100

Δ9C18 = [(C18:1cis-9 + CLAcis-9, trans-11/(C18:0 + C18:1cis-9 + C18:1trans-11 + CLAcis-9, trans-11)] × 100
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Table 4 Primer sequences for the bovine ACSL1 gene applied for annotation confirmation, screening for
polymorphisms and genotyping

Primer Sequence (5’ ® 3’) Gene region Amplicon
(bp)

Position in reference
sequence

AccNo. of reference
sequence

Application*

ACSL1_F1
ACSL1_R1

CCGAGCCCCAACCGAGAC
TGGACGCTGTTCTTGAGTGGTG

intron 1
-promoter

844 1918181 - 1918198
1919003 - 1919024

NW_001494406.2 SNP

ACSL1_E1_F3
ACSL1_E1SF

GACCCGAGCCCCAACCGAG
GTTGAGCCACCACAATTTACTC

intron 1
-promoter

497 1918178 - 1918196
1918674 - 1918653

NW_001494406.2 SNP

ACSL1_E1SR
ACSL1_R1

GGACTGCCCTGGATTTCACAAG
TGGACGCTGTTCTTGAGTGGTG

promoter 413 1918612 - 1918633
1919003 - 1919024

NW_001494406.2 SNP

ACSL1_F2
ACSL1_R2

TCGCTGCTGAAGTCCTGTCTG
GCTCTAATGCCCCCGTTGATG

exon 2 501 1897290 - 1897310
1897770 - 1897790

NW_001494406.2 SNP

ACSL1_F3
ACSL1_R3

TTGCGTGGGAGAGAGTTGTG
TCAGGTGGAGGATTTATGTCAG

exon 3 384 1882758 - 1882777
1883120 - 1883141

NW_001494406.2 SNP

ACSL1_F4
ACSL1_R4

GCATCCACACTCCATAGAAAC
AATAAAGAAGCAAAACTCAGACC

exon 4 345 1881998 - 1882018
1882320 - 1882342

NW_001494406.2 SNP

ACSL1_F5
ACSL1_R5

ATGAAAGGGAAAAGTGAAAGTG
CTTGAGTTGGACCTGATGCTG

exon 5 457 1878288 - 1878309
1878724 - 1878744

NW_001494406.2 SNP

ACSL1_F6
ACSL1_R6

CGGCTGGAAGTAAAGAGACAC
TTGTGTTCTTCATCCTCCTTTC

exon 6 574 1875840 - 1875860
1876392 - 1876413

NW_001494406.2 SNP

ACSL1_F7
ACSL1_R7

GTTCTCTTTTACAGGACCAG
CAGGGATGCTTTACTTACTC

exon 7 600 1875542 - 1875561
1876122 - 1876141

NW_001494406.2 SNP

ACSL1_F8_9
ACSL1_R8_9

TGGGTGATGTAAATGTGTGAGG
ATGATAGGAATGGCAGTGGAGAC

exons
8-9

750 1872567 - 1872588
1873294 - 1873316

NW_001494406.2 SNP

ACSL1_F10
ACSL1_R10

ATCTGTATTTCAGGTACTGTTTC
GTTTATGGGCTTCTCTCACG

exon 10 287 1871656 - 1871678
1871923 - 1871942

NW_001494406.2 SNP

ACSL1_F11
ACSL1_R11

TACACACTTGAACTTACCAG
TGTGCTCTGAAATAAATGG

exon 11 314 1869171 - 1869190
1869466 - 1869484

NW_001494406.2 SNP

ACSL1_F12
ACSL1_R12

TCTGTATTGTGCCTTCTGATG
GGAAACTGGGCTGAAATGC

exon 12 371 1866801 - 1866821
1867153 - 1867171

NW_001494406.2 SNP

ACSL1_F13
ACSL1_R13

TCTCACACAATAAAGGGGTAGG
TCCACATCTTCACCAACACTC

exon 13 516 1864669 - 1864690
1865164 - 1865184

NW_001494406.2 SNP

ACSL1_F14
ACSL1_R14

AAGCCGCCCAGGAATAACAC
TGCCACAAACCCACGACACT

exon 14 516 1863888 - 1863907
1864384 - 1864403

NW_001494406.2 SNP

ACSL1_F15
ACSL1_R15

GACTTGTGTTTATTTCTGCCTG
TGGGCTGAGGTTTCTAATCC

exon 15 524 1862774 - 1862795
1863278 - 1863297

NW_001494406.2 SNP

ACSL1_F16
ACSL1_R16

TGCTGAGAAGTGGCTGGTTAC
CATGAGAACAGGGCTTATTGG

exon 16 247 1860135 - 1860155
1860361 - 1860381

NW_001494406.2 SNP

ACSL1_F17
ACSL1_R17

ATGCGAGGGAGAAAGAGG
CCGCTAACAAAAAGAACAGTG

exon 17 427 1859039 - 1859056
1859445 - 1859465

NW_001494406.2 SNP

ACSL1_F18
ACSL1_R18

GGCAAACTTCCCATTACACTG
GACTCCTTCATCCCTTCTCTG

exon 18 512 1857386 - 1857406
1857877 - 1857897

NW_001494406.2 SNP

ACSL1_F19_20
ACSL1_R19_20

GCCAAAGCACACCACTCTC
CGAAGCAGATAATAAGGAACTAC

exons 19-20 517 139425 - 139443
139919 - 139941

NW_930554.1 SNP

ACSL1_F21
ACSL1_R21

CACCCGCCTTTGTAACTG
GTCCTGATTCTGTCCTGATGTC

exon 21 548 138819 - 138836
139345 - 139366

NW_930554.1 SNP

ACSL1_UTR_F31
ACSL1_UTR_R3

AAACCCTCTGGTCCTCTTGCG
CAATGGCAGGAAGGGAGGGAG

exon 21 404 138633 - 138653
139016 - 139036

NW_930554.1 SNP

ACSL1_UTR_F2
ACSL1_UTR_R21

GAGTTTTCCAGATTCCTATGTCC
CCTGTTACCCTCCCTTCCCTG

exon 21 650 137966 - 137988
138595 - 138615

NW_930554.1 SNP

ACSL1_UTR_F11
ACSL1_UTR_R1

ATGCGACTGCTGACATGAAAAAC
AAATAAATGCTCTTCTGTCGTAATG

exon 21 527 137530 - 137552
138032 - 138056

NW_930554.1 SNP

ACSL1_E1_F3
ACSL1_E1_R2

GACCCGAGCCCCAACCGAG
GCTCGTAGGCTGCAGCGAG

intron 1-
promoter

220 1918178 - 1918196
1918379 - 1918397

NW_001494406.2 GT

ACSL1_F7
ACSL1_R7

GTTCTCTTTTACAGGACCAG
CAGGGATGCTTTACTTACTC

exon 7 600 1875542 - 1875561
1876122 - 1876141

NW_001494406.2 GT
(PCR-RFLP)

ACSL1_E1_F5
ACSL1_E1_R3
ACSL1_E1_F7_T
ACSL1_E1_R8_C

GGAGGGAACTCGGGGAGCC
AGGGCGGGGCTGAGACGG
GCTATTTAAGGGTGCCGCCGT
GCAGCCAGCTCTCGGAAGTAG

promoter 451
316
175

1918052 - 1918070
1918485 - 1918502
1918328 - 1918348
1918348 - 1918368

NW_001494406.2 GT
(Tetra-ARMS

PCR)
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Association analysis
Prior to association analysis, we tested whether the phe-
notypic data of the individual traits were normally dis-
tributed using the Shapiro Wilk test. For those data
displaying distributions significantly different from nor-
mality (P < 0.01), we performed natural log (ln) trans-
formation, and the log- transformed data were subjected
to association analysis. The respective data are indicated
in Tables 2 and 3.
The BTA27 marker haplotypes of the individuals of

the resource population were estimated by a Markov
chain Monte Carlo (MCMC) algorithm implemented in
Qxpak [60]. The corresponding haplotypes were sub-
mitted to pairwise LD analysis calculating r2 values
using PowerMarker V3.25 [66].
Subsequently to the QTL analyses, association analyses

were performed between ACSL1 gene SNPs and the
absolute and relative FA composition traits in M. longis-
simus dorsi. The following model testing for LD as
implemented in Qxpak [60] was applied:

yi = ap +
∑

k

∑

h

λikhgk +
∑

m

∑

n

λimngm + ui + eihkmnp

where yi is the record of individual i, ap is the fixed
effect of slaughter year p, lihk is an indicator variable
for the NCAPG I442M locus, which is 1 when the allele
at the hth haplotype (1 or 2) of the ith individual is 1
and otherwise 0, limn is a respective indicator variable
for the specific ACSL1 SNP, ui is the infinitesimal
genetic effect of individual i, gk and gm are the respec-
tive allelic effects for NCAPG I442M and the ACSL1
SNP, and eihkmnp is the residual. Analogous to the QTL
analyses, the NCAPG I442M mutation was included in
the model, because previous analyses had shown a
major effect of the mutation on carcass lipid deposition
and growth in the resource population [44]. A likeli-
hood-ratio test (likelihood of model with both loci vs.
likelihood of model with NCAPG I442M) was applied to
test for statistical significance. In order to dissect
whether the association of the respective ACSL1 variant

with intramuscular FA composition is solely due to
indirect effects on IMF or a consequence of direct
effects on the specific FA accumulation, we extended
the model and fitted IMF as an additional covariate. A
Bonferroni correction was calculated (q-value) to
account for testing several SNPs in order to avoid false
positive associations. The q-values thresholds of 0.05
and 0.1, respectively, indicate an experiment-wise signifi-
cant or suggestive association, respectively. Finally, an
additive fixed effect of the SNP in intron 5 was added in
the QTL model described above to test whether this
SNP might explain the QTL variance at the identified
position on BTA27.

Abbreviations
(SCD1): stearoyl-Coenzyme A desaturase 1; (SREBP-1): sterol regulatory
element binding protein 1; (FASN): fatty acid synthase; (FABP4): fatty acid
binding protein 4; (LXRα): liver X receptor alpha; (GH): growth hormone;
(ACACA): acetyl-CoA carboxylase alpha; (NCAPG): non-SMC condensin I
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Table 4 Primer sequences for the bovine ACSL1 gene applied for annotation confirmation, screening for polymorph-
isms and genotyping (Continued)

ACSL1_E1_F2
ACSL1_E5_R1

CGGAGGAGACTGTGGCTTAG
CTGAGCGAAGATGCCAATAAAC

exons
1-5

505 38 - 58
521 - 543

NM_001076085.1 cDNA

ACSL1_E5_F1
ACSL1_E12_R2

CAGTTTATTGGCATCTTCGCTC
GGAAGATGGTGGGTTGAAGG

exons
5-12

649 519 - 541
1148 - 1168

NM_001076085.1 cDNA

ACSL1_E11_F2
ACSL1_E18_R1

CCATATGTTTGAGAGAGTTGTAG
ATGTACTCCCCCTGTGCCAG

exons 11-18 735 1046-1069
1761 - 1781

NM_001076085.1 cDNA

ACSL1_E17_F2
ACSL1_E21_R2

CTGGATAAAGACGGCTGGTTG
GAGTTCAGGGTGGAGATAGATG

exons 17-21 399 1665 - 1686
2042 - 2064

NM_001076085.1 cDNA

ACSL1_E21_R3 GTCAAACTCCCCTCCGCTTC exons 17-21 540 2185 - 2205 NM_001076085.1 cDNA, RT

ACSL1_E21_R4 CAGAAAGAGCAAAGTCCTAACC 2454 - 2476 NM_001076085.1 cDNA, RT

* cDNA: analysis of cDNA structure, RT: reverse transcription, GT: genotyping, SNP: screening for polymorphisms
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