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Abstract

Most of pyruvoyl-dependent proteins observed in prokaryotes and eukaryotes are critical regulatory enzymes, which are
primary targets of inhibitors for anti-cancer and anti-parasitic therapy. These proteins undergo an autocatalytic,
intramolecular self-cleavage reaction in which a covalently bound pyruvoyl group is generated on a conserved serine
residue. Traditional detections of the modified serine sites are performed by experimental approaches, which are often
labor-intensive and time-consuming. In this study, we initiated in an attempt for the computational predictions of such
serine sites with Feature Selection based on a Random Forest. Since only a small number of experimentally verified
pyruvoyl-modified proteins are collected in the protein database at its current version, we only used a small dataset in this
study. After removing proteins with sequence identities .60%, a non-redundant dataset was generated and was used,
which contained only 46 proteins, with one pyruvoyl serine site for each protein. Several types of features were considered
in our method including PSSM conservation scores, disorders, secondary structures, solvent accessibilities, amino acid
factors and amino acid occurrence frequencies. As a result, a pretty good performance was achieved in our dataset. The best
100.00% accuracy and 1.0000 MCC value were obtained from the training dataset, and 93.75% accuracy and 0.8441 MCC
value from the testing dataset. The optimal feature set contained 9 features. Analysis of the optimal feature set indicated
the important roles of some specific features in determining the pyruvoyl-group-serine sites, which were consistent with
several results of earlier experimental studies. These selected features may shed some light on the in-depth understanding
of the mechanism of the post-translational self-maturation process, providing guidelines for experimental validation. Future
work should be made as more pyruvoyl-modified proteins are found and the method should be evaluated on larger
datasets. At last, the predicting software can be downloaded from http://www.nkbiox.com/sub/pyrupred/index.html.
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Introduction

The formation of an active pyruvoyl-dependent protein involves

a self-maturation process via an autocatalytic post-translational

modification (PTM). It has been observed spanning several

decades in a number of often evolutionarily and structurally

unrelated proteins in bacteria, Archaea and Eukarya [1–2]. Most

of such proteins are critical regulatory enzymes in biosynthetic

pathways, which are primary targets of inhibitors and are subjects

of numerous biochemical and structural investigations for anti-

cancer and anti-parasitic therapy [3–6].

Most well-studied enzymes that undergo such post-translational

modifications catalyze either the decarboxylation or the reduction

of amino acids and amino acid derivatives, with a pyruvoyl group

as the enzyme cofactor [7]. L-aspartate-a-decarboxylase (ADC)

converts L-aspartate to b-alanine, providing the major route of b-
alanine production in the bacterial pantothenate-biosynthesis

pathway [1,8–9]. S-adenosylmethionine decarboxylase (Ado-

MetDC) is an essential enzyme for the biosynthesis of the

polyamines spermidine and spermine, which are required for

normal cell proliferation and differentiation. AdoMetDC catalyzes

the conversion of S-adenosylmethionine (AdoMet) to S-adenosyl-

59-(3-methylthiopropylamine), as an early step in the polyamine

biosynthetic pathway [6,10–12]. Many bacteria or chlamydial

strains have arginine decarboxylase (ArgDC) that converts L-

arginine to agmatine [6,13–15], used for a variety of metabolic or

defensive purposes against host innate immune responses [16].

The histidine decarboxylation pathway consists of histidine

decarboxylase (HisDC) that removes the a-carboxylate group of

histidine, which causes histamine spoilage of traditionally
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fermented foods in food-borne bacteria, such as cheese and wine

[14,17–19]. Other examples of pyruvoyl group dependant

enzymes are phosphatidylserine decarboxylase (PsDC) [20],

glycine reductase, D-proline reductase [7], etc.

Such proteins show little similarities in sequence, structure, or

oligomeric state; however the post-translational event would be

similar in the enzyme maturation process, even in different species

[2,6–7]. They undergo an autocatalytic, intramolecular self-

cleavage reaction in which a covalently bound pyruvoyl group is

generated as its reactive cofactor. A conserved serine residue (Ser)

is identified at the site of protein self-cleavage and pyruvoyl group

formation in the decarboxylases. The post-translational modifica-

tion follows an unusual pathway, termed as non-hydrolytic

serinolysis [1–2,13,18], in which the hydroxyl group of the serine

performs a nucleophilic attack at the carbonyl carbon atom of the

preceding residue on the main chain, forming an ester interme-

diate. Cleavage of the ester intermediate results in two non-

identical subunits. The subunit containing the N-terminal part of

the uncleaved chain is called b-chain while the subunit containing

the C-terminal part is called a-chain. The pyruvoyl group is

formed at the N terminus of the a-chain, which is derived from the

carboxyl end of the proenzyme while releasing NH3 by a two-step

reaction with water [2]. In reductases, a cysteine residue rather

than a serine is identified to be the precursor of the pyruvoyl group

[1,7]. However, in the present study, we only investigate proteins

modified at serine sites, excluding those cysteine-modified

reductases, since only 2 experimentally verified cysteine-modified

proteins can be found in the Uniprot database in its current

version.

Traditionally, the site of protein post-translational cleavage with

pyruvoyl group formation is detected by experimental approaches

[7,20], which are often labor-intensive and time-consuming. With

the increasing prominence of the modification, there is an urgent

need for developing a computational method to rapidly and

effectively identify the pyruvoyl residue site. Computational

prediction of PTM sites has become a very important area in

bioinformatics research community [21]. A number of different

methods for predicting different types of PTM sites have been

developed, such as protein phosphorylation site prediction [22–

24], c-carboxylation site prediction [25], methylation site predic-

tion [26], lysine acytelation site prediction [27], glycosylation site

prediction [28–29], S-nitrosylation site prediction [30] and many

others. However, prediction methods for pyruvoyl residue sites are

rarely developed. In view of this, the present study is initiated in an

attempt to develop a new method to predict possible pyruvoyl

serine sites with protein cleavage based on existing data. By using

the Incremental Feature Selection approach based on several types

of features such as PSSM conservation scores, disorders, secondary

structures, solvent accessibilities, amino acid factors and amino

acid occurrence frequencies, an optimal feature set is also

provided.

Methods

Dataset
All proteins used in this study were taken from the UniProt

database (release 2012_07, Jul 11, 2012) [31]. For rigorous

evaluation of machine learning methods, it is important to use a

non-redundant dataset. We removed those proteins with sequence

identities .60% and those without experimentally verified

pyruvoyl residues. Finally, a non-redundant dataset was generated

containing 46 protein entries, the selected chains of which have

less than 60% sequence identity.

Subsequently, by sliding a scaled window along each of the

proteins, we extracted peptide segments with window length of

2w+1 centered on a serine residue, w residues upstream and w

residues downstream of the serine site. The window length was set

to be 15, 17, 19, 21, respectively. Peptide segments with length less

than the window length were complemented by character ‘‘X’’.

Peptides with centered serine able to be formed pyruvoyl group

were regarded as positive samples, while other peptides with

centered non-pyruvoyl serine (‘non-pyruvoyl serine’ means ‘non-

observed pyruvoyl serine’ in the this study) were as negative.

Totally, 46 positive and 407 negative samples were extracted.

Since the dataset was extremely unbalanced with much higher

number of negative samples, we randomly split the negative

samples into four parts without overlapping, three of which had

102 negative samples and one had 101 negative samples. At each

epoch we presented all the 46 positive samples, together with one

of the four parts of negative samples (the ratio of positive/negative

was about 1:2). Thus 4 datasets were constructed which were

numbered 1, 2, 3, 4, respectively. The number of samples in each

dataset was given in Table 1. The 4 datasets were also provided in

File S1. Each dataset was randomly separated into two parts for

training and testing, respectively, with 4/5 of the data used for

training and 1/5 for testing. 10-fold cross-validation test was

adopted in the training process. The optimal features and the

optimal window length providing the highest predictive perfor-

mance were selected on the training set to build the final model.

The testing set, which was not included in the training set, was

then adopted to evaluate the model.

Feature Construction
The following features were utilized to encode every (2w+1)-

residue peptide:

Features of PSSM conservation scores. Evolutionary

conservation in the form of multiple alignments is considered

important in biological sequence analysis [30]. A more conserved

residue may play a more important role for the protein function.

Herein, we computed position specific scoring matrix (PSSM) for

each peptide and used as features (called PSSM conservation

scores) to develop the prediction method. The PSSM profiles were

obtained by using the Position Specific Iterative BLAST (PSI-

BLAST) [32], a powerful sequence searching method, to search

the UniRef100 database (Release: 15.10, 03-Nov-2009) through 3

iterations with 0.0001 as the E-value cutoff. For a specific residue

in a peptide, a 20-dimensional vector was computed to denote the

probabilities against mutations to 20 different amino acids. All

such 20-dimensional vectors for all residues in a peptide composed

a PSSM matrix.

Feature of disorder score. A protein region is defined as

‘‘unstructured’’ or ‘‘disordered’’ if it is devoid of stable secondary

Table 1. The number of peptides in the 4 datasets used in
this study.

Positive
peptides

Negative
peptides Total peptides

dataset 1 46 102 148

dataset 2 46 102 148

dataset 3 46 101 147

dataset 4 46 102 148

Total 46 407 453

doi:10.1371/journal.pone.0066678.t001
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structure or if it has a large number of conformations. Such

disordered regions could be quite important for the protein

structure and function [33–34]. VSL2 [35], one of the best

disorder predictor, was employed to calculate the disorder score

for each residue in a given protein sequence. The disorder score

ranges from 0 to 1, where the higher the score is, the more likely

the residue lacks fixed structure.

Features of secondary structures and solvent

accessibilities. Protein structure plays an essential role in

deciphering its function. In addition, PTM of specific residues may

be affected by their solvent accessibilities. In view of this, we also

used features of secondary structures and solvent accessibilities to

encode peptides. These features were predicted by SSpro4 [36].

In this study, the three types of secondary structures were

denoted by a 3-bit binary string, i.e., ‘helix’ to ‘1009, ‘strand’ to

‘0109, and ‘other’ to ‘001’, respectively. And the two types of

solvent accessibilities were encoded by another 2-bit binary string,

i.e., ‘buried’ to ‘10’ and ‘exposed’ to ‘01’, respectively.

Features of amino acid factors. AAIndex [37] is a database

containing various physicochemical and biochemical properties of

20 amino acids. Atchley et al. [38] performed multivariate

statistical analysis on AAIndex and transformed AAIndex to five

numeric attributes to reflect five properties: codon diversity,

electrostatic charge, molecular volume, polarity and secondary

structure. Here, we used these five numerical scores to represent

the properties of each residue in a given protein sequence.

Note that since the residue at the center position in a peptide

was always serine (Ser), it was not necessary to incorporate the

amino acid factors.

Features of amino acid occurrence frequencies

surrounding Ser. To investigate the position-specific amino

acid compositions around the pyruvoyl serine site, we computed

the occurrence frequencies of 20 native amino acids as well as the

complemented element ‘‘X’’ in each position of the 2w+1 window

length peptides in the training dataset. Results of the maximum

window length 21 (containing results of other smaller window

lengths) were shown in File S2. Since amino acid at the center site

was always serine (Ser) in this study, it was not necessary to

incorporate. And only the frequencies of the upstream and

downstream sites were computed.

As mentioned above, features utilized in this study were

summarized in Table 2. As seen in Table 2, for a peptide of

length 2w+1, there were 20*(2w+1) PSSM conservation score

features, 1*(2w+1) disorder score features, 3*(2w+1) secondary

structure features, 2*(2w+1) solvent accessibility features, 5*2w

amino acid factor features and 1*2w amino acid occurrence

frequency features. In summary, a total of 64w +26 features can be

extracted from a 2w+1 residue peptide. This kind of approach is

quite similar to that used in [25] for predicting protein c-
carboxylation sites and that used in [30] for predicting protein S-

nitrosylation sites.

Feature Selection
The mRMR method. The maximum relevance minimum

redundancy (mRMR) method [39–41] was employed to rank the

importance of the 64w+26 features. The mRMR method could

rank the features according to their relevance to the target, and

according to the redundancy among the features themselves. A

ranked feature with a smaller index indicates that it has a better

trade-off between the maximum relevance and the minimum

redundancy.

To quantify both the relevance and the redundancy, the

following mutual information (MI) is defined to estimate how one

vector is related to another:

I(x,y)~

ðð
p(x,y) log

p(x,y)

p(x)p(y)
dxdy ð1Þ

where x, y are two vectors, p(x,y) is the joint probabilistic density,

p(x) and p(y) are the marginal probabilistic densities.

Suppose V denotes the entire space containing all the

aforementioned 64w+26 feature components, Vs denotes the

already-selected feature set containing m features, and Vt denotes

the to-be-selected feature set containing n features. The relevance

D between the feature f in Vt and the target c can be calculated by

D~I(f ,c) ð2Þ

The redundancy R between the feature f in Vt and all the

features in Vs can be calculated by

R~
1

m

X
fi[Vs

I(f ,fi) ð3Þ

To get the feature fj in Vt with the maximum relevance and the

minimum redundancy, let us combine Eq. (2) with Eq. (3), as

formulated by

max
fj[Vt

½I(fj ,c){
1

m

X
fi[Vs

I(fj ,fi)�(j~1,2,:::,n) ð4Þ

For a feature set with 64w+26 ( =m+n) components, the

evaluation will continue for 64w+26 rounds. After these evalua-

tions, a feature set S can be obtained by the mRMR method as

formulated below:

S~ff 01 ,f
0
2 ,:::,f

0
h ,:::,f

0
Ng ð5Þ

where each feature in S has a subscript index indicating at which

round the feature is selected. The better the feature is, the earlier it

has been selected, and the smaller the index is.

Incremental feature selection (IFS). Based on the ranked

feature list evaluated by the mRMR approach, we used

Incremental Feature Selection (IFS) [42–43] to determine the

optimal feature set. In this study, during the IFS procedure,

features in the ranked feature list were added one by one from

higher to lower rank, i.e., 1, 2, 3, … A new feature set was

constructed when another feature had been added. The i-th

feature set is:

Si~ff1,f2,:::,fig(i~1,2,3,:::,iƒN) ð6Þ

For each of the feature set Si, a predictor was constructed and

examined. Thus, the optimal feature set could be obtained when

the corresponding predictor yielded the best performance.

Prediction Methods
The random forest method. The Random Forest (RF)

algorithm [44], one of the famous machine learning methods,

developed by Loe Breiman, has been successfully applied in

various biological prediction problems [25,45–46]. RF is an

Pyruvoyl Serine Prediction and Feature Analysis
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ensemble classifier consisting of several decision trees. Each tree is

constructed according to the following procedure. (1) Suppose the

number of cases in the training dataset is N, sample N cases at

random. These samples compose the training set for growing the

tree. (2) If there are M input variables, choose a number m which

should be much less thanM. At each node, m variables are selected

randomly out of the M variables and the most optimized split on

these m variables is employed to split the node. The value of m

should keep constant during the forest growth. (3) Each tree should

be grown to the largest extent possible without pruning.

To classify a new query sample, put its vector down each of the

trees in the forest. Each tree yields a vote suggesting one class. The

RF classifier will choose the class with the most votes over all trees.

For detailed description about the RF algorithm, refer to [44,47].

10 trees were grown in our established RF model.

Performance measures. The efficiency of the method was

assessed by 10-fold cross-validation test. This was a procedure in

which the data set was randomly split into 10 equally-sized parts,

each part being used in turn as testing set with the remaining 9

parts as training set. Thus the training and testing experiments

were repeated for 10 times, and measurements were calculated as

the average values of the 10 times experiments. In the training

process, we used the 10-fold cross-validation test to evaluate the

training performance.

Four measurements below were employed to evaluate the

performance of the predictor. These measurements were derived

from the four scalar quantities: TP, FP, TN, FN, which are the

numbers of correctly predicted positive, incorrectly predicted

positive, correctly predicted negative, incorrectly predicted nega-

tive samples, respectively.

Accuracy (Ac), which is the fraction of correctly predicted sites

among all the predictions, is calculated by:

Ac~(TPzTN)=(TPzFPzTNzFN)|100%

Sensitivity (Sn), the rate of pyruvoyl serine sites that are correctly

predicted as pyruvoyl serine sites, is given by:

Sn~TP=(TPzFN)|100%

Specificity (Sp), the rate of non-pyruvoyl serine sites correctly

predicted as non-pyruvoyl serine sites, is given by:

Sp~TN=(TNzFP)|100%

Sn, Sp and Acc stand for the success rates in positive, negative

and overall datasets respectively. The fourth measurement,

Matthews correlation coefficient (MCC), would be applied when

the positive and negative datasets are unbalanced from each other:

MCC~(TP|TN{FP|FN)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(TPzFP)(TPzFN)(TNzFP)(TNzFN)

p

MCC is a number between -1 and 1. If there is no relationship

between the predicted values and the actual values, the correlation

coefficient is 0. A perfect fit gives a coefficient of 1.0. MCC was

used throughout this study as the main evaluator for prediction

performance. The optimal feature set could be obtained when the

predictor achieved the best MCC.

Software implemented. In this study, the Random Forest

classifier in Weka 3.6.4 [48] software was employed to perform the

prediction. It was run with default parameters.

Results

The Optimal Window Length
For each dataset, 4 different window sizes, i.e., 15, 17, 19, 21,

were adopted. Therefore totally 16 iterations were preformed for

the 4 datasets, each for one window size in one dataset. The

predictive measurements and corresponding number of features

selected were given in Table 3 when the highest MCC was

achieved in each of the 16 iterations. The corresponding ROC

curves were depicted in Fig. 1. From Table 3 and Fig. 1, it can
be seen that similar performances can be obtained despite being

trained on different datasets. The average MCC value reached the

highest when the window length was set to 15 or 17 (Table 3).
Therefore, in this study, 17 was regarded as the optimal window

length (we selected the bigger size 17 rather than the smaller one

15).

The mRMR Results
In each of the 16 iterations, two tables were obtained after

running the mRMR software. One was called MaxRel feature

table that ranked the 64w+26 features according to their relevance

to the class of samples; the other was called mRMR feature table

that ranked with the maximum relevance and the minimum

Table 2. Features utilized to encode a (2w+1)-residue peptide.

Feature type Features Number Sites

PSSM conservation scores 20-dimensional vector 20*(2w+1) for all 2w+1 sites

Disorder score Disorder score reflecting the disorder status of the residue 1*(2w+1)

Secondary structures and solvent
accessibilities

Secondary structures : helix, strand, other; Solvent accessibilities:
buried, exposed

5*(2w+1)

Amino acid factors Polarity, secondary structure, molecular volume, codon diversity,
electrostatic charge

5*2w only for 2w surrounding sites
(except the center)

Amino acid occurrence frequencies Occurrence frequencies of 20 native amino acids as well as the
complemented ‘‘X’’ in the peptide

1*2w

Total 64w+26

doi:10.1371/journal.pone.0066678.t002

Pyruvoyl Serine Prediction and Feature Analysis
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Figure 1. The ROC curves for 4 different window sizes in 4 datasets. Four plots showing ROC curves in the 4 datasets, respectively. Each
curve was obtained when the highest MCC was achieved for each window size in each dataset. The corresponding number of features utilized for
each curve was given in Table 3.
doi:10.1371/journal.pone.0066678.g001

Table 3. Highest training performance of each of the 4 different window lengths in the 4 datasets.

Window length Dataset Number of features Sn (%) Sp (%) Ac (%) MCC

15 1 8 100.00% 98.73% 99.14% 0.9805

2 9 100.00% 100.00% 100.00% 1.0000

3 13 97.30% 100.00% 99.13% 0.9801

4 33 94.59% 100.00% 98.28% 0.9605

Average of 15 97.97% 99.68% 99.14% 0.9803

17 1 8 100.00% 98.73% 99.14% 0.9805

2 9 100.00% 100.00% 100.00% 1.0000

3 13 97.30% 100.00% 99.13% 0.9801

4 15 94.59% 100.00% 98.28% 0.9605

Average of 17 97.97% 99.68% 99.14% 0.9803

19 1 24 97.30% 100.00% 99.14% 0.9802

2 37 97.30% 100.00% 99.14% 0.9802

3 12 100.00% 98.72% 99.13% 0.9804

4 45 94.59% 100.00% 98.28% 0.9605

Average of 19 97.30% 99.68% 98.92% 0.9753

21 1 34 94.59% 100.00% 98.28% 0.9605

2 34 94.59% 100.00% 98.28% 0.9605

3 12 100.00% 98.72% 99.13% 0.9804

4 32 94.59% 100.00% 98.28% 0.9605

Average of 21 95.94% 99.68% 98.49% 0.9655

doi:10.1371/journal.pone.0066678.t003

Pyruvoyl Serine Prediction and Feature Analysis
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redundancy to the class of samples. In the mRMR feature table, a

feature with a smaller index implied that it was a more important

one for pyruvoyl-serine site prediction. Such a list of ranked

features was to be used in the following IFS procedure for the

optimal feature set selection. The mRMR results of window length

17 for the 4 datasets can be found in File S3, data not shown of

other window lengths since the optimal size was selected to be 17.

The Prediction Results
In each iteration, by adding the ranked features one by one

from the 64w+26 features in the mRMR table, we obtained

64w+26 different feature sets and accordingly built 64w+26
individual predictors. We then tested the prediction performance

for each of the 64w+26 predictors and obtained the IFS results.

Results of 17-residue peptides in the 4 datasets were given in File
S4, data not shown of other window sizes. The IFS curves were

shown in Fig. 2, which were plotted based on the data of File S4.
It can be seen that the prediction results of window size 17 in the 4

datasets were slightly different from each other, suggesting the

prediction model built on window size 17 was stable despite being

trained on different datasets.

As we can see from Fig. 2, the MCC reached its maximum

(1.0000) when the first 9 or first 22 features were selected. Such 9

features (we chose the smaller one 9 rather than 22) were regarded

as composing the optimal feature set (the 9 features can be found

in the mRMR table in File S3), and were used to construct the

final model by applying a window length 17 for our pyruvoyl-

serine prediction in this study. Performances of the model

evaluated on the testing sets of the four datasets were given in

Table 4. It can be seen from Table 4 that the final model

obtained a pretty good performance of accuracy 93.75% and

0.8441 MCC value. The excellent Specificity denoted that the

method had a strong ability to distinguish the non-pyruvoyl serine

sites from real non-ones. However, the Sensitivity was a little lower,

which indicated that the ability of distinguishing the pyruvoyl

serine sites from real ones was a little weaker.

Distribution of the Optimal Features
We selected the first 9 features in the mRMR feature list

obtained from dataset 2 as the optimal feature set. However,

different optimal feature sets can be selected from other datasets,

i.e. 8 features from dataset 1, or 13 features from dataset 3, or 15

features from dataset 4, as shown in Table 3 (detail of the features

can be found in File S3). We analyzed the feature type

distributions of the different optimal features from the 4 datasets,

with results depicted in Fig. 3. It is obvious that although the

optimal features from 4 datasets were not all the same, the type

distributions were slightly different. It can be seen from Fig. 3 that

the PSSM conservation scores affected the most. The secondary

affecting feature types were solvent accessibilities and secondary

Figure 2. MCC values of predictors against different number of features selected when the window length was set to 17. Plot to show
the MCC values against different number of features selected during the Incremental Feature Selection process. When the first 9 features were
selected from the mRMR feature list, a peak of MCC (1.0000) was obtained in dataset 2. These 9 features were regarded as composing the optimal
feature set for the pyruvoyl serine prediction.
doi:10.1371/journal.pone.0066678.g002

Table 4. Performances of the final model evaluated on the
four testing datasets (Window length= 17, 9 features used).

Testing Set of
Dataset Sn (%) Sp (%) Ac (%) MCC

Dataset 1 88.89% 95.65% 93.75% 0.8454

Dataset 2 88.89% 95.65% 93.75% 0.8454

Dataset 3 77.78% 95.65% 90.63% 0.7624

Dataset 4 88.89% 100.00% 96.88% 0.9230

Average 86.11% 96.74% 93.75% 0.8441

doi:10.1371/journal.pone.0066678.t004

Pyruvoyl Serine Prediction and Feature Analysis
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structures. Therefore, we selected the 9 features from dataset 2 as

the optimal features to construct our prediction model.

Site distributions of the 9 features were shown in Fig. 4. It was
revealed from Fig. 4 that features selected from sites 2, 4, 7, 8, 9,

11, 12, 13 affected, suggesting residues at those sites played more

important role in the determination of the pyruvoyl modification.

There were 9 sites 1, 3, 5, 6, 10, 14, 15, 16, 17 having no features

selected in our prediction method. Almost all feature-selected sites

except 4 and 12 had one PSSM feature, indicating the important

role of the amino acid conservations to the pyruvoyl-serine

modification. Although slightly less relevant, it can be seen from

Fig. 4 that features of secondary structure and solvent accessibility

also affected, suggesting the protein structures also played some

roles as well as amino acid conservations in the protein pyruvoyl

serine self-processing. These affecting factors will be further

discussed in the following section.

Amino Acid Occurrence Frequencies
We calculated the occurrence frequencies of 20 native amino

acids (as well as ‘‘X’’) for the 17 length positive peptides and

negative peptides respectively in the training set. Results were

depicted with a WebLogo (http://weblogo.berkeley.edu/) in

Fig. 5. It is obvious from Fig. 5 that the occurrence frequencies

of the positive and negative peptides were different, indicating

pyruvoyl-peptides had specific features that can be distinguished

from non-pyruvoyl-peptides.

Discussion

Optimal Feature Analysis
From Fig. 4, it is demonstrated that the optimal feature set

contained 6 PSSM conservation score features, 2 solvent accessi-

bility features and 1 secondary structure feature. The 2 solvent

accessibility features were all Buried features, indicating the

protein structure affected. The selected 1 secondary structure

feature was Strand, suggesting b-strand was related to pyruvoyl

serine formation. None of amino acid factor, disorder and amino

acid occurrence frequency features was selected, indicating those

types of features not only have low relevance to pyruvoyl serine

formation, but also contribute little to the prediction.

Figure 3. Histograms showing type distributions of the optimal features selected from the 4 datasets, respectively. The optimal
features were selected when the MCC value reached its maximum trained on 17 length peptides in the training set of the 4 datasets, respectively.
doi:10.1371/journal.pone.0066678.g003
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In our prediction method, no features of amino acid occurrence

frequencies were selected. This suggests that the composition of

the 20 amino acids surrounding the center serine could not play so

much important roles in the determination of pyruvoyl serine

modification. The post-translational pyruvoyl residue modification

is considered as an autocatalytic procedure [6,9–10], in which a

protein self-cleaves at conserved serine residue to form an amino-

terminal b-subunit and a carboxyl-terminal a-subunit with a

reactive pyruvoyl cofactor. It could be conceived that a recognition

site may be not so important as that in other proteinase-required

post-translational modifications. For example, the post-transla-

tional c-carboxylation of Glu in a protein requires a c-
carboxylation recognition site, called c-CRS, to be bound to the

carboxylase to perform the reaction [25]. However, different from

c-carboxylation, no recognition site may exist in a pyruvoyl

residue modification. This was consistent with the result that no

disorder feature was selected and the previous findings that

intrinsic disorder was strongly correlated with proteinase-required

post-translational modifications [49]. Since disorder regions affect

binding sites, they are not requirements in pyruvoyl residue

formation as an autocatalytic process.

Evolution Features Play a Key Role in Pyruvoyl Serine
Prediction
In the optimal 9 features, 6 belong to the PSSM conservation

scores. In addition, although the 2 solvent accessibility features and

1 secondary structure feature were selected in the optimal feature

set, indexes of them were above 70 in the MaxRel feature list (see

File S3). And in such a list, all the top 27 features were PSSM

conservation scores. It is indicated that amino acid conservations

play the most important role in the pyruvoyl group formation and

Figure 4. Histograms showing site distributions of the optimal features selected from dataset 2. Gray bars, light gray bars and hatched
bars represented features of conservation scores, secondary structures and solvent accessibilities, respectively. Text above each bar indicated the
corresponding feature.
doi:10.1371/journal.pone.0066678.g004

Figure 5. Amino acid occurrence frequencies surrounding the active-serine generated by WebLogo. The logo illustration was generated
from the 17-residue peptides in the training set of dataset 2, showing the occurrence frequencies of amino acids surrounding the active serine. N and
C represented the N- and C-terminuses of the 17-residue peptides, respectively.
doi:10.1371/journal.pone.0066678.g005
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protein self-cleavage modification. It was also conceivable that in

principle mutations to different types of amino acids had strong

impact on the post-translational modifications of pyruvoyl-

dependent enzymes. These observations from this study also

supported the hypothesis of convergent evolution in the creation of

their similar functions such as catalyzing amino acid decarboxyl-

ation reactions [2], and strongly drew that evolution information

acted as an irreplaceable role for the prediction of pyruvoyl residue

sites.

However, effects of mutations to different amino acids were

different as seen in Fig. 4. Mutations to S, V affected the most (2

features), while mutations to C, N affected weaker (1 feature).

Several important sites can also be found in Fig. 4, which

suggested that mutations occurred at sites 2, 7, 8, 9, 11, 13 affected

the most. It can also be seen that glycine (Gly, G) residue

accounted for the most at site 8 in Fig. 5, where different

situations can be found for non-pyruvoyl peptides. This was

consistent with the general agreement of earlier studies that Gly is

the most common residue preceding the nucleophile in self-

processing systems, presumably due to its conformational adapt-

ability [1]. However, in this study, other potential important

mutation sites were also suggested, as complement to the previous

findings. In spite of this, the discovery may be helpful and need to

be experimentally studied.

Such highly conserved pyruvoyl peptides were thought to be

one of the reasons on why the perfect prediction performance was

obtained in this study (100.00% accuracy, 1.0000 MCC for training,

and 93.75% accuracy, 0.8441 MCC for testing). From Fig. 5, it is
observed that residues around pyruvoyl serine sites are highly

conserved, significantly different from that in non-pyruvoyl

peptides, which was consistent with previous studies. It is indicated

that there is a strong signal difference in the two types of peptides

that machine learning algorithms can efficiently extract. Although

the dataset used in this study was small, results obtained from a

non-redundant dataset can reflect the rules of such type of pos-

translational modification. Therefore, it is expected to provide

good generalization performances even on larger datasets.

However, future work should be made as more pyruvoyl-modified

proteins are experimentally verified and the method should be

evaluated on those newly observed proteins.

The Pyruvoyl Residue Modifications are Correlated with
b-strands
Besides the PSSM conservation score features, the solvent

accessibility and the secondary structure features were also

compiled. In Fig. 4, it was obvious that only strand had impact

on the modification, neither helix nor coil structures affected.

In the present study, we investigated all the pyruvoyl-serine sites

and the surrounding secondary structures of proteins in our

dataset. Totally 7 proteins in our dataset had experimentally-

determined structures in the Protein Data Bank (PDB). The

secondary structures of the 7 proteins and the pyruvoyl-serine sites

were depicted in Fig. 6. Dramatically, it can be seen from

Fig. 6 that all the 7 proteins undergo a post-translational

modification at a site between two b-strands, and all the modified

serine sites are in a no regular secondary structure region.

The preference of the location of a self-cleavage site in a loop

between two b-strands or in close proximity to a b-strand has been

suggested by several previous studies [1–2,6], despite different

pyruvoyl-dependent proteins show little similarity in sequence,

structure, or oligomeric state. Schmitzberger et al. [1] suggested

the determination role of the conformational freedom in the loop

preceding the cleavage site in the PTM reaction of ADCs. They

also found that longer loop would render the loop incapable of

stabilizing intermediates from studies of insertion mutants,

suggesting a certain degree of conformational flexibility as an

important factor. Bale et al. [6] suggested that residues close to the

loop may play a role in stabilizing the oxyoxazolidine intermediate

in the autoprocessing reaction. b-strand impacts would also be a

general rule for protein cleavage, both for protease-required

reactions and for self-cleavage reactions [50,51–53]. It can be

realized that b-strand structures play an important role on

pyruvoyl residue modifications, and a serine needs a no-regular

secondary structure to perform the nucleophilic attack.

Many amino acids of top-most maximum frequencies at specific

sites can be found in Fig. 5, except the center serine and the

preceding G, which were discussed above. It is interesting to see

that almost all top-most frequency amino acids are b-strand
favorite residues [54–56], such as L, I, Y, T, E, A. And different

situations can be found for non-pyruvoyl peptides in Fig. 5. These
observations could be one of the reasons to explain the

discrepancy that why none amino acid frequency features were

selected while obvious high-frequency residues can be found in

Fig. 5. These high-frequency residues were not composed as a

consensus sequence of pyruvoyl formation, but as important

residues to form b-strand structures surrounding the cleavage sites.

Another reason could be feature redundancy may exist between

amino acid frequency features and the selected features. They

were removed from the optimal feature set by applying the

Minimum Redundancy criterion.

Additional Factors
The performance of the predictor developed in the present

study was quite good, however the Sensitivity was a little lower,

which indicated that the weaker ability of distinguishing the

positive pyruvoyl-serine sites from real ones. Reasons would be the

additional factors beyond those in the 17-residue peptides [7].

Webb et al. [9] indicated that the b-amide of Asn72 was hydrogen

bonded to the b-hydroxyl group of Ser25 in the unprocessed

structure of ADC, holding the latter residue in an unreactive

conformation, whereas Asn72 was not required for activation of

the protein. Trip et al. [18] showed that the protein HdcB

encoded by hdcAPB operon of S. thermophilus was involved in the

post-translational pyruvoyl modification of HdcA, a histidine

decarboxylase (HisDC). Additional factors like special chaperones

might also be involved in pyruvoyl group formation in vivo [7].

Conclusion
In this study, we developed a new method for predicting the

protein post-translational pyruvoyl serine sites and analyzed the

optimal features. By means of the feature selection algorithm, an

optimal set of 9 features were selected by applying a window

length of 17; these features were regarded as the ones that

contributed significantly to the prediction of the post-translational

self-processing modification. With the 9 optimal features selected,

our approach achieved an overall accuracy of 93.75% and MCC of

0.8454. Analysis of the optimal feature set showed that the PSSM

conversation scores contributed the most. Results from this study

also supported the important effects of b-strand structures on

pyruvoyl residue modifications. Since the mechanism for cysteine

pyruvoyl modifications was similar to that of serine [7], these

selected features may shed some light into in-depth understanding

of the mechanism of not only pyruvoyl serine modifications but

also other residue pyruvoyl modifications, providing guidelines for

experimental validation. At last, the predicting software is

available and can be downloaded from http://www.nkbiox.

com/sub/pyrupred/index.html.
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Supporting Information

File S1 The 4 datasets used in this study. The accession

numbers of the proteins and the positions of the center serine sites

were given.

(XLS)

File S2 Amino acid frequencies around the pyruvoyl
serine sites in 21-residue peptides, which was the
maximum window length used in this study.
(XLS)

File S3 The mRMR results of the 4 datasets when the
window size was set to 17, with one sheet for one
dataset. Each sheet contains two tables. The first one is the

MaxRel feature table ranking according to the relevance between

the features and the class of the samples. The second one is the

mRMR feature table ranking according to the relevance to the

target and the redundancy among the features.

(XLS)

File S4 The sensitivity (Sn), specificity (Sp), accuracy
(Ac), Matthews correlation coefficient (MCC) generated
by each run of the IFS when window length was set to 17
in the 4 datasets.

(XLS)
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