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Abstract: Neuroinflammation is an important feature in the pathogenesis and progression of 
neurodegenerative diseases such as Alzheimer´s disease (AD), Parkinson´s disease (PD), frontotemporal 
dementia and amyotrophic lateral sclerosis. Based on current knowledge in the field, suggesting that 
targeting peripheral inflammation could be a promising additional treatment/prevention approach for 
neurodegenerative diseases, drugs and natural products with anti-inflammatory properties have been 
evaluated in animal models of neuroinflammation and neurodegeneration. In this review, we provide 
an extensive analysis of one of the most important and widely-used animal models of peripherally 
induced neuroinflammation and neurodegeneration - lipopolysaccharide (LPS)-treated mice, and address the data 
reproducibility in published research. We also summarize briefly basic features of various natural products, nutraceuticals, 
with known anti-inflammatory effects and present an overview of data on their therapeutic potential for reducing 
neuroinflammation in LPS-treated mice. 
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INTRODUCTION 

 Neuroinflammation is an important feature in the 
pathogenesis and progression of neurodegenerative diseases 
such as Alzheimer´s disease (AD), Parkinson´s disease (PD), 
frontotemporal dementia and amyotrophic lateral sclerosis [1-
8]. Brains from patients with neurodegenerative diseases are 
characterized by marked astrocytosis, activation of microglia 
and elevated levels of pro-inflammatory cytokines [8, 10-12]. 

 Epidemiological studies indicate that AD and PD risk 
positively correlates with pro-inflammatory conditions  
such as diabetes mellitus, metabolic syndrome, hyper- 
cholesterolemia and atherosclerosis suggesting that chronic 
inflammation may influence the development of 
neurodegenerative diseases (for detailed reviews see Refs. 
[13-17]). In addition, it has been recently reported that 
peripheral infections accompanied by inflammation represent 
major risk factors for the development of sporadic AD and 
PD [18-20]. 

 Based on current knowledge in the field, suggesting that 
targeting peripheral inflammation could be a promising 
additional treatment/prevention approach for neuro- 
degenerative diseases, drugs and natural products with anti-
inflammatory properties have been evaluated in animal 
models of neuroinflammation and neurodegeneration (for a 
review see Ref. [21]). In this review, we will first provide  
an extensive analysis of one of the most important and 
widely-used animal models of peripherally induced neuro- 
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inflammation and neurodegeneration - lipopolysaccharide 
(LPS)-treated mice. We will address data reproducibility as 
well as different experimental approaches in analyzed literature. 
LPS, an endotoxin from the outer membrane of bacteria, is 
known as a potent trigger of inflammation. It has been 
demonstrated that peripheral administration of LPS in mice 
induced astrocyte and microglia activation, as well as 
cyclooxygenase-2 (COX-2), inducible nitric oxide synthase 
(iNOS) and pro-inflammatory cytokine expression in the brain 
[22-25]. In addition, intracellular accumulation of amyloid 
precursor protein, amyloid β peptide and hyperphosphorylated 
tau as well as exacerbation of memory deficits were 
observed in LPS-treated APP transgenic mice [26, 27]. 

 We will also provide an overview of studies on anti-
inflammatory properties of various natural products, 
nutraceuticals, tested in LPS-treated mice. 

NEUROINFLAMMATION AND NEURODEGENERATION 
INDUCED BY PERIPHERAL ADMINISTRATION OF 
LPS 

Activated Microglia and Pro-inflammatory Cytokines 

 It is widely accepted that microglia, the principal effector 
cells of the immune system in the brain, in addition to being 
key actors for host defense in brain injury and disease  
(for comprehensive reviews see Refs. [28-31]), play an 
important role in the healthy brain physiology and synaptic 
remodeling associated with learning and memory probably 
by releasing neurotrophic factors like BDNF [32]. During an 
inflammatory response, activation of microglia leads to 
retraction of their processes and swelling of the cell bodies 
with subsequent loss of brain monitoring, and this may 
induce neuronal damage, disruption of relevant circuits and, 
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in the case of uncontrolled or chronic neuroinflammation, 
functional decline (for a review, see Ref. [32]). 

 After single or multiple peripheral treatment of mice with 
LPS, the increase in the numbers of F4/80-, CD11-, CD45- 
or Iba-1-positive cells as well as morphological changes 
characteristic for activated microglia were observed in 
numerous studies [22, 26, 27, 33-36]. However, there are 
also reports where authors did not observe microglia 
activation after single i.p. injection of LPS, although after 
multiple administration activated microglia were detected 
[37, 38]. 

 It has been well documented that peripherally-injected 
LPS induced a variety of central effects mediated, in part, by 
pro-inflammatory cytokines released mainly from microglia. 
Although it is generally accepted that cytokines released in 
periphery do not diffuse across the blood-brain barrier 
(BBB), but they may transfer the signal to the brain [39-41], 
numerous studies in animals demonstrated that LPS is 
capable of stimulating from periphery the synthesis of pro-
inflammatory cytokines in the brain [42-45]. However, 
despite the abundant literature available, the data on the 
presence of the main pro-inflammatory cytokines in the brain 
after LPS challenge differ according to different authors. The 
discrepancies in the results reported could be due to the 

numerous experimental details that are differing in all 
available reports: LPS or mouse strain used, site of injection, 
quantity of LPS applied, time after the challenge mice were 
sacrificed etc. 

 First studies reported robust and transient expression of 
interleukin-1β (IL-1β), IL-6 and TNF-α mRNA in various 
brain regions assessed by the reverse transcription 
polymerase chain reaction (RT-PCR) [42, 44, 46-49]. 
Different strains of mice (both males and females) were used 
in these studies: CH3/He, B6C3F1, C57BL/6J and CD-1. 
Intravenous or intraperitoneal injection of LPS at doses 
ranging from 0.02 mg/kg to 3 mg/kg was another variable in 
these studies. Moreover, mice were sacrificed at different 
time after the challenge, and this may explain, in part, 
different outcome seen because at certain concentrations LPS 
induces transient disease. 

 Subsequently, more studies were performed in wild type 
mice as well as in murine models of different neuro- 
degenerative diseases (AD, PD, ALS etc) using animals of 
different ages and, again, elevated and prolonged expression 
of IL-1β, IL-6 and TNF-α mRNA as well as proteins was 
documented in various brain regions after single or multiple 
peripheral administration of LPS. In the Tables 1 and 2 we 
are summarizing most frequently used protocols and their 

Table 1. Summary of single LPS administration protocols and results. 

Mouse Strain and Treatment Protocol Results and Methods Applied Refs. 

BALB/c, young adult* or old*; LPS-0127:B8;  
i.p.0.33mg/kg. Sacrificed at 4h 

Elevated IL-1β and IL-6 mRNA (RT-PCR)  
and protein (ELISA) 

[50] 

Same protocol; Sacrificed at 24 h Elevated IL-1β mRNA and IL-6 protein [50] 

BALB/c, old; same protocol; Sacrificed at 24 h Elevated IL-1β and IL-6 mRNA and IL-6 protein [50] 

C57BL/6J, ME7-infected (prion-disease model); 
i.p. 0.5mg/kg. Sacrificed at 6 h 

Elevated IL-1β, IL-6 and TNF-α mRNA (RT-PCR) 
and IL-1β protein (ICH) 

[37] 

C57BL/6J; LPS-0111:B4; i.p.5mg/kg. 
Sacrificed at 1 h, 14 and 21 days, 10 months 

Elevated TNF-α mRNA and protein (ELISA)  [22] 

BALB/c, young adult and old; LPS-0127:B8; 
i.p.0.33mg/kg. Sacrificed at 4 h 

Elevated IL-1β, IL-6 and TNF-α mRNA (RT-PCR) [51] 

BALB/c, young adult and old; LPS-0127:B8; 
i.p. 0.33mg/kg. Sacrificed at 4 h or 8 h 

Elevated IL-1β mRNA (RT-PCR) and protein (FACS) [52] 

C57BL/6J, young adult; LPS-026:B6; 
i.p.2mg/kg. sacrificed at 4 h or 24 h 

No effect observed [53] 

C57BL/6J, young adult; LPS-Salmonella  
Typhimurium; i.p.1mg/kg. Sacrificed at 4 days 

Elevated IL-1β protein (ELISA) [35] 

ICR, young; LPS-Salmonella Typhimurium; 
i.p.5mg/kg. Sacrificed at 24 h 

Elevated IL-6 protein (WB) [54] 

C57BL/6J, young; LPS-0111:B4; i.p. 2mg/kg. 
Sacrificed at 24 h 

Elevated IL-1β, IL-6 and TNF-α mRNA and protein [55] 

B6C3F1, young adult; LPS-0111:B4; 
i.p. 10mg/kg. Sacrificed at 3 h 

No statistically significant production of IL-1β, IL-6  
and TNF-α protein (ELISA) 

[56] 

Same protocol. Sacrificed at 4,6 and 12 h Elevated IL-6 protein (ELISA) [56] 

*young mice: 2 months of age; young adult mice: 3-4 months of age; adult mice: 12-13 months of age; old or aged mice: 20 or more months old. 
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outcome published recently. Cited papers, in turn, contain 
extensive review of previous work. 

 As can be seen, even in the case of the same mouse and 
LPS strain and almost similar experimental procedure, some 
authors observed elevated pro-inflammatory cytokines in the 
brain while others did not. Some authors measured both 
mRNA and protein levels while others evaluated (or 
reported) only mRNA or protein data. In some cases, it is not 
clear if the absence of a given cytokine is because authors 
measured it and obtained negative results or they did not 
perform the evaluation. Another important issue to be 
considered is the psychological stress that may lead to a pro-
inflammatory status of the brain and to exaggerated 
microglia activation, and differences in animal management 
and care in the different laboratories may explain, in  
part, heterogeneity of results [57, 58]. However, certain 
reproducibility among different laboratories exists, and one 
may conclude that 1) peripheral administration of LPS leads 
to exacerbated neuroinflammation in old vs adult mice; 2) 
high doses as well as multiple administration of LPS 
increase the expression of pro-inflammatory cytokines in the 
brain. In biomedical research, the convergence of different 
methods for evaluating the same phenomena is another 
important issue, and, as can be seen below in Tables 1 and 2, 
the elevated expression of pro-inflammatory cytokines was 
documented using different experimental approaches, like 
RT-PCR, ELISA, WB, FACS and immunocytochemistry. 

 An important point to be considered when using this 
model should be the mouse strain. Thus, C57BL/6J and 
FVB/NL mice were shown to be highly susceptible to systemic 
LPS challenge while A/J, C3H/HeJ and 129S1/SvImJ were 
reported to be resistant [59-61]. However, in another study 
from Yang’s group, C57BL/6J mice were found to be 
resistant [62]. The great majority of APP-Tg mice as well as 
mouse models for Parkinson disease have mixed C57BL/ 
6Jx129S1/Sv, C57BL/6JxSJL or C57BL/6JxC3H/HeJ 
background, and it is difficult to guess their susceptibility to 
systemic LPS [63-72]. 

 Some unique observations were also reported. Thus, 
while the majority of studies in this model pointed to 
destructive role of activated microglia and molecules 
released and demonstrated M-1 (pro-inflammatory) cytokine 
profile, Chen and collaborators reported that one or multiple 
i.p. injections of 1mg/kg LPS prime microglia toward M2 (anti-
inflammatory) phenotype and may lead to neuroprotection, and 
suggested LPS preconditioning for therapeutic applications 
to benefit patients who suffer from neurodegenerative 
diseases or brain trauma [38]. One likely reason for these 
contradictory results may be slightly different experimental 
conditions used. Also, it is also important to mention that in 
the latter study authors did not include (or did not report) in 
microarray analysis of M-1-related genes two important pro-
inflammatory cytokines, IL-6 and IL-1β, known to be 
expressed in the brain of i.p. LPS-treated mice. Instead, they 
observed no changes in iNOS and TNF-α genes, in 
agreement with some previous research. 

 In conclusion, whether i.p. LPS injection in mice will 
have neurotoxic or neuroprotective effect, will depend on 
experimental conditions, and there are examples included in 
Tables 1 and 2. 

Astrogliosis 

 Astrocytes, the most abundant cell type in the CNS, have 
many essential functions in the healthy brain and respond  
to different forms of damage through a process called 
astrogliosis (for extensive recent reviews see Ref. [73-75]). 
Although the astrogliosis was shown to be a beneficial 
process to protect neurons and repair the tissue after CNS 
insult, under specific conditions reactive astrocytes can 
exacerbate neuroinflammation and tissue damage (for 
detailed reviews see Ref. [75-77]). 

 In LPS-treated mice an increase in the number of glial 
fibrillary acidic protein (GFAP)-positive cells and up-
regulation of GFAP expression at different time points after 
challenge as well as astrocyte hypertrophy were reported by 

Table 2. Summary of multiple LPS administration protocols and results. 

Mouse Strain and Treatment  Results and Methods Applied Refs. 

3xTg-AD, young adult*; LPS-055:B5; i.p. 0.5mg/kg; 
twice per week/6 weeks. Sacrificed at 24h 

Elevated IL-1β but not IL-6 or TNF-α 
mRNA (RT-PCR) 

[27] 

3xTg-AD, adult*; same protocol. Sacrificed at 48 h  
 

Elevated IL-6 protein (ELISA)- statistically  
significant  

Elevated IL-1β protein (ELISA)- no statistical  
significance achieved 

[33] 

C57BL/6J, young adult; LPS-026:B6; i.p. 2mg/kg; 
dual injection at 0 and 16 h. Sacrificed at 4 h or 24 h 

Elevated IL-1β, IL-6 and TNF-α mRNA [53] 

C57BL/6J; LPS-N/A; i.p. 0.25mg/kg; daily for 7 days. 
Sacrificed at 24 h 

Elevated TNF-α and IL-1β mRNA [34] 

B6C3F1, young adult; LPS-0111:B4; i.p. 10mg/kg; 
2 or 3 injections during 24 h. Sacrificed at 24 h 

Elevated IL-1β, IL-6 and TNF-αprotein [56] 

B6C3F1, young adult; LPS-0111:B4; i.p. 0.5mg/kg; 
every 3 days during 3 months. 

Elevated IL-1β and decreased TNF-α protein 
No changes in IL-6 protein (ELISA) 

[56] 

*young mice: 2 months of age; young adult mice: 3-4 months of age; adult mice: 12-13 months of age; old or aged mice: 20 or more months old. 
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some laboratories [25, 26, 34, 35, 58] while others did not 
observe such an increase [78]. 

iNOS and COX-2 

 Two pro-inflammatory effector enzymes, iNOS and 
COX-2, are induced and up-regulated upon inflammation 
and known to contribute to neurodegeneration. There is no 
detectable iNOSgene expression in the brain at baseline, 
while COX-2 was found to be expressed under normal 
conditions too and to participate in fundamental brain 
functions such as synaptic plasticity and memory 
consolidation (for a review see Refs. [79-81]). Enhanced 
expression of iNOS during an inflammatory response can 
increase the local production of NO which has been 
suggested to be involved in neurodegenerative processes, 
including the inhibition of mitochondrial respiration, axonal 
and synaptic damage, and the induction of neuronal 
apoptosis [82-85]. Genetic ablation and pharmacological 
inhibition of iNOS has been shown to protect mice from 
spatial memory dysfunction and depressive-like behavior 
[86, 87]. 

 Numerous studies demonstrated increased levels of iNOS 
and COX-2 mRNA and protein in the brains of i.p. LPS-
treated mice using RT-PCR, WB or immunohistochemistry 
[24, 49, 88-90]. While levels of mRNA picked between 3 
and 6 h and then decreased to basal levels at 12-24 h after 
LPS treatment, elevated iNOS and COX-2 protein were 
detected by WB and immunohistochemistry at 6, 24 h and 3 
days [35, 88, 91, 92]. Interestingly, induction of COX-2 
occurred mainly in brain endothelia [89, 91, 93] and was not 
significantly region-specific [89]. However, Okuyama and 
collaborators detected COX-2 in activated astrocytes but not 
microglia after i.p. LPS injection [35]. COX-2 immuno- 
reactivity was observed mainly around the nuclear envelope 
as well as in dendritic and axonal domains [88, 93]. 

 Up-regulation of iNOS was also evaluated by measuring 
the activation of the NO pathway after peripheral 
administration of LPS [94]. 

Synaptic Failure and Cognitive Dysfunction 

 It has been demonstrated that neuroinflammation 
impaired synaptic plasticity in the hippocampus, disrupted 
hippocampal-dependent learning and memory and increased 
neuronal death [37, 95-97]. These phenomena were also 
addressed in mice after single or multiple peripheral LPS 
administration. Authors detected increased neuronal 
apoptosis, progressive loss of dopaminergic neurons, 
reduced expression of brain-derived neurotrophic factor 
(BDNF), reduced serotonin release by serotonergic neurons, 
decreased levels of autophagy markers, reduced social 
behavior and locomotor activity as well as impaired 
performance in various learning and memory tasks, 
including two-way active avoidance conditioning test and 
the Morris water maze [22, 35, 37, 50, 51, 54-56, 96, 98-
101]. Young and old C57BL/6J and BALB/c mice were 
used, and, as expected, greater cognitive dysfunction was 
observed in old animals reflecting higher neuroinflammation 
in elderly [51, 99]. However, it is noteworthy to mention 
findings reported by Sparkman and collaborators that old 

mice given repeated LPS injections had significantly longer 
latencies compared with controls, but authors contributed 
these results to reduced swim speed as well as anxiety-like 
symptoms and not necessarily to learning and memory 
dysfunction [99]. On the other hand, in a recent study by 
Ormerod and collaborators, swim speeds in C57BL/6J 
female mice (7-8 weeks-old) were unaffected one week after 
single intraperitoneal challenge with 5mg/kg LPS [102]. In 
addition, no statistically significant effect of LPS on learning 
and memory on hidden platform trials was observed one 
week later in these animals. Four weeks after challenge LPS-
treated mice manifested latent spatial memory impairment 
but their ability to either learn a novel hidden platform 
location or locate a visible platform was similar to control 
group [102]. Finally, authors demonstrated that peripheral 
LPS compromises hippocampal neurogenesis [102]. 

Exacerbation of AD-like Pathology in APP-transgenic 
Mice 

 Few studies were performed in APP-transgenic mice to 
evaluate the effect of peripherally administered LPS [26, 27, 
33, 103]. In the first study, Sheng and collaborators treated 
with LPS adult APPswe Tg mice intraperitoneally once a 
week for 12 weeks and observed microglia activation as 
determined by the increase in F4/80(+) cells [26]. In 
addition, LPS treatment increases brain levels of APP, APP 
C-terminal fragments and Aβ1-40/42 as determined by 
immunohistochemical analysis and western blotting [26]. 
Subsequently, the effect of a systemic challenge with LPS on 
brain was assessed in three studies in 3xTg-AD mice that 
develop both Aβ and tau pathology [27, 33, 103]. All three 
studies used the same LPS strain, but other experimental 
conditions were not similar. In summary, i.p. LPS treatment 
of young adult (4-month-old) 3xTg-AD mice twice per week 
for 6 weeks induced microglial activation, IL-1β expression 
and tau phosphorylation, but unlike in the previous report by 
Sheng and collaborators [26], did not affect APP processing 
and Aβ deposition [27]. No significant effect of LPS on the 
onset and progression of Aβ pathology was observed in 12-
month-old 3xTg-AD mice treated by using the same protocol 
[33]. However, in the latter study authors also observed 
exacerbation of tau pathology as well as learning and 
memory impairments in LPS-treated mice [33]. Finally, 
Valero and collaborators demonstrated that a single i.p. 
injection of LPS in 3xTG-AD mice has a long-term impact 
on adult neurogenesis and lead to the development of 
memory deficits [103]. 

 All these studies suggested that systemic LPS-induced 
inflammation may trigger neuroinflammation with 
subsequent Aβ and/or tau pathology, neurodegeneration and 
cognitive decline. 

NUTRACEUTICALS: PRECLINICAL STUDIES IN 
LPS-INDUCED NEUROINFLAMMATION MODEL 

 As an important and widely-used animal model of 
peripherally induced neuroinflammation and neuro- 
degeneration, LPS-treated mice were also widely used to 
screen synthetic drugs and natural products. This review will 
focus on natural products with therapeutic properties known 
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as nutraceuticals and used to reduce LPS-induced neuro- 
inflammation in mouse brain. Comprehensive review on 
nutraceuticals with anti-inflammatory and neuroprotective 
properties in other models as well as possible multiple 
mechanisms of their action may be found elsewhere [104-
108]. 

Resveratrol 

 Resveratrol is a polyphenol found mainly in grapes and 
red vine and shown to confer protection in vitro and in vivo 
against oxidative stress, inflammatory and cardiovascular 
diseases, cancer as well as neuropathology associated with 
neurodegenerative diseases, brain trauma and cerebral 
ischemia (see excellent recent reviews Refs. [109-111]). 

 It has been shown that dietary supplementation of 
resveratrol during four weeks reduced IL-1β mRNA in the 
hippocampus of aged (22-24 months) male BALB/c mice 
treated intraperitoneally with LPS [112]. Interestingly, in this 
study resveratrol did not affect LPS-induced sickness 
behavior in young adult mice (3-6 months) at any time post-
injection, however, ameliorated LPS-induced locomotor 
deficits in aged (22-24 months) mice beginning at 8 h [112]. 
In addition, resveratrol completely blocked LPS-induced 
inhibition of working memory in aged mice [112]. In  
another study, adult male Swiss Albino mice were daily i.p. 
injected with resveratrol during 7 days and then challenged 
by a single i.p. administration of LPS (4mg/kg) [113]. 
Authors showed that resveratrol increases the survival  
rate, abolished NO elevation to near control levels and 
counteracted all LPS-induced iron disturbances in the  
brain [113]. Protective effects of resveratrol on memory 
decline were also observed in mice first treated i.p. with LPS 
to induce neuroinflammation and then injected with 
resveratrol for 7 days, suggesting possible therapeutic 
application [114]. 

Curcumin 

 Curcumin, the main ingredient of the Indian spice 
turmeric, was shown to display anti-inflammatory, anti-
oxidant, anti-cancer and anti-bacterial properties by multiple 
mechanisms (see comprehensive recent reviews Refs. [115-
119]). In mouse model of neuroinflammation induced by i.p. 
LPS injection, curcumin was able to reduce iNOS and IL-1β 
levels in the brain [120]. Wang and collaborators demonstrated 
that pretreatment with curcumin (50 mg/kg, i.p.) for 7 
consecutive days reverses i.p. LPS-induced alterations in the 
forced swimming, tail suspension and sucrose preference 
tests and attenuates microglial activation and overproduction 
of pro-inflammatory cytokines (IL-1β and TNF-α) as well as 
levels of iNOS and COX-2 mRNA in the hippocampus and 
prefrontal cortex of adult male Kun-Ming mice [121]. 
Because of its insolubility in water, poor bioavailability and 
difficulty to cross blood-brain barrier, curcumin has to be 
used with new delivery systems. One of these strategies was 
tested in LPS-treated mice [122]. Authors demonstrated that 
intranasally administered exosome encapsulated curcumin is 
rapidly transported to the brain and inhibits i.p. LPS-induced 
increase in brain IL-1β as detected by FACS and RT-PCR 
analysis in C57BL/6J mice [122]. 

Ginsenosides and Glycyrrhizin 

 Ginsenosides are ginseng saponins shown to modulate 
inflammatory processes, as well as to inhibit neuron death, 
mitochondrial dysfunction and tumor growth [123-126]. In 
LPS-induced neuroinflammation model ginsenoside Rg3 has 
been demonstrated to attenuate pro-inflammatory cytokines 
(TNF-α, IL-1β and IL-6) mRNA expression in the brain[24]. 
In addition, inhibition of microglia activation (evaluated by 
Western blot and immunohistochemistry using anti-Iba 1 
antibody) and iNOS and COX-2 expression (evaluated by 
immunohistochemistry) in the brain of i.p. LPS-treated 
C57BL/6J adult male mice was observed after oral 
administration of Rg3 [24]. In another study, Lee and 
collaborators demonstrated that ginsenoside Rb1 reduced 
microglia activation and pro-inflammatory cytokines (TNF-
α, IL-1β and IL-6) and COX-2 mRNA expression in the 
brain following single i.p. administration of 3 mg/kg of LPS 
[127]. In this study, COX-2 reduction was also observed by 
IHQ [127]. 

 Glycyrrhizin (GRZ), a triterpenoid saponin compound 
composed of one molecule of glycyrrhetinic acid and two 
molecules of glucuronic acid, was shown to have anti-
inflammatory and neuroprotective effects in vitro and in vivo 
[128-130]. In peripherally LPS-treated C57BL/6J mice, 
orally administered GRZ significantly reduced brain 
expression of TNF-a, IL-1β, iNOS and COX-2 as determined 
by RT-PCR, immunohistochemical analysis and western 
blotting [92]. Also, authors demonstrated that GRZ 
ameliorates the memory deficits as observed in Morris water 
maze test [92]. 

Oenothein B 

 Oenothein B, a dimeric macrocyclic ellagitannin, was 
shown to have anti-inflammatory, anti-oxidant and anti-
tumor activity both in vitro and in vivo [131-133]. Okuyama 
and collaborators showed that oenothein B suppresses 
microglial activation and COX-2 production in the 
hippocampus and striatum of i.p. LPS-treated mice [35]. 

Flavonoids 

 A group of dietary polyphenols, known as flavonoids, 
has been shown to inhibit inflammatory processes and to 
prevent age-related neurodegeneration and cognitive decline 
(reviewed in Refs [107, 108, 134, 135]). Their potential to 
attenuate neuroinflammation may be explained by inhibition 
of microglial activation and pro-inflammatory cytokines, as 
well as iNOS and COX-2 expression [107, 108]. 

 Acacetin, the active compound of the crude extract of the 
leaves of Robinia pseudoacacia, has been shown to suppress 
microglia activation in i.p.LPS-treated adult male C57BL/6J 
mice after oral administration for 3 days [136]. 

 It has been demonstrated that orally administered 
epigallocatechin-3-gallate (EGCG), the most abundant 
biologically active compound in tea, prevented memory 
impairment in 5-week-old male IcrTacSam:ICR mice caused 
by 7daily i.p. LPS injections, as determined by water maze 
and passive avoidance performance tests [137]. Moreover,  
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authors observed inhibition of LPS-induced iNOS, COX-2 
and GFAP expression in the brains of EGCG-administered 
mice, as determined by immunohistochemical analysis and 
Western blotting [138]. 

 Purple sweet potato color (PSPC), a natural anthocyanin 
from the flavonoid family, has been shown to suppress 
iNOS, COX-2, TNF-α, IL-1β and IL-6 expression in LPS-
treated mouse brain and to reverse the impairment of motor 
and exploration behavior induced by LPS [138]. 

CONCLUSIONS 

 Neuroinflammation is now known to contribute to and 
exacerbate the pathology of neurodegenerative diseases. 
Better understanding of the mechanisms of neuro- 
inflammation induced by peripheral infection may lead to 
discovery of new therapeutic targets as well as new treatment 
approaches. The strategy of reducing inflammation in 
neurodegenerative disease has attracted increasing attention 
in recent years, and numerous synthetic and natural 
compounds are being tested in pre-clinical models as well as 
in clinical trials. However, more studies are needed to define 
which immune pathways or molecules, participating in 
inflammatory events leading to neurodegeneration, should be 
targeted. Importantly, we should always keep in mind that 
phenomena observed in mice may not occur in the same  
way in humans because of differences between mouse and 
human immune system (for a review see Ref. [139]). A 
systemic comparison of gene expression patterns in three 
inflammatory conditions – trauma/hemorrhage, burn and 
endotoxemia- showed poor correlation between mouse and 
human immune responses [140]. However, in the latter study 
LPS was administered to mice in very low concentrations 
and it is not possible to compare their results with 
observations summarized and discussed in this review. Also, 
authors studied gene expression using blood samples and did 
not address neuroinflammation [140]. Nevertheless, we 
completely agree that although peripheral LPS-induced 
mouse model of neuroinflammation is an important tool  
for deciphering pathological mechanisms involved in 
neurodegeneration as well as for testing potential therapeutic 
molecules, caution is warranted when translating results to 
human studies. 
 Importantly, combination of strategies targeting 
simultaneously different pathological pathways, “systems 
therapeutics”, may be more appropriate for a range of 
multifactorial neurodegenerative diseases with a known 
neuroinflammatory component. 
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