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ABSTRACT
Difficulty in obtaining bone tissue is an obstacle to studying epigenetics to understand gene– 
environment interactions, and their role in disease pathogenesis. Blood is an obvious alternative 
and in this proof of principle study, our aim was to systematically investigate whether blood is 
a viable surrogate for bone. We measured epigenome-wide DNA methylation at 850 K CpG sites in 
matched trabecular bone and peripheral blood collected from the same patients at the same 
time-point (n = 12 women; 66–85y), to investigate the between-tissue correspondence. What 
constituted a CpG site with corresponding methylation in both tissues was stringently defined. 
Only sites highly correlated (r2 > 0.74; FDR q-value <0.05) and at least 80% similarity in methyla-
tion level (Δβ <0.2) between paired samples were retained. In total, 28,549 CpG sites were 
similarly methylated in bone and blood. Between 33% and 49% of loci associated with bone 
phenotypes through GWAS were represented among these sites, and major pathways relevant to 
bone regulation were enriched. The results from this study indicate that blood can mirror the 
bone methylome and capture sites related to bone regulation. This study shows that in principal, 
peripheral blood is a feasible surrogate for bone tissue in DNA methylation investigations. As the 
first step, this will provide a platform for future studies in bone epigenetics, and possibly for 
larger-scale epidemiological studies.

ARTICLE HISTORY
Received 17 February 2020  
Revised 6 May 2020  
Accepted 28 May 2020  

KEYWORDS
DNA methylation; bone; 
blood; epigenetics; 
surrogate tissue

Introduction

The traits contributing to age-associated muscu-
loskeletal disorders have a high heritability, esti-
mated from 30% to 80% for bone phenotypes 
[1,2]. Our comprehension of the underlying 
genetic architecture of bone traits has advanced 
thanks in part to genome-wide association studies 
(GWAS), resulting in the identification of over 100 
single nucleotide polymorphisms (SNPs) asso-
ciated with osteoarthritis, and over 2000 associated 
with BMD or low impact fracture [3]. Despite 
these advances, the genetic variants identified can-
not fully explain the phenotypic variation, suggest-
ing that environmental factors and factors other 
than DNA-sequence variation play a role in dis-
ease susceptibility [4,5].

Epigenetics refers to variations in phenotype not 
explained by changes in the DNA sequence [6]. 
DNA methylation, the addition of a methyl group 

to the 5ʹ-position of cytosine at so-called CpG sites 
(where cytosine is positioned before guanine) in 
the genome, is the most studied epigenetic mod-
ification. Alterations in DNA methylation play 
a major role in the regulation of gene expression. 
Valuable insights into disease pathogenesis can be 
acquired by understanding how the methylome is 
modified [7,8], and by describing disease-related 
methylation patterns globally or at specific CpG 
sites [9].

Epigenetic research in the field of bone and mus-
culoskeletal disease is limited [10–13]. Many epige-
netic modifications are tissue-specific, and hence it 
is most informative to use bone itself when search-
ing for the epigenetic signature of a bone-associated 
trait. However, accessibility of bone tissue and diffi-
culties obtaining appropriate control material pre-
sent considerable obstacles. This necessitates using 
alternatives, with peripheral blood the obvious 
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choice as a non-invasive substitute. However, to be 
able to correctly interpret blood methylation data in 
relation to bone traits, a clear understanding of the 
extent to which the bone methylome is reflected in 
blood, is essential.

A number of studies have investigated DNA 
methylation in whole blood in relation to bone 
phenotypes at the epigenome-wide level. While 
some do not find a consistent association between 
CpG methylation and BMD [14], others compar-
ing osteoporotic individuals and those with nor-
mal BMD have found alternatively none or several 
CpG sites that differentiated between the groups 
[15,16]. With these inconsistencies, it is difficult to 
draw clear conclusions as to what extent bone 
methylome is reflected in blood.

For other inaccessible tissues, studies have 
investigated the feasibility of using blood as 
a surrogate tissue. For instance, studies investigat-
ing the concordance between blood and brain 
methylation levels report 1.4–7.9% of similarity 
[17,18]. However, to our knowledge, there are no 
studies on bone tissue which have systematically 
investigated the feasibility of using blood as 
a proxy. While we assume there is a correlation 
between the bone and blood methylomes, it is 
crucial to substantiate and quantify this. Knowing 
what is, and equally, what is not possible is vital for 
our future understanding. Further down the line, 
this knowledge will facilitate interpretation of the 
blood methylome in relation to bone traits. 
Peripheral blood use will also facilitate leveraging 
large-scale genetic epidemiological studies, and the 
eventual identification of DNA methylation 
biomarkers.

Hence, this is a proof of principle study, to 
address these gaps in knowledge. Using paired 
bone and blood samples collected from the same 
patient at the same time-point, and applying epi-
genome-wide analysis, we investigated the extent 
to which the methylomes in bone and blood cor-
respond. The overall aim was to determine if blood 
is, in fact, a viable surrogate for bone to study 
DNA methylation in the future.

Materials and methods

Bone and peripheral blood samples were collected 
from n = 12 Caucasian women (aged 66–85: 

mean = 76.3, SD = 6.7) undergoing hip replace-
ment surgery due to osteoarthritis. No exclusions 
were made based on comorbidity or medications. 
Bone biopsies consisted of trabecular bone from 
the exposed proximal femur (inter-trochanteric 
region) after removal of the femoral head. 
Biopsies were immediately chopped finely 
(200–600 mg in total), rinsed with cold saline to 
remove bone marrow and blood cells before trans-
portation on ice to the lab. Thereafter, biopsies 
were transferred into Trizol (Life technologyTM), 
immediately snap frozen in dry ice/ethanol, and 
stored at −80°C.

Written informed consent was obtained from 
the patients, and the study was approved by the 
Regional Ethics Committee in Lund (LU 957–03).

Genomic DNA extraction and DNA methylation 
profiling

Bone samples were thawed, homogenized 
(Polytron power homogenizer; Thomas Scientific, 
NJ, USA), and phase separation performed. DNA 
was isolated using a protocol from Stanford 
University [19]. From blood, DNA was isolated 
using QIAamp DNA blood mini kit (Qiagen, 
Valencia, CA, USA). All DNA was quantified 
using Nanodrop ND-1000 spectrophotometer 
(Thermo Scientific™, USA).

In total, the 24 matched bone and blood sam-
ples were analysed. For each sample, 500 ng of 
DNA was bisulphite converted (EZ DNA methyla-
tion kit, Zymo Research, CA, USA). DNA methy-
lation profiles were measured using the Human 
MethylationEPIC BeadChip (Illumina, CA, USA), 
which covers ~850,000 CpG sites in the genome, 
including enhancer regions, gene bodies and pro-
moters. BeadChips were imaged using the iScan 
System (Illumina, CA, USA). Methylation analysis 
of the samples was performed at SciLife lab, 
Uppsala, Sweden. Reproducibility of the array is 
constantly monitored through inclusion of the 
same QC samples in every sample batch (average 
reproducibility >0.9).

Samples were randomized to the chips and run 
in two batches (batch1, n = 14; batch2 n = 10), 
with matched samples (i.e., bone-blood from the 
same individual) in the same batch, to avoid intra- 
individual batch effects (Supplemental Table 1). 
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To quantify the reliability and reproducibility of 
the methylation measurements and identify any 
potential bias from batch effect, replicates of one 
bone sample were run (two replicates on the first 
chip ‘batch-1ʹ, and one replicate on the second 
chip ‘batch-2ʹ). Methylation levels were consistent 
and highly reproducible (Pearson’s r > 0.99). The 
data quality from bone and blood was identical, 
based on the rate of the probes that were robustly 
measured and the intensity of the signals.

Analysis of DNA methylation data

Rigorous approaches were applied to all aspects of 
the data analysis. A within-subject approach was 
applied, which takes into consideration the tissue 
correspondence at an individual level rather than 
the overall correspondence between tissue types. 
Besides, stringent definitions for significance and 
‘similarity’ were applied, in order to obtain the 
most conservative estimate of the between-tissue 
correlation. The aim was to identify the most con-
cordant sites, minimize the likelihood of SMPs being 
identified by chance, and narrow the field of capture 
so far as possible to CpG sites most representative of 
bone. A flowchart of the data acquisition, preproces-
sing and analysis strategy is shown in Figure 1.

Quality control, preprocessing and normalization
All data preprocessing was performed using 
R version 3.5.1 [20]. Minfi package [21] from 
Bioconductor [22] was used to import raw intensity 
data (IDAT) files to R, and for most of the prepro-
cessing steps. Limma package [23] was used to cal-
culate multi-dimensional scaling (MDS) plots, based 
on principal component analysis (PCA) [24].

In the first step, probe-wise quality control was 
performed to filter out failed probes. A detection 
p-value was calculated for every probe, by compar-
ing the total (methylated+unmethylated) DNA sig-
nal to the background signal level. Probes with 
p-value>0.01 were excluded (n = 3,156). Sample- 
specific quality control was also performed, based 
on the median of the methylated and unmethy-
lated channels. Probes that overlapped with SNPs 
(n = 29,446) were removed, as these represent 
direct genetic variations and can affect the down-
stream analysis. In this cleaned dataset, 833,274 
CpG sites remained.

For each CpG site, methylated (m), and unmethy-
lated (u) intensity values were used to calculate 
methylation levels as β-values [β ¼ m= mþ uþ αð Þ] 
or M-values [M ¼ log2 mþ α=uþ αð Þ], where α is 
an offset, customarily 100. β-values represent the per-
centage of methylation and have a more intuitive 

Figure 1. Schematic illustration of the experimental design and 
bioinformatic analysis strategy to determine the correspon-
dence between bone and blood methylomes.
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biological interpretation, whereas M-values are more 
statistically valid for data modelling and analysis [25].

For background correction and data normaliza-
tion, noob (normal-exponential convolution using 
out-of-band probes) method [26] was performed in 
minfi. To correct for batch effects, ComBat method 
[27] from surrogate variable analysis (SVA) package 
[28] was used. As all subjects were females, sex 
chromosomes were not excluded.

Identification and removal of differentially 
methylated CpG sites from the dataset
Sites which were differentially methylated in bone and 
blood (DMPs) were identified. DMPs were identified 
by group-mean parametrization, to reduce the effects 
of genetic variation between patients. A two-step pro-
cedure was taken: first, linear models were fit to the 
M-values using limma, including tissue type (variable 
of interest) and age (adjustment variable) in the 
design matrix, to minimize confounding from age- 
associated methylation changes [29]. Thereafter, 
moderated t-statistics were computed for the model. 
To account for multiple testing, false discovery rate 
(FDR) analysis was applied by the Benjamini– 
Hochberg method [30], with adjusted p-value 
(q-value) <0.05 considered statistically significant. 
Second, only sites with an average β-value difference 
of >20% (Δβ > 0.2) between the paired bone-blood 
samples were retained. The results of this within- 
subject differential analysis were compared with 
a paired-analysis approach, finding identical DMPs 
by both methods. Proportions of hypo- and hyper- 
methylated sites in bone relative to blood were calcu-
lated, using the average of the M-values difference 
between matched bone-blood samples.

Identification of similarly methylated positions 
(SMPs) between bone and blood
To identify SMPs, all the statistically differentially 
methylated CpG sites (q-value <0.05) were 
excluded, in order to restrict the focus to sites 
potentially concordant between bone and blood 
(Figure 1). A similarly methylated position was 
defined as a CpG site with identical (high or low) 
methylation levels (M-values) in bone and blood of 
each individual. The within-subject correspondence 
of M-values was calculated for each CpG site using 
Pearson’s correlation [31] and t-test. Following 

FDR analysis and removal of sites which did not 
reach statistical significance (adjusted p-values 
(q-value) <0.05), a shortlist of highly correlated 
sites (0:74< r< 0:99) was retained. As a final step, 
to narrow down these sites to more informative 
CpGs, a biologically driven criterion for similarity 
was applied, whereby only sites with maximum 20% 
difference (Δβ<0.2) between paired samples were 
retained.

Annotation of CpG sites and enrichment analysis

Annotation was based on Illumina’s EPIC array 
annotation data ‘ilm10b4.hg19ʹ. To investigate the 
enrichment of DMPs and SMPs in gene features, 
genomic and CpG island coordinates were defined 
based on the UCSC database (GRCh37/hg19) [32]. 
TSS200 and TSS1500 are located 0–200 and 200– 
1500bp upstream of the transcription start site. N- 
and S-shores are 0–2000bp, respectively, upstream 
and downstream of CpG islands. N- and S-shelves 
flank the shores, 2000–4000 bp from CpG islands. 
These regions are defined in relation to the near-
est genes; unmapped sites annotate to open sea. 
To enable quantitative comparison of the enrich-
ment of CpG sites, the ratio of DMPs and SMPs 
annotated to each genomic and CpG island coor-
dinates were obtained (i.e., proportional to num-
ber of EPIC array probes within each region).

Proportion of SMPs overlapping known loci for 
bone phenotypes

The GWAS catalogue was interrogated 
(22 May 2019) [3], using the keywords: ‘bone 
density’, ‘fracture’, ‘osteoarthritis’, ‘osteoporosis’ 
as phenotypes, and associated SNPs and gene 
names or loci that SNPs were located in or 
between were extracted. Paediatric traits were not 
included. For genes with more than one occur-
rence, only one unique name was retained. Then, 
a number of the similarly methylated CpG sites 
that were located within the structure of these 
selected genes was counted. For comparison, we 
also interrogated GWAS for a non-bone pheno-
type (epilepsy).
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Pathway analysis

Pathway enrichment analysis was performed on 
28,549 SMPs, using the missMethyl R package 
[33] from Bioconductor [22]. The ‘gene-universe’ 
was set to the 264,509 CpG sites from which SMPs 
were identified, and the Molecular Signatures 
Database (MSigDB) [34] was used as the reference 
pathway collection.

Pathway enrichment analysis was also per-
formed on a ‘core’ set of highly significantly cor-
related SMPs (FDR q-value<0.005; n = 5,026 CpG 
sites), to see if it would reveal pathways that would 
otherwise not be detected.

Permutation analysis

To confirm that the identified SMPs were 
beyond what would be expected by chance, 
permutation analysis was performed using the 
R package Rfast [35], to estimate the proportion 
of significantly correlated CpG sites under the 
null hypothesis. Briefly, subject labels of the 
samples were shuffled (10,000 iterations), effec-
tively breaking the paired nature of the data. At 
each iteration Pearson’s correlation was calcu-
lated, plotting those with FDR<0.05 and 
Δβ<0.2.

Results

Data preprocessing

Sample-specific quality control verified the data 
quality of all samples, and Noob normalization 
and batch correction further improved data qual-
ity, as shown by the β-value density plots 
(Figure 2). The raw data shows an evident batch 
effect, whereas the distributions are more consis-
tent in the processed data. As expected, bone and 
blood have distinct methylation patterns. Bone 
has a broader profile around the higher methyla-
tion levels, while at lower levels, bone and blood 
profiles look more similar. The MDS plots 
(Figure 3) show bone and blood are distinctly 
grouped, even prior to preprocessing, with batch 
effect reduced after normalization and removed 
after batch correction.

Identification of differentially methylated 
positions (DMPs)

Prior to SMP identification, in a first step, DMPs 
were identified. In total, 568,765 sites satisfied 
statistical significance (q-value <0.05). After apply-
ing the Δβ>0.2 cut-off, 14,625 sites were consid-
ered differentially methylated between bone and 
blood. The list of the DMPs, as well as the 
p-values, Δβ and annotations are included in 
Supplemental File 1.

An overview of the enrichment or depletion of 
DMPs in genomic regions can indicate which 
regions are less likely to be informative using 
blood as a surrogate. DMPs are enriched in gene 
bodies (2.1% of CpG sites in the array) and inter-
genic regions (1.9%), 5ʹUTR (1.8%) and 3ʹUTR 
(1.6%), and under-represented in 1st exon and 
TSS200 (both 0.7%) (Figure 4). With the exception 
of the intergenic region, where the proportion of 
hypo-methylated sites is almost double that of 
hyper-methylated sites, and the 3ʹUTR where 
hyper-methylated sites predominate (12.5% 
higher), the ratio of hypo- and hyper-methylated 
sites differed only slightly between regions. In rela-
tion to CpG island regions, DMPs are enriched in 
the open sea (2.5%) and shelves (1.6–1.7%) and 
under-represented in CpG islands (0.4%) and 
shores (1.0%) (Figure 4). Apart from the open 
sea region, where the ratio of hypo-methylated 
sites is higher by 15.2%, and the CpG islands 
where the ratio of the hyper-methylated sites is 
higher by 42.3%, the ratios of the hypo- and 
hyper-methylated sites are almost equal for the 
shores and the shelves.

Identification of similarly methylated positions 
(SMPs)

After applying a stringent definition of what con-
stituted a similarly methylated site, pair-wise cor-
relation testing of the M-values in the matched 
bone-blood samples identified a short-list of 
30,607 statistically highly correlated CpG sites 
(q-value <0.05). By applying a further final filter 
and threshold for methylation similarity (Δβ <0.2), 
a total of 28,549 sites had methylation levels which 
were at least 80% similar between bone and blood. 
This equates to 3.4% of the 833,274 CpG sites that 
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passed QC and filtering. The complete list of the 
SMPs and the correlation coefficients, p-values and 
annotations are included in Supplemental File 2. 
Among the SMPs, 9,918 (34%) were hypo- 
methylated (β< 0:2) and 2,214 (8%) hyper- 
methylated (β> 0:8).

Permutation analysis confirmed that the pro-
portion of SMPs is much higher than indicated 
by permutation, and is much higher than would 
be expected by chance (Figure 5).

An overview of the enrichment or depletion of 
CpGs indicates regions for which blood may pro-
vide most information as a surrogate. To assess if 
the SMPs are potentially relevant to gene expres-
sion, their genomic coordinates were investigated 
(Figure 6). SMPs are enriched in the 1st exon (6.3% 

of CpG sites in the array), TSS200 (5.9%), TSS1500 
(4.7%), and 5ʹUTR (4.0%), and under-represented 
in the 3ʹUTR (2.1%), gene body (2.4%) and inter-
genic (3.4%) regions. SMPs are enriched in CpG 
islands (6.3%) and shores (5.0–5.2%) and under- 
represented in the open sea (2.1%) and 
shelves (2.2%).

Overlap of SMPs with genetic loci associated with 
bone phenotype

The next objective was to demonstrate enrichment 
of bone associated loci among this stringently 
defined subset of SMPs, and confirm that the 
blood methylome can capture ‘bone related’ con-
tent. The GWAS catalogue contained 558 unique 

Figure 2. Beta-value density plots of the raw and preprocessed data for bone and blood.
Plots are coloured by batch (Red, Batch-1; Blue, Batch-2). Batch effect is observed in the raw data, but removed by the preprocessing 
methods. In the bottom plot, bone and blood show distinct methylation profiles, with bone having a broader distribution around 
higher methylation levels. 

EPIGENETICS 97



single nucleotide polymorphisms (equating to 411 
unique loci) associated with bone phenotypes. 
Almost 33% of the loci for osteoporosis pheno-
types and 49% of known OA loci were represented 
among the methylation data (Table 1 and 
Supplemental File 3 for gene lists and complete 
results). On the other hand, the overlap for epi-
lepsy as a non-bone phenotype was only 18%.

Genes of critical importance for bone biology, 
inlcuding ESR1, EN1, Wnt16, DKK1, SMAD3, 
SOX9, OPG, and RANKL, all contained at least 
one CpG site (range 1–4) where bone-blood 
methylation levels were highly correlated. For 
some sites (Figure 7), there was inter-individual 
variation in the methylation levels (e.g., 
cg15390122 in ESR1), while for others it was 
relatively constant between individuals (e.g., 
cg22970357 in EN1).

Pathway analysis showed that among the top 20 
ranked terms, pathways related to bone regulation 
were enriched, such as ‘Wnt signalling’ and 
‘Oestrogen response’, when including all the 
SMPs in the analysis (FDR q-value<0.05 and 
Δβ<0.2), shown in Table 2. Some of these key 
pathways were also enriched among a ‘core’ set 
of highly significantly enriched SMPs (FDR 
q-value <0.005 and Δβ<0.2), shown in Table 3.

Discussion

Epigenetic markers should contribute to the 
understanding of disease pathogenesis in bone 
and in the field of osteoporosis, although diffi-
cult to study. While GWAS has provided con-
siderable insight into genes involved in bone 
regulation, it is through the study of epigenetics 

Figure 3. Multi-dimensional scaling plots of the M-values in the raw and preprocessed data for bone and blood.
Data points are BN (bone) and BL (blood) with patient ID, coloured by batch (Red-Batch 1; Blue-Batch 2). Tissue type constitutes the 
main variance in the data; bone and blood samples are distinctly grouped in the raw and preprocessed data. Within the tissues, 
batch effect is evident in the raw and normalized data based on clustering of the samples, but is removed after batch correction. 
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that the mechanisms of gene–environment inter-
action can be elucidated. In view of the difficul-
ties in obtaining viable bone tissue from larger 
numbers of individuals, it would vastly improve 
the possibilities to study bone epigenetics if 
a surrogate tissue could be used. The obvious 
candidate tissue is peripheral blood.

This study therefore systematically investigated 
the correspondence between bone and blood 
methylation profiles in matched samples, as 
recommended from studies addressing similar 
issues in brain research [18]. Investigating DNA 
methylation at more than 850 K sites, 28,549 CpG 
sites similarly methylated in both bone and blood 

Figure 4. Enrichment of DMPs according to genomic and CpG island coordinates.
The bars show the distribution of differentially methylated CpG sites and the ratios of hypo- and hyper-methylated sites in various 
regions. The number of DMPs identified and total number of CpG sites in the preprocessed data are also reported. DMPs are 
depleted in promoter regions and CpG islands. The sum of DMPs in genomic coordinates (n = 16,228) exceeds the total number of 
DMPs identified (14,625) since some sites have multiple annotations that refer to gene isoforms. 

Figure 5. Permutation analysis on the correlation testing to identify similarly methylated positions.
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were identified. A very stringent definition of 
‘similarity’ in methylation (80% or more) was 
applied, in order to focus only on the most highly 
correlated positions, whether hypo- or hyper- 
methylated. A within-subject statistical approach 
and pair-wise correlation testing were applied 
(since inter-subject approaches using non- 
matched tissues over-estimate between-tissue cor-
respondence – related to averaging methylation 
markers across individuals in each tissue type) 
[18]. In our study, the correspondence between 
bone and blood equates to 3.4% of all sites in the 
final dataset. This is in the same range as for other 
inaccessible tissues such as brain [17,18], although 
most likely a conservative estimate, based on our 
approach combining a stringent definition and 
matched analysis. Among the similarly methylated 
positions, we had 33–49% overlap with loci 

robustly associated with bone phenotypes through 
large-scale GWAS. Compared to a selected non- 
bone phenotype, epilepsy, for which the overlap 
was only 18%, bone-phenotypes show a much 
higher overlap. Many key genes implicated in 
bone metabolism, including EN1, ESR1, Wnt16, 
and RANKL were represented, and major path-
ways relevant to bone regulation, including Wnt 
signalling and oestrogen response, were enriched 
among the similarly methylated positions, which 
further substantiates the feasibility of our 
approach.

Reviewing the available bone epigenetic litera-
ture, no directly equivalent study exists; only bone 
biopsies or only blood in different states of bone 
health (normal, osteoporosis, osteoarthritis, hip 
fracture) are used. However, it allowed us to con-
firm that CpG sites identified in the current study 

Figure 6. Enrichment of SMP according to genomic and CpG island coordinates.
The bars represent ratios of the CpG sites similarly methylated in bone and blood. For each region, the number of the SMPs 
identified and a total number of CpG sites in the preprocessed data are reported. SMPs are enriched in CpG islands and regions that 
have regulatory roles in gene expression. The sum of SMPs in genomic coordinates (n = 34,785) exceeds the total number of SMPs 
identified (28,549) since some sites have multiple annotations that refer to gene isoforms. 

Table 1. Number of loci for bone phenotypes extracted from the GWAS catalogue (A), number of GWAS loci represented among the 
similarly methylated positions.

(A) 
GWAS Catalogue*

(B) 
Bone-Blood similarly methylated CpG sites

GWAS Associated 
Phenotype

No of GWAS associated 
genes/loci (SNPs) No of overlapping SMPs

No of GWAS loci represented 
in the SMPs

Osteoporosis (BMD, Fracture) 310 (472) 242 102 (33%)
Osteoarthritis 101 (86) 129 50 (49%)

*Number of unique SNPs and loci associated with bone phenotypes (excluding paediatric traits) at interrogation (22 May 2019). 
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were also identified directly in one of these tissues 
or as discriminating between bone diseases. In bone 
biopsies, six of the similarly methylated CpG sites 

that we identified were also reported to differentiate 
between hip fracture and osteoarthritis [36], while 
two sites reportedly differentiated osteoporotic and 

Figure 7. Methylation levels in bone versus blood samples in the SMPs overlapping with 3 examples of genes involved in pathways 
known to be critical to bone biology – ESR1, EN1, and Wnt16.
The legends show the sites names and their genomic and CpG island coordinates. Some of the sites show high inter-individual 
variation, with methylation levels for bone and blood varying considerably between subjects, whereas other sites have low inter- 
individual variation and methylation levels are fairly consistent between individuals. 

Table 2. Pathway enrichment analysis using the molecular signatures database (MSigDB) on all the SMPs (FDR q-value of 
correlation< 0.05, and Δβ<0.2).

MSigDB Term Number of genes in the term Number of genes in the SMPs p-value for over-representation

HALLMARK_OESTROGEN_RESPONSE_EARLY 197 141 0,00002
PID_BETA_CATENIN_NUC_PATHWAY 78 57 0,00332
PID_CDC42_REG_PATHWAY 30 25 0,00536
HALLMARK_ANDROGEN_RESPONSE 101 70 0,00673
HALLMARK_UNFOLDED_PROTEIN_RESPONSE 112 73 0,00906
PID_WNT_SIGNALLING_PATHWAY 28 22 0,01016
PID_LKB1_PATHWAY 47 35 0,01251
HALLMARK_UV_RESPONSE_UP 157 101 0,01448
PID_P38_MK2_PATHWAY 21 17 0,02089
PID_BETA_CATENIN_DEG_PATHWAY 18 15 0,02469
NABA_COLLAGENS 43 32 0,02478
PID_HDAC_CLASSII_PATHWAY 33 25 0,02870
HALLMARK_OESTROGEN_RESPONSE_LATE 196 123 0,02882
PID_LPA4_PATHWAY 15 13 0,02917
PID_SYNDECAN_3_PATHWAY 16 13 0,03183
BIOCARTA_CARM_ER_PATHWAY 34 25 0,03857
BIOCARTA_MTA3_PATHWAY 18 14 0,03950
ST_FAS_SIGNALLING_PATHWAY 64 43 0,03950
PID_P53_DOWNSTREAM_PATHWAY 136 86 0,04025
PID_MYC_REPRESS_PATHWAY 62 43 0,04317
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healthy individuals [12]. These two sites are located 
in the TNXB and DKK1 genes, and the study also 
showed that in an independent cohort the DKK1 
site correlated with BMD in blood methylome. 
From a study using blood alone from osteoporotic 
and normal post-menopausal women [16], 16 sites 
were also captured in our study. The fact that we 
find an overlap between our similarly methylated 
positions and results from studies comparing bone 
phenotypes gives credibility to their potential as 
important regulators in bone metabolism. 
Importantly, it demonstrates that phenotypic varia-
tions in bone are to some extent reflected in the 
blood methylome.

Even among the similarly methylated positions 
not directly overlapping known bone-associated 
loci, hypothetically, some may still lie sufficiently 
close to impose a distal regulatory role, e.g., situ-
ated in enhancers in intergenic regions. Whether 
they play a role in bone biology will, of course, 
require further investigation. Overall, given our 
incomplete understanding of the genetic architec-
ture underlying bone metabolism, the 28,549 simi-
larly methylated CpG sites could include many 
candidates associated with phenotypic variations, 
as indeed could many of the DMPs.

The distribution patterns of similarly or differ-
entially methylated positions across the genome 
provides an outline of tissue similarities and 

discrepancies. Bone and blood were most similar 
in regions with regulatory roles in gene expression, 
i.e., enriched in CpG islands and shores. The den-
sity of similarly methylated positions decreased 
flanking outwards from the islands to shores and 
shelves; methylation at CpG islands is known to 
be highly correlated between tissues [37–39]. 
Similarly, methylated positions were also over- 
represented in the 1st exon and promoter regions 
and under-represented in gene body, intergenic 
and 3ʹUTR; CpG methylation is known to be less 
variable in the promoter and 1st exon, whereas 
dynamic in other regions [40–43]. Accordance of 
our results with the literature demonstrates that 
our experimental design and data analysis are cap-
turing the ‘right’ biology and inter-tissue epige-
netic correspondence.

Our study has a number of strengths, the first 
being the study design, involving elderly females of 
a limited age range, and matched bone-blood sam-
ples collected from the same patients at the same 
time-points. Having paired tissue samples is a great 
advantage when investigating biological corre-
spondence between tissues. When individual tissue 
types derived from different individuals are used, 
inter-subject and within-tissue variability are 
introduced, and consequently, within-tissue corre-
spondence is overestimated [18,37]. Therefore, by 
using paired tissue types, we avoid these 

Table 3. Pathway enrichment analysis using the molecular signatures database (MSigDB) on a ‘core’ set of highly significantly 
correlated SMPs (FDR q-value of correlation< 0.005, and Δβ<0.2).

MSigDB Term Number of genes in the term Number of genes in the SMPs
p-value for over- 

representation

NABA_COLLAGENS 43 16 0,00175
PID_P38_MK2_PATHWAY 21 8 0,01268
PID_SMAD2_3PATHWAY 17 7 0,01459
BIOCARTA_VITCB_PATHWAY 11 5 0,02346
HALLMARK_MYOGENESIS 196 41 0,03911
NABA_BASEMENT_MEMBRANES 40 12 0,04971
PID_WNT_SIGNALLING_PATHWAY 28 8 0,05285
NABA_CORE_MATRISOME 263 51 0,06253
BIOCARTA_PTC1_PATHWAY 11 4 0,06925
PID_WNT_NONCANONICAL_PATHWAY 32 9 0,07150
BIOCARTA_ACE2_PATHWAY 12 4 0,07831
PID_AVB3_INTEGRIN_PATHWAY 73 17 0,08961
PID_CIRCADIAN_PATHWAY 16 5,5 0,08970
PID_SYNDECAN_1_PATHWAY 44 11 0,08990
PID_P75_NTR_PATHWAY 67 14,5 0,10464
NABA_PROTEOGLYCANS 31 7 0,10553
BIOCARTA_AMI_PATHWAY 19 5 0,11518
PID_P38_ALPHA_BETA_DOWNSTREAM_PATHWAY 38 9,5 0,11830
ST_GRANULE_CELL_SURVIVAL_PATHWAY 26 7 0,12852
BIOCARTA_INTRINSIC_PATHWAY 21 5 0,13356
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complications and capture a more accurate pic-
ture, without significant confounding from the 
genetics of the patients. Secondly, we narrowed 
our focus to include only sites where the methyla-
tion levels were highly similar in bone and blood. 
The cost of this rigour is an underestimation of the 
reported correspondence, although we consider 
this beneficial. Thirdly, we performed pathway 
analysis, whereby even applying an FDR threshold 
of <0.005, we could demonstrate enrichment of 
biologically relevant pathways among the SMPs, 
while a substantial number of GWAS associated 
loci were also captured. The fact that many of 
these SMPs were enriched in CpG islands, promo-
ter regions and gene body suggests potential reg-
ulatory roles for some of the sites. Fourth, for the 
statistical analysis, we took different approaches 
for identifying similarly and differentially methy-
lated sites, all of which are well-established meth-
ods, have formerly been used for methylation data, 
and are reported in the literature. For similarly 
methylated sites, we used a between-tissue, within- 
subject approach. This restricted the results only to 
those sites for which blood reliably predicted 
methylation in bone on an individual level. On 
the other hand, for the differential analysis, we 
took a group-mean approach in order to minimize 
the effects of inter-individual genetic variations. 
Interestingly, when we tested the pair-wise 
approach, the final differentially methylated sites 
were identical to those picked by the group-mean 
approach. This could indicate that genetic varia-
tion among the subjects has not substantially influ-
enced the results, and that the results are robust. 
Finally, among the other strengths are the use of 
the Illumina MethylationEPIC BeadChip, which 
measures methylation at more than 850 K CpG 
sites in the genome. Besides higher coverage, an 
important feature is the inclusion of distal regula-
tory elements previously lacking [44]. We also 
extensively tested a number of preprocessing tech-
niques, ultimately choosing those that provided 
the best data quality, based on methylation density 
plots and PCA plots.

Limitations of the study are acknowledged, 
the first being the relatively small sample size 
that was inevitably imposed by the difficulty of 
obtaining bone tissue – an obstacle for all studies 
investigating difficult to obtain tissues. However, 

our sample size is adequately powered to satisfy 
nominal significance [45]. We have minimized the 
likelihood of false positives through FDR analysis, 
restricting our results to larger effect sizes and 
methylation differences; permutation analysis 
meanwhile indicates that the reported correspon-
dence is beyond what would be expected by 
chance. Second, although having biological repli-
cates in the design would have been valuable, due 
to technical limitations imposed specifically by the 
difficulty to collect bone samples, it was not pos-
sible. On the other hand, technical replicates were 
incorporated. We also acknowledge as a limitation 
that validating the SMPs was not possible. Thirdly, 
we did not specifically correct for cell type hetero-
geneity, although we acknowledge that both bone 
and blood are heterogeneous and cell type hetero-
geneity can affect methylation data. However, 
there were no significant differences between sub-
jects for blood cell populations (data not shown) 
[46,47]. Furthermore, our statistical approaches 
implied that cell type population is not a main 
source of variation in our samples. Confounding 
should be further mitigated by the pair-wise cor-
relation analysis of the matched bone-blood sam-
ples, which also minimizes confounding from 
underlying genetic variation. Finally, the lack of 
healthy controls could be considered a limitation, 
although this study only investigates correspon-
dence between tissues with no assumptions 
regarding disease or causality. Hence, we do not 
consider this a major constraint.

Epigenetics has huge potential to add to our 
understanding of the mechanisms modulating 
genetic regulation. The purpose of this study was 
to test a proof of principal – is blood a feasible 
surrogate tissue for bone, bone being an inaccessible 
tissue? In this respect, our systematic analysis of 
matched bone and blood samples demonstrates 
that it is feasible. This essential first step will facil-
itate future understanding of the interplay between 
the methylome and bone traits. We anticipate our 
results being useful for a number of purposes. The 
described similarly methylated sites can be exploited 
to explore which sites associate with bone pheno-
types in population-based studies. In the long term, 
this could include the possibility of identifying CpG 
sites as biomarkers for clinically important bone 
phenotypes. In addition, the investigation of specific 
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genes and the role of selected CpG sites in relation to 
gene function is possible. The differentially methy-
lated sites may also provide valuable tissue-specific 
information, and can be probed to identify novel 
genes and pathways directly or indirectly involved 
with bone metabolism. In conclusion, the knowledge 
acquired by our study provides a necessary platform 
for future studies in bone epigenetics.
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