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Abstract
Primary care systems are a cornerstone of universally accessible health care. The planning, analysis, and adaptation of
primary care systems is a highly non-trivial problem due to the systems’ inherent complexity, unforeseen future events, and
scarcity of data. To support the search for solutions, this paper introduces the hybrid agent-based simulation model SiM-
Care. SiM-Care models and tracks the micro-interactions of patients and primary care physicians on an individual level. At
the same time, it models the progression of time via the discrete-event paradigm. Thereby, it enables modelers to analyze
multiple key indicators such as patient waiting times and physician utilization to assess and compare primary care systems.
Moreover, SiM-Care can evaluate changes in the infrastructure, patient behavior, and service design. To showcase SiM-Care
and its validation through expert input and empirical data, we present a case study for a primary care system in Germany.
Specifically, we study the immanent implications of demographic change on rural primary care and investigate the effects
of an aging population and a decrease in the number of physicians, as well as their combined effects.

Keywords Hybrid simulation · Agent-based modeling · Discrete-event simulation · Primary care · Decision support ·
Operations research

Highlights

• We present the hybrid agent-based simulation model
SiM-Care, which aims to serve as a decision support
tool for the analysis of the quality of primary care
systems

• Assessments are based on multiple key performance
indicators such as patient waiting times and physicians’
utilization

• Effects of interventions such as the use of mobile
medical units or centralized appointment systems can
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be quantified and validated before an actual action is
taken

• The simulation model is very generic and can be easily
adapted to individual needs and regional specifics

• A case study demonstrates the application of SiM-
Care for the analysis of a rural primary care system in
Germany

1 Introduction

Primary care systems are the foundation of accessible
health services. Following the definition of the American
Academy of Family Physicians [5], primary care systems
“serve as the patient’s first point of entry into the health
care system and the continuing focal point for all needed
health services”. To that end, they feature a set of
primary care physicians (PCPs) who provide “primary care
services to a defined population of patients”. These include
“health promotion, disease prevention, health maintenance,
counseling, patient education, diagnosis and treatment of
acute and chronic illnesses”.

Demographic change challenges the functioning of
primary care systems: Medical and technological progress
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paired with improved living conditions and reduced birth
rates leads to an increased share of elderly citizens. In the
United States, the percentage of individuals aged 65 and
older is predicted to exceed 21% of the total population by
2030 [65]. As populations age, their demand for primary
care services tends to increase due to the prevalence of
chronic illnesses, which disproportionately affect older
adults [4, 46]. Simultaneously, primary care physicians are
also aging; e.g., 34.1% of all primary care physicians
in Germany were 60 years or older by the end of 2017
[2] and thus about to retire. Moreover, fewer medical
students are willing to practice primary care [46], let alone
open a private primary care practice [35]. This reduces
treatment capacities and exacerbates the risk for supply
disruptions.

In the United States, the “confluence of a rising demand
for primary care services and a decreasing supply of
professionals providing these services” is considered a
“crisis in primary care” [46]. In order to manage this crisis,
existing systems have to adjust fundamentally [50]. Various
new concepts and policies to maintain the standard of
health care provision are discussed by the statutory health
insurances, governments, and the Associations of Statutory
Health Insurance Physicians [46, 56]. This discussion
commonly distinguishes (i) microsystem improvements,
which aim at enhancing a single server of the system and can
be implemented at an individual level, and (ii) macrosystem
reforms, which are fundamental, system-wide changes that
must be implemented by policy makers [69]. Both types
of system changes require validation and evaluation prior
to their potentially costly implementation [50]. Naturally,
this leads to the pressing question: How can we quantify
the quality of primary care systems and the effects of
changes?

The predominant solution to this problem is to assess
the ratio between physicians and the population. In the
United States or example, the Health Resources and
Services Administration defines adequate health care supply
based on profession- and region-specific population-to-
provider ratios [16]. Similar ratio-based measures are
applied in several European countries like Germany, Italy,
and Spain [24, 45]. Such ratio-based assessments have
several shortcomings: Even if they incorporate the local
situation, ratios can only provide a very rough estimate.
Furthermore, adjustment criteria are highly dependent on
the definition of the underlying zones or geographic
areas. They neglect factors such as the accessibility of
practices and PCPs’ individual workloads. Finally, ratio-
based assessments cannot account for new concepts such
as telemedicine, mobile medical units, or centralized
appointment scheduling.

To overcome these limitations, this paper contributes the
hybrid agent-based simulation tool SiM-Care (Simulation

Model for Primary Care). SiM-Care represents patients
and PCPs on an individual level as illustrated by Fig. 1.
It models patients and primary care physicians via a
geo-social system, in which patients decide whether
and where to request an appointment and PCPs handle
appointment requests, manage patient admission, and treat
patients. By tracking the resulting interactions in SiM-
Care, planners can identify dependencies of subproblems,
evaluate new planning approaches, and quantify the effects
of interventions on the basis of multiple key performance
indicators. As such, SiM-Care can serve as a versatile
decision support tool for primary care planning that is very
generic, can be easily modified, and can be extended to
meet individual needs. Based on empirical data from a
German primary care system, we illustrate how to generate
simulation scenarios and showcase SiM-Care through a case
study. To the best of our knowledge, SiM-Care is the first
simulation model that captures entire primary care systems
with all physicians and patients as individual agents and
allows for the simultaneous consideration of microsystem
improvements as well as macrosystem reforms. The open
source release of SiM-Care is currently in preparation.

The remainder of this paper is structured as follows.
Section 2 discusses related work.We introduce SiM-Care on
the basis of the ODD framework [26] in Section 3. Section 4
presents a case study based on real-world data to aid model
validation and showcases the application of SiM-Care in

PCPs

Patients

PCPs

Patients

Fig. 1 Geo-social system of patients and physicians. Note: Map tiles
by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under
ODbL
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health care planning. Section 5 summarizes the use and
requirements of SiM-Care and further model applications
before outlining future research.

2 Related work

Decision support for health care planning is of increasing
importance [29]. Related tools have to deal with the detail
complexity that is inherent to the health care sector, finding
it difficult to rely on the principle of “keep it simple, stupid”
(KISS, [12]). Simulation modeling can deal with this
complexity by “simulating the life histories of individuals
and then estimating the population effect from the sum of
the individual effects” [23]. As such, simulation models
represent a powerful tool to inform policy makers: They
can provide valuable insights into the dependencies within
health care systems and allow for the prediction of the
outcome of changes in strategy ahead of potentially costly
and risky real-world interventions [23, 29].

Given these potentials, the use of computer simulation
in health care delivery has significantly increased over
the recent years [69]. The resulting body of literature is
rich, as shown by several surveys of existing contributions.
Examples include [15, 23], who review the use of
simulation modeling for health care in general. Other
surveys are mostly focused on particular simulation
paradigm, e.g., system dynamics [11, 32], discrete event
simulations [29, 36], agent-based modeling [7, 64], and
hybrid simulations [13, 14]. Most recently, with general
research attention being focused on the matter of pandemics
in general and COVID-19 in particular, [20] point out
opportunities for health care simulation modeling for
pandemics beyond epidemiological modeling. The authors
list a variety of decisions in emergency health care that
simulation modeling, such as exemplified by SiM-Care, can
support. Nevertheless, some sources remark that research
on health care modeling continues to be under-reported [10]
and highlight a “lack of real-world involvement in published
simulation modelling” [15].

As background for the primary contribution of presenting
a novel simulation system, we consider several examples of
the computational study of primary care systems. Related
references stem from a literature research featuring the
keywords {simulation, decision support, system dynamics,
discrete event, agent based model} + {primary care, health
care}. Table 1 lists the resulting sources and differentiates
the simulation paradigm, the modeling objective, and
information on stakeholder involvement and maintenance.
Accordingly, we broadly partition the considered models
into two groups: those studying microsystem improvements
and those investigating macrosystem reforms.

Studies of microsystem improvements include [18, 25,
59, 61, 67, 69]. In contrast to SiM-Care, these models only
feature a single primary care practice. Moreover, all of these
models adopt a different approach to the representation
of patients: While SiM-Care models a persistent patient
population that is shared by all providers, the referenced
models represent patients only as they arrive at the practice
and disregard their evolution when they are discharged. As
a result, such models do not account for the effects of
individual microsystem improvements on the entire system.

Other references, such as [31, 47], investigate macro-
system reforms and feature entire primary care systems.
Still, the agent-based model [31] differs from SiM-Care in
its objective: It investigates the external effects of treatments
in primary care on the entire health care system, whereas
SiM-Care focuses on the processes within primary care
systems. Hence, [31] does not model internal processes,
such as appointment scheduling. Model [47] implements
the system dynamics paradigm and thus focuses on a
higher level system representation than SiM-Care. While
system dynamics models do not consider the level of micro-
detail offered by agent-based simulations, they require
less computational effort to run simulation experiments. In
addition, they may provide a more concise model that is
easier to communicate to stakeholders. This motivates us to
specifically consider aspects of model validation in the case
study.

To the best of our knowledge, no existing simulation
model allows the simultaneous consideration of microsys-
tem improvements and macrosystem reforms in primary
care systems that SiM-Care provides.

3 Simulationmodel

Creating a simulation model means both formalizing
what the model includes and deciding what to leave
out [64]. Therefore, this section first discusses the
process of creating the model and the involvement of
stakeholders before listing the resulting model assumptions
and limitations. Subsequently, we formally describe all
modeled components and relationships.

SiM-Care is designed to meet the requirements of
various stakeholders. Researchers access the model to
evaluate outcomes from prescriptive planning approaches
based on mathematical modeling. The modeling team
regularly consulted with health care practitioners including
primary care physicians, health insurance representatives,
as well as representatives from industry associations
and administrative authorities. Generally, we find that
explaining the simulation model through the agent-based
paradigm and presenting results from related studies allows
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Table 1 Classification of related simulation models in primary care

Ref. Method Setting Objective Stakeholder Involvement Maintenance

[18] DES Single primary
care clinic

Eval. sequencing- and
appointment rules

No information No information, only man-
agement recommendations

[25] DES Single outpatient
clinic

Testing a new scheduling
approach

Stakeholder involvement
through action research

No information, imple-
mented recommendations

[59] DES Single primary
care clinic

Eval. of appointment systems No information No information on mainte-
nance, emphasize adaptabil-
ity

[61] DES Single primary
care clinic

Eval. effects of six factors on
clinic’s performance

Management involvement in
data collection

Researchers provided only
recommendations, no system

[67] DES Single primary
care clinic

Eval. implications of capac-
ity allocations and appoint-
ment scheduling

Aimed to support stakehold-
ers, no explicit involvement

No information on availabil-
ity and maintenance

[69] DES Single pediatric
clinic

Eval. effects of scheduling
templates, staff ratios, room
assignments

Analysis of exemplary clinic,
no information on stake-
holder involvement

No information

[31] ABM Entire health
care system

Investigate paradox of pri-
mary care

Cooperation between aca-
demics and patients, care-
givers, and clinicians

Model, software, and work-
sheets available for download
and discussion

[47] SD Entire primary
care sector

Eval. effects of system-wide
policy changes

Group model building, devel-
opment workshop

Model handed over to
Regional Health Systems

for in-depth discussions, where the simulation provides a
helpful tool for illustration.

At an early modeling stage, it became evident that the
model would never be able to mirror all intricacies of
a primary care system. Therefore, development focused
on the idea of “modeling the problem, not the system”,
as recommended by [49]. Here, the primary problem is
evaluating the macro-level effects from combining of health
care supply in the form of a population of physicians versus
a demand in the form of a population of patients.

Thereby, we model the trade-offs between the objectives
pursued by three stakeholder groups: patients, PCPs, and
policy makers. SiM-Care assumes that PCPs strive to
efficiently utilize their time, whereas patients strive for a
quick response to their health concerns. Thereby, the model
illustrates the trade-off between efficiency and patient-
centered care. Policy objectives can range from minimizing
the cost of health care to maximizing the degree of
patient-centered care. Policy makers are not represented
by agents within SiM-Care. Instead, policy decisions
set relevant model parameters such as the number of
physicians in the system and treatment standards. To model
interactions on a micro-level, SiM-Care thus features two
populations of agents: potential patients P and primary care
physicians G.

Every patient ρ ∈ P resides at a specific location,
belongs to a certain age group and has an individual health
status and treatment preferences; compare Fig. 2. Patients

develop acute illnesses that depend on their age and health
status and require treatment. Additionally, patients may
suffer from long term chronic illnesses, which need to be
monitored by a physician. To receive medical attention,
patients either schedule an appointment or visit a PCP’s
practice without prior notice. Patients’ decisions depend on
their individual preferences and health status. These factors
determine the choice of physician, the type of the visit
(walk-in/ appointment), and the time of the visit.

All PCPs φ ∈ G practice at a certain location
and have weekly opening hours; see Fig. 2. Moreover,
every physician φ ∈ G follows individual strategies that
govern how they manage appointments, admit patients, and
perform treatments. As patients and physicians interact,
they influence each other and adjust their preferences and
strategies.

In the following, we list – to the best of our knowledge
– the underlying assumptions and the limitations that may
restrict the application of SiM-Care.

SiM-Care focuses on the adult population and neither
models pediatric care nor gender differences. While
we do differentiate patients by health status, age, and
illnesses, we assume that all patients implement the same
strategies when arranging appointments or becoming walk-
ins. Furthermore, the model assumes that all patients attend
their appointments, i.e., there are no no-shows patients.

As it stands, the model does not consider cross-effects
between illnesses that may occur, e.g., when a chronic
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Patients

• location

• age class

• health status

• preferences

Physicians

• location

• opening hours

• strategies

request appointments
visit with appointment
vist as walk-ins

adjust preferences
and strategies

assign appointments
manage admission
perform treatments

develop
illnesses

Fig. 2 Concept of SiM-Care showing both types of agents with their main attributes as well as interactions between agents

illness worsens the progression of an acute illness. As there
is no model of direct patient interaction, SiM-Care does
not include an explicit infection model, i.e., the probability
of a patient developing an acute illness is independent
of their interaction with other patients and physicians.
While patients who suffer from illnesses seek treatment,
the duration of an illness is not directly affected by
treatments.

On the provider side, we do not model a relationship
between primary care systems and specialists or hospitals.
Physicians do not differentiate patients according to their
insurance policy. The physicians’ service times do not
depend on the patients’ number or types of illnesses and
physicians do not offer home visits. We assume that PCPs
are never late or absent and the model includes neither
seasonality nor holidays. Finally, we assume independence
of surrounding municipalities, such that the modeled
primary care system is a closed system.

In the remainder of this section, we provide the model’s
formal description based on the ODD framework described
by Grimm et al. [26]. For the sake of brevity, some of
the very technical modeling details are only presented in
Appendix A.

3.1 Simulation environment

SiM-Care’s environment entails the geographical and
temporal structure as well as policy effects. Within the
model, locations � ∈ L := [−90, 90] × [−180, 180] are
represented using the geographic coordinates latitude and
longitude.

The modeled time period is considered as a continuum
structured by points in time and durations. For any time
object t = (δ, η) ∈ T := N × [0, 1), δ ∈ N indicates
the day and η ∈ [0, 1) =: H specifies the time as an
increment of day known as decimal time. That is, we use the
same encoding for points in time and durations as context
uniquely defines which of the former a time object refers
to. For example, (38, 0.55) ∈ T corresponds to day 38 and

24 · 60 · 0.55 = 792 minutes, i.e., 1:12 p.m. as a point in
time or, analogously, to a duration of 38 days, 13 hours, and
12 minutes. To ease notation, we associate every point in
time and duration (δ, η) ∈ T with the non-negative value
δ + η ∈ R≥0.

In addition to the continuous representation of time, we
structure each day into a morning and an afternoon session
as it is common practice in primary care [40]. Each session
λ = (δ, γ ) ∈ 	 := N × {0, 1} is uniquely defined
by a day δ ∈ N and a binary indicator γ ∈ {0, 1} that
defines whether it is the morning (γ = 0) or the afternoon
(γ = 1) session. Sessions reoccur on a weekly basis which
yields an equivalence relation ∼ on the set of sessions 	

via

(δ1, γ1) ∼ (δ2, γ2) :⇔ δ1 ≡ δ2 mod 7 ∧ γ1 = γ2.

The resulting equivalence class for a session λ ∈ 	

defined as [λ] := {λ′ ∈ 	 : λ′ ∼ λ} contains
all sessions sharing the same day of the week and time
of the day, e.g., all Thursday afternoon sessions. Thus,
we model and distinguish 14 sessions each week, i.e.,
Monday to Sunday with a respective morning and afternoon
session that we associate with the set of all equivalence
classes 	/∼ := {[λ] : λ ∈ 	}. Particularly, this
allows for a distinction between sessions on weekdays and
weekends.

3.2 Entities and state variables

Patients ρ ∈ P and PCPs φ ∈ G are the active entities in
the simulation. Their interaction is motivated by patients’
suffering from illnesses and therefore seeking treatment
with PCPs via appointments or walk-in visits.

Going from simple to more elaborated, we begin by
describing the self-containing entities of SiM-Care and end
with the description of the agents representing patients and
physicians.
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3.2.1 Objectives

When patients suffer from an acute illness, they want to
be treated as soon as possible, ideally by their preferred
physician. For the treatment of chronic illnesses and the
follow-up care of acute illnesses, patients prefer treatment
by the same physician through appointments in regular
intervals. Physicians, on the other hand, aim at efficiently
utilizing their available time while minimizing overtime.
Thus, patients’ and physicians’ objectives conflict, as it
is ineffective for physicians to fully comply with patient
demands: To ensure that all short-notice appointment
requests can be accommodated, PCPs would have to
withhold too much treatment time. Providing follow-up
appointments in strict intervals would prevent PCPs from
reacting to demand fluctuations.

Policy makers follow a multitude of conflicting objec-
tives. On the one hand, they need to ensure a certain min-
imum standard in health care quality to guarantee patients
are treated when necessary. On the other hand, they cannot
afford to subsidize an excessive number of physicians. Thus,
policy makers necessarily aim at a trade-off.

SiM-Care represents policy decisions through their
resulting parameter values, e.g., the number of physicians
and their distribution.

3.2.2 Illnesses and families of illnesses

Illnesses are health concerns that cause discomfort to
patients and require treatment. They belong to a certain
illness family (e.g. cold or heartburn), have a certain
seriousness (e.g. mild or severe), persist over a certain
period of time, and require initial treatment within an
acceptable time frame as well as subsequent follow-up visits
in regular time intervals. SiM-Care formalizes illnesses as
tuples i = (si, fi, di, ωi, νi) ∈ I with attributes as shown
in Table 2. Thereby, si ∈ [0, 1] defines the seriousness of
the illness, fi ∈ F defines the illness family, and di ∈
T defines the duration. The parameter ωi ∈ T defines
the willingness to wait, which is the patient’s maximum
accepted waiting time for the initial treatment of this illness.
The parameter νi ∈ T defines the follow-up interval,
which specifies the frequency of the required aftercare

Table 2 Attributes of illnesses i ∈ I

Attribute Type Unit

seriousness si ∈ [0, 1]
illness family fi ∈ F
duration di ∈ T [days]

willingness to wait ωi ∈ T [days]

follow-up interval νi ∈ T [days]

Table 3 Attributes of families of illnesses f ∈ F

Attribute Type

linear function for expected duration Df : [0, 1] → T
linear function for expected willingness Wf : [0, 1] → T
linear function for follow-up interval Nf : [0, 1] → T
chronic attribute κf ∈ {0, 1}

that follows the initial treatment of this illness. For some
illnesses i ∈ I , the characteristics duration and follow-up
interval do not apply. This is indicated by setting di = ∅ and
νi = ∅.

While emerging illnesses vary in their manifestation,
families of illnesses define the common constant traits of
all illnesses belonging to the same family. In our model,
the common constant traits of all illnesses i ∈ I with
seriousness si ∈ [0, 1] belonging to family fi ∈ F are the
expected duration Dfi

(si) ∈ T , the expected willingness to
wait Wfi

(si) ∈ T , and the follow-up interval Nfi
(si) ∈ T .

The expected duration Dfi
(si) and expected willingness

to wait Wfi
(si) serve as means for the distributions, from

which we sample each stochastic duration di and stochastic
willingness to waitωi . Thus for all emerged illnesses i ∈ I ,
it generally holds that di �= Dfi

(si) and ωi �= Wfi
(si).

Only the follow-up interval of emerged illnesses i ∈ I
derives from the illness family in a deterministic way, i.e.,
νi = Nfi

(si).
In order to define the common traits of illnesses, families

of illnesses f ∈ F are specified by the three linear
functions shown in Table 3. As above, we indicate the
inapplicability of the characteristics duration or follow-up
interval to families of illnesses by setting Df = ∅ and
Nf = ∅, respectively.

To illustrate this concept, consider the family “common
cold” defined by the functions Df (s) = 10 s + 3, Wf (s) =
−3 s + 3, and Nf (s) = −2 s + 7. When a patient develops
a mild case of “common cold” (si = 0.2), the illness family
“common cold” defines the expected duration, expected
willingness to wait, and follow-up interval of the mild cold
as Df (si) = 5 days, Wf (si) = 2.4 days, and Nf (si) = 6.6
days. The actual values of the specific cold are stochastic
and vary around their expected counterparts, e.g., di =
5.5 days and ωi = 2.7 days. The follow-up interval is
deterministic and derives from the illness family via νi =
Nfi

(si) = 6.6 days. Note, that the particular mild cold in
this example will thus not require a follow-up visit, as its
duration is shorter than the follow-up interval, i.e., di < νi .

To model chronic health concerns that persist over an
extended period of time, such as diabetes, a chronic attribute
κf ∈ {0, 1} identifies families of chronic illnesses. Thereby,
κf partitions F into an acute set Fact := {f ∈ F : κf = 0}
and a chronic set Fchro := {f ∈ F : κf = 1}. This directly
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induces a partition of the set of illnesses I into acute and
chronic illnesses I act and I chro.

Acute illnesses i ∈ I act develop and subside over time
and patients can simultaneously suffer from an arbitrary
number of acute illnesses Iact ⊆ I act. Chronic illnesses
ς ∈ I chro are static in SiM-Care – they neither develop
nor heal. Instead, each patient ρ ∈ P suffers from at most
one chronic illness throughout the modeled time period.
To distinguish patients suffering from a chronic illness, we
refer to them as chronic patients.

Ideally, attributes of families of illnesses should be
estimated from empirical data. For example, follow-up
intervals can be estimated from collections of individual
treatment histories that indicate the times at which patients
were treated for a particular diagnosis. In case empirical
data is not available, estimates can be based on expert
knowledge or official treatment guidance such as disease
management programs [6]. Moreover, if one does not aim
to make detailed predictions for a specific primary care
system, it is possible to infer attributes or model entirely
artificial health concerns as long as they are sufficiently
validated in a baseline analysis. This last and most basic
approach is adopted in the case study presented in Section 4.

3.2.3 Appointments

Appointments specify the point in time when the treatment
of a specific patient is scheduled to take place. To that
end, appointments b ∈ B are defined by the time of the
appointment tb ∈ T , the attending primary care physician
φb ∈ G, and the patient ρb ∈ P receiving treatment. At
any point in time, non-chronic patients can have at most
one scheduled appointment bact ∈ B, called the acute
appointment. Acute appointments are intended for the initial
treatment of acute illnesses, the follow-up treatment of acute
illnesses, or both. Chronic patients may additionally have a
regular appointment breg ∈ B to treat their chronic illness.
While chronic illnesses are only treated during regular
appointments, all acute illnesses Iact are treated during
every appointment.

3.2.4 Age classes

Age classes define common characteristics of patients. For
patients of age class a ∈ A, these characteristics are
deviations from the expected illness duration �d

a > 0
and from the expected willingness to wait �ω

a ≥ 0, the
probability to cancel an appointment after full recovery
pa ∈ [0, 1], and the expected number of annual acute
illnesses defined through the linear function Ia : [0, 1] →
R≥0; see Table 4. The deviation from the expected illness
duration �d

a is a multiplicative factor that determines
whether the expected illness duration Dfi

(si) ∈ T extends

Table 4 Attributes of age classes a ∈ A

Attribute Type

linear function expected annual acute illnesses Ia : [0, 1] → R≥0

deviation from expected illness duration �d
a > 0

deviation from expected willingness to wait �ω
a ≥ 0

probability to cancel appointments pa ∈ [0, 1]

(�d
a > 1) or shortens (�d

a < 1) for patients of age
class a ∈ A; analogously for �ω

a . The linear function
Ia : [0, 1] → R≥0 defines the expected number of annual
acute illnesses Ia(c) ∈ R≥0 for patients in age class a ∈ A
which depends on the patient’s health condition c ∈ [0, 1]
which can range from perfectly healthy (c = 0) to extremely
delicate (c = 1).

3.2.5 Age-class-illness distribution

The age-class-illness distribution π act : A × Fact → [0, 1]
builds the connection between the set of age classes A and
the set of acute families of illnesses Fact. To that end, πact

defines the expected distribution of acute illness families
per age class, i.e., among all developed acute illnesses by
patients of age class a ∈ A, a fraction πact(a, fi) ∈ [0, 1] is
expected to belong to illness family fi ∈ Fact.

3.2.6 Patients

Patients are the driving force of the simulation, as their
health concerns trigger most events. All non-chronic
patients ρ ∈ P are characterized by their geographical
location � ∈ L, health condition c ∈ [0, 1], acute illnesses
Iact ⊆ I act, age class a ∈ A, acute appointment bact ∈
B, and preferences. While the location, health condition,
and age class of each patient remain constant throughout
a simulation experiment, a patient’s acute illnesses, acute
appointment and preferences can change over time. Chronic
patients are additionally characterized by a constant chronic
illness ς ∈ I chro and a variable regular appointment
breg ∈ B. Table 5 summarizes the attributes shared by
all patients as well as the attributes specific to chronic
patients.

Patients’ preferences determine when, where, and how
they pursue treatment. Specifically, each patient considers
a set of PCPs Gcon ⊆ G and never seeks treatment with
PCPs outside the consideration set. Since continuity in
the treatment of chronic illnesses is particularly important,
chronic patients arrange all regular appointments breg ∈ B
with a distinguished family physician φfam ∈ Gcon. While
every patients’ consideration set Gcon remains constant
throughout the modeled time period, patients reevaluate
and vary their family physician. Naturally, patients have
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Table 5 Attributes of (chronic) patients ρ ∈ P

Attribute Domain Type

location � ∈ L constant

health condition c ∈ [0, 1] constant

age class a ∈ A constant

acute illnesses Iact ⊆ I act variable

emergency flag ε ∈ {0, 1} variable

acute appointment bact ∈ B variable

considered PCPs Gcon ⊆ G constant

availabilities α : 	/∼ → {0, 1} constant

appointment ratings r
app
ρ (φ) ≥ 0, ∀φ∈Gcon variable

walk-in ratings rwalkρ (φ, [λ]) ≥ 0, variable

∀φ∈Gcon, ∀[λ]∈	/∼
chronic illness Ichro = {ς} ⊆ I chro constant

regular appointment breg ∈ B variable

family physician φfam ∈ Gcon variable

personal schedules and cannot attend all weekly sessions.
Thus, the model assumes that each patient has a constant
set of weekly-reoccurring session availabilities given by
α : 	/∼ → {0, 1}, where 0 encodes unavailability. Finally,
patients maintain individual appointment ratings r

app
ρ (φ) ≥

0 as well as session-specific walk-in ratings rwalkρ (φ, [λ]) ≥
0 for every weekly session [λ] ∈ 	/∼ and every considered
physician φ ∈ Gcon.

Via internal ratings, patients track their satisfaction with
a physician’s services. Whenever a patient seeks consulta-
tion, the choice of physician is determined by their current
ratings. Ratings incorporate patients’ sense of geographic
distance, matching of opening hours with availabilities,
and previous positive and negative experiences. As patients
adjust their ratings over time, they adjust their choice of
PCP. If a physician is unable to meet an appointment
request, incurs excessive waiting time, or rejects patients
due to capacity overruns, patients reduce their rating. Pos-
itive experiences such as successful appointment arrange-
ments or short waiting times increase ratings. Note that
ratings are only internal valuations and not communicated
to other patients or physicians.

When patients begin to suffer from a new illness, they
always seek treatment. To that end, patients first request
an appointment from the set of considered PCPs, Gcon.
Patients make up to two appointment requests in order of
the appointment rating r

app
ρ (φ) ≥ 0. If both requested

PCPs fail to offer a feasible appointment within the patient’s
willingness to wait, patients forgo an appointment and visit
a PCP as a walk-in. They select the PCP for the walk-in
visit based on the walk-in rating rwalkρ (φ, [λ]) of the targeted
session λ ∈ 	.

Upon arrival, a PCP may reject patients due to,
e.g., capacity overloads. Following a rejection, patients
update their rating of this PCP and attempt a new
walk-in visit at the then-highest-rated PCP. Rejected
patients are flagged as emergencies (ε = 1) for as
long as they unsuccessfully continue to seek treatment.
PCPs may include the emergency state in their decision
making.

Until an illness i ∈ Iact subsides, patients continuously
arrange follow-up appointments with the attending physi-
cian in the follow-up interval νi ∈ T . Analogously, chronic
patients continuously arrange regular appointments with
their family physician φfam ∈ Gcon in the follow-up interval
νς ∈ T of their unique chronic illness ς ∈ Ichro.

3.2.7 Primary care physicians

PCPs’ practices feature an uncapacitated waiting room. The
model characterizes physicians φ ∈ G by their geographic
location � ∈ L, opening hours, as well as an individual
set of strategies to schedule appointments, manage patient
admission, and organize treatments. Table 6 summarizes the
attributes of PCPs.

SiM-Care assumes that all physicians operate in clinical
sessions. Opening hours for these sessions are weekly-
reccurring and therefore defined over the session of the
week via o : 	/∼ → H × H where H denotes the set
of decimal times; cf. Section 3.1. Opening hours specify
for each session λ ∈ 	 the time window o([λ]) :=
[o([λ]), o([λ])] during which patients are admitted. The
beginning of session λ = (δ, γ ) ∈ 	 is defined as o(λ) :
= (δ, o([λ]) ∈ T , the session’s end as o(λ) := (δ, o([λ]) ∈
T . To encode that a PCP is closed, we set o([λ]) = ∅.
Physicians use the first hour after the end of each session as
time buffer to compensate for possible delays and walk-in
patients. Figure 3 visualizes a PCP’s working day.

PCPs implement a set of strategies to schedule appoint-
ments, decide on patient admissions, and organize the treat-
ment of patients. These strategies are interchangeable model
components that are defined via interfaces. They govern
the physicians’ interactions with patients in terms of sens-
ing, predicting, adapting, and learning. In the following, we

Table 6 Attributes of PCPs φ ∈ G

Attribute Type

location � ∈ L
opening hours o : 	/∼ → H × H
appointment scheduling strategy S ∈ Sapp

admission strategy S ∈ Sadm

treatment strategy S ∈ S tmt
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Working
Day

o(λ0) o(λ0) o(λ1) o(λ1)

Buffer time Closed Service time Idle time Overtime

Fig. 3 Schematic representation of a PCP’s morning (λ0) and afternoon (λ1) session visualizing service-, idle- and overtime

summarize the main functionality of each strategy. All tech-
nicalities and the exemplary strategies that are used as part
of our case study can be found in Appendix A.1.

The PCP’s appointment scheduling strategy S ∈ Sapp

defines how they allocate consultation time to appointment
slots and how the resulting slots are assigned to requesting
patients.

The PCP’s treatment strategy S ∈ S tmt defines the
order of treatment based on patients’ waiting times. To
account for the observation that physicians consciously or
unconsciously adjust service times depending on demand
[28], treatment policies define when and how physicians
adjust their consultation speed and thereby service times.

The PCP’s admission strategy S ∈ Sadm determines
whether they admit an arriving patient based on the
current workload. SiM-Care requires PCPs to treat all
admitted patients. Thus, when physicians underestimate
their workload, they may have to work overtime. On
the other hand, physicians that overestimate their work-
load fail to fully utilize their available time. At the end
of a session’s buffer, physicians may learn by reeval-
uating their predictions and adapting their admission
policy.

3.3 Process overview and scheduling

SiM-Care models the progression of time via the discrete
event paradigm. Thus time passes between discrete events,
at which the system state is updated. The model stores
events of the form (t, e) in a sequential queue Q where
t ∈ T is the point in time an event of type e ∈ E occurs. By
construction, the event queue Q never runs empty.

Every simulation run follows the structure depicted in
Fig. 4, chronologically processing the events from Q up to
a specified point in time T ∈ T . In this, the specific process
depends on the event type e ∈ E . Appendix A.2 details the
modeled events and their processing.

3.4 Modeling variability

SiM-Care relies on stochastic values to approximate real-
world variability and control the frequency of events.
This applies to aspects of illnesses as well as to patient
arrivals, appointment cancellations and service times.
In consequence, every simulation experiment includes
multiple stochastic repetitions of the modeled time period,

termed simulation runs. When examining simulation output,
we account for the resulting variability through confidence
intervals.

Table 7, lists all probabilistic model aspects. Appendix A.3
details the parameterization of the distributions underlying
the random values.

3.5 Emergence and observation

SiM-Care tracks multiple key performance indicators to
illustrate the trade-offs between the stakeholders’ objec-
tives. These indicators emerge from agent interactions based
on patients’ evolving preferences and physicians’ evolving
strategies. Appendix A.4 provides formal definitions of all

initialize evaluators

initialize agents

perform warm-up

yes

no

poll first element (t, e) from

process e

poll next element (t, e) from

yes

no

evaluate simulation

warm-up?

t < T

Fig. 4 Structure of simulation run with time horizon T
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Table 7 Probabilistic model aspects

Aspect Distribution

frequency of acute illnesses exponential distribution

type of acute illnesses age-class-illness distribution

seriousness of acute illnesses triangular distribution

duration of acute illnesses log-normal distribution

patients’ willingness to wait Weibull distribution

patient punctuality normal distribution

walk-in arrivals beta distribution

service time log-normal distribution

appointment cancellations binomial distribution

evaluated key performance indicators. In the following we
summarize them briefly.

From the patients’ point of view, key performance
indicators include access time, access distance, and waiting
time. To evaluate the patients’ indicators, SiM-Care keeps
track of the total access time of arranging acute and
regular appointments, the total number of arranged acute
and regular appointments, the total number of attended
appointments, the total number of walk-in patients, the total
access distance of patients, and the total waiting time for
both patients with appointment and walk-ins.

From the physicians’ point of view, key performance
indicators include the utilization, overtime, number of
treatments, and number of rejected patients with and
without appointment. To evaluate the physician’s indicators,
SiM-Care collects on physician level the total service time
spent treating patients, the total number of performed
treatments, the total overtime, and the total number of
rejected patients with and without appointment. The total
available working time per PCP required to compute the
utilization, can be derived from the opening hours o and the
modeled time horizon T .

3.6 Input, initialization, and warm-up

SiM-Care codes many values as flexible parameters.
Setting up a simulation experiment requires specifying
the parameter values. Each simulation scenario represents
a particular setting, in which a specific set of patients
interacts with a specific set of physicians under specific
circumstances.

As part of every simulation scenario, the modeler
specifies the families of illness F , the age classes A, the
age-class-illness distribution πact, and the set of physicians
G with all their attributes. The set of patients P is only
partially defined through the simulation scenario: Each
scenario specifies every patient’s location � ∈ L, health
condition c ∈ [0, 1], age class a ∈ A, availabilities
α : 	/∼ → {0, 1}, and, for chronic patients, a chronic

illness ς ∈ I chro. The remaining attributes of patients are
derived as described in Appendix A.5.

To initialize a simulation experiment, modelers can
broadly choose one of two approaches: empty and
interim initialization. An empty system state is inherently
unrealistic, as it sets all parameters that are subject to
simulation dynamics to zero. An ideal interim initialization
would mean that there is no period when the system state
does not align with the real-world observations. However,
this creates additional challenges for validation. For a
structurally valid simulation, a valid interim state should
automatically emerge from an empty state initialization
after a warm-up period. Thus, we rely on an empty-state
initialization and include a warm-up period, where the
simulation state does not align with any plausible real-world
state. The duration of the warm-up and the length of the
modeled time horizon are both variable per experiment.

3.7 Submodels

We consider various aspects of SiM-Care that rely on
an internal logic as submodels. One of the most basic
submodels describes the logic of distances and travel
times. More complex examples include the logic underlying
patients’ behavior when requesting appointments and
visiting practices as walk-ins. Appendix A.6 provides the
specifics of all submodels.

3.8 Structural validation and verification

We carried out validation and verification for SiM-Care
according to the best practices documented in the litera-
ture [42, 57]. To ensure a correct model implementation
(verification), we followed established programming prac-
tices. We used object oriented programming to write mod-
ular code, implementing SiM-Care in Java 8. All random
distributions rely on the Apache CommonMath library [48].
We verified each module individually through unit testing.
Assertions ensure that variables remain within their spec-
ifications at runtime. To detect undesired model behavior,
SiM-Care can trace the entire simulation process. Traces
are specialized logs that contain all information about the
model’s execution. In SiM-Care, traces are textual and com-
prehensible to modelers. They can track agents throughout
the model and contain all information that would be required
for an animated visualization. By analyzing traces and input
output relationships, we performed dynamics tests for mul-
tiple simulation scenarios of various sizes with different
system setups.

To ensure that the conceptional model serves as an
adequate representation of real primary care systems
(validation), we took several measures. With regard to face
validity, we presented the conceptual model to physicians
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and decision makers from health insurers as well as
public authorities. Furthermore, SiM-Care builds on data
from the literature as well as empirical data collected
on-site. Moreover, we visited a primary care practice
and interviewed staff to capture and understand the daily
processes and routines of PCPs. For the specific scenarios
featured in the case study, we validated the simulation
output with available empirical data. Details on this
historical validation can be found in the baseline analysis of
the following case study.

4 Case study

To demonstrate the potential use of SiM-Care, we present
a case study evaluating the effects of changes in the
population of a primary care system. Specifically, we create
a baseline scenario representing a real-world primary care
system and investigate two possible changes from the status
quo. On the one hand, we let the number of PCPs decline
as a result of a decreasing interest in opening a primary care
practice in rural areas [35]. On the other hand, we let an
aging population cause a shift in the quality and intensity
of illnesses and the resulting health care requirements. By
considering both changes individually and in combination,
we create three “what-if” scenarios that we compare to the
baseline scenario.

Each scenario models a time period of one year
preceded by warm-up period. As SiM-Care relies on
stochastic values, every simulation experiment includes 20
independent runs. While 20 repetitions are generally at the
low end of the suggested number of runs, the resulting
confidence intervals are sufficiently small to assess the
qualitative effects of changes between scenarios.

4.1 Baseline scenario

The real-world primary care system that serves as the tem-
plate for our study comprises three predominantly rural
municipalities in western Germany (Roetgen, Simmerath,
and Monschau) with a total population of approximately
36000 inhabitants and 20 primary care physicians. For the
considered primary care system, empirical data concerning
the physicians’ distribution and opening hours was pro-
vided by the responsible department of public health or
obtained from the responsible association of statutory health
insurance physicians [37]. The distribution of patients
and their demographic composition is available from the
national census [33] and official population projections by
the federal state [34]. The distribution of illnesses and
their characteristics can be estimated from publications of
health insurances and federal government agencies [27, 53].
All unavailable data was either empirically collected in a

Table 8 Basis for the selection of input parameters

Attribute Basis (Source)

PCPs

location empirical (dept. public health)

opening hours empirical ([37])

strategies literature ([17, 39, 40])

Patients

location empirical ([33])

age class empirical ([33])

health condition inferred

Age classes

exp. annual acute illnesses inferred

dev. illness duration inferred

dev. willingness to wait inferred

availabilities inferred

appointment cancellation inferred

chronic patients empirical ([53])

Families of Illnesses

characteristics inferred

age-class-illness dist. empirical ([27])

primary care practice or, where this was not possible,
inferred. For the sake of clarity, Table 8 summarizes our
basis for the selection of each input parameter.

In the following, we discuss how the available empirical
data translates into a simulation scenario. To that end,
we detail the input parameter choices, i.e., the modeled
physicians, patients, age classes, families of illnesses, and
age-class-illness distributions.

4.1.1 Primary care physicians

According to data provided by the Aachen department of
public health in 2017, there are 20 primary care physicians
with health insurance accreditation in the three municipal-
ities. The physicians’ exact locations are specified as part
of the provided dataset (cf. Fig. 5) and the physicians open-
ing hours were obtained from the Association of Statutory
Health Insurance Physicians Nordrhein [37]. All considered
physicians are closed on Saturdays and Sundays. Concern-
ing the employed strategies, all physicians φ ∈ G apply
the individual-block/fixed-interval appointment scheduling
strategy, priority first come, first served treatment strat-
egy (PFCFS), and priority threshold admission strategy;
cf. Appendix A.1.

4.1.2 Patients

The latest publicly available high resolution population data
for the considered region is the German Census conducted
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Fig. 5 Locations of PCPs with health insurance accreditation and
population cells reported by the 2011 census [33]

in 2011 [33]. At a resolution of 2754 population cells
measuring one hectare each, the 2011 Census reports a total
population of 35542 for the three municipalities; compare
Fig. 5. This population includes children under the age of
16 who the Census records on municipality level: Roetgen
1390, Simmerath 2383, and Monschau 1794. To exclude
children under the age of 16 from our patient population, we
proceed as follows: First, we fix one adult per population
cell as we assume that children under the age of 16 do
not live on their own. Then, we sample the number of
under 16-year-olds from the remaining population of each
municipality according to a uniform distribution.

Performing this procedure for each municipality individ-
ually, we obtain the final patient population P consisting of
29975 patient agents distributed over 2754 population cells.

The location � ∈ L for each patient is sampled from
the associated population cell according to a uniform
distribution. Patients’ health conditions c ∈ [0, 1] are
sampled from a beta distribution with shape parameters
p = q = 25 such that all patients have an expected health
condition of E(c) = 0.5.

4.1.3 Age classes

The baseline scenario differentiates three patient age
classes: young (16-24), middle-aged (25-65), and elderly (>
65). The characteristics of the modeled age classes A are
shown in Table 9.

Table 9 Age classesA

16-24 25-65 > 65

exp. illnesses Ia(c)=6c Ia(c)=7c+1 Ia(c)=9c+1

dev. duration �d
a=0.8 �d

a=1.0 �d
a=1.2

dev. willingness �ω
a =1.2 �ω

a =1.0 �ω
a =0.8

prob. cancel pa=0.95 pa=0.8 pa=0.7

Based on Census data [33], the age class a ∈ A of
each patient depends on the discrete probability distribution
shown in Table 10. The age-class-dependent attributes of
each patient agent ρ ∈ P are subsequently determined
as follows: Each patient’s session availabilities α are
determined by performing a Bernoulli trial based on the
age-class dependent success probabilities from Table 10. To
decide whether a patient is chronically ill, we perform a
Bernoulli trial using the success probabilities from Table 10
that were estimated based on [53].

4.1.4 Families of illnesses

The most important classification system for illnesses
world-wide is the International Classification of Diseases
and Related health Problems (ICD) maintained by theWorld
Health Organization. In its current revision, ICD-10 [3]
distinguishes more than 14000 codes. For the purpose of
SiM-Care, such a granular illness distinction is generally not
necessary. Thus, we can aggregate ICD-10 codes, e.g., using
the 22 chapters of ICD-10, or considering only a subset of
all ICD-10 codes, e.g., the ones most frequently reported.
In the baseline scenario, we consider a subset of the 100
ICD-10 codes most frequently reported to the Association
of Statutory Health Insurance Physicians Nordrhein [38].
The attributes of families of illnesses can be estimated based
on historical treatment data which is commonly available
to health insurers. This data is protected by confidentiality
and cannot be published. Thus, we only estimate all
attributes which yields the families of illnesses F listed
in Table 11.

4.1.5 Age-class-illness distributions

The age-class-illness distribution πact : A × Fact → [0, 1]
is estimated on the basis of the reported incidence rates

Table 10 Age specific parameters for patient generation

16-24 25-65 > 65

age class distribution 0.1196 0.6318 0.2486

availability probability 0.85 0.55 0.95

chronic illness probability 0.12 0.33 0.52
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Table 11 Characteristics of considered families of illnesses f ∈ F

ICD Name Exp. willingness Wf Exp. duration Df Treatment frequency Nf Is chronic

I10 high blood pressure Wf (s) = −10s + 20 not applicable Nf (s) = −20s + 100 true

E11 diabetes Wf (s) = −4s + 14 not applicable Nf (s) = −10s + 90 true

I25 ischemic heart disease Wf (s) = −4s + 10 not applicable Nf (s) = −30s + 100 true

E78 high cholesterol level Wf (s) = −5s + 8 Df (s) = 4s + 8 Nf (s) = −2s + 11 false

M54 back pain Wf (s) = −3s + 4 Df (s) = 9s + 5 Nf (s) = −4s + 11 false

Z25 vaccination Wf (s) = 40 not applicable not applicable false

J06 cold Wf (s) = −2s + 2 Df (s) = 5s + 4 Nf (s) = −s + 6 false

of a large German health insurer published in [27]. We
aggregate [27] by gender and age to obtain the age-class-
illness distribution shown in Table 12. Analogously, we
determine the expected distribution of chronic families of
illnesses Fchro among the modeled age-classes A denoted
by πchro : A × Fchro → [0, 1] shown in Table 12.

The distribution πchro is not part of the baseline scenario,
as it is only required to generate the unique chronic illness
of chronic patients. This process is analogous to the process
of generating acute illnesses described in Appendix A.3.

4.1.6 Duration of warm-up

To decide an appropriate length for the warm-up period,
we simulate the baseline scenario for a time period of 70
years and track all performance indicators for each year
individually. Figure 6 shows the resulting data series for
the average access time, average weekly overtime, and
average waiting time of walk-ins. The illustrated series
suggest that the performance indicators stabilize after 20
to 40 years. To formalize this assessment, we employ the
Schruben-Singh-Tierney test for initialization bias [60] to
determine an appropriate truncation point for the warm-
up period. Specifically, we use a two-sided test with a
significance level of 5%. The scaling parameter is estimated
using the batch means method with 5 batches based on
the last half of the data series as suggested in [41].
Increasing the warm-up duration in steps of 5 years, the null-
hypothesis of no initialization bias is first not rejected for all

Table 12 Age-class-illness distributions πact and πchro

16-24 25-65 > 65

high cholesterol level 0.02 0.24 0.36

back pain 0.32 0.38 0.28

vaccination 0.14 0.14 0.27

cold 0.52 0.24 0.09

high blood pressure 0.17 0.65 0.61

diabetes 0.33 0.16 0.2

ischemic heart disease 0.5 0.19 0.19

performance indicators for a warm-up duration of 30 years.
Consequently, we choose a warm-up period of 30 years in
the following.

4.2 Baseline analysis

Table 13 reports the resulting expected key performance
indicators as well as the associated exact 95%-confidence
intervals for each tracked performance indicator; compare
Section 3.5. In the status quo, each physician performs,
on average, 10137 treatments per year. This amounts to
an average number of 6.76 physician contacts per patient,
which is slightly above the 6.6 annual PCP contacts reported
back in 2006 [1]. Roughly 47% of patients visiting a
physician in our baseline scenario are walk-in patients,
which is consistent with the observed 48% share of walk-
ins in our empirical dataset of service times; compare
Appendix A.3. We were unable to obtain empirical data
on overtimes, as most primary care physicians are self-
employed and even the definition of overtime is unclear.
However, the estimated average overtime per physician
(according to our definition) seems to be too low at
just 4 minutes per week. This can be explained by
the incorporated buffers and the exclusion of mandatory
physician’s activities, such as reporting and accounting,
from the simulation model.
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Avg. waiting time walk-in
Avg. weekly overtime

Fig. 6 Data series of performance indicators in the baseline scenario
for every year in a 70 year time period
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Patients in the baseline scenario are expected to
travel almost 5 km to visit a physician and have to
wait an average 2.5 days for their appointments. With
regard to waiting times, we obtain an average expected
waiting time of 2 minutes for patients with appointment
and 40 minutes for walk-in patients. In comparison to
the average waiting times observed when recording our
service time dataset (4 minutes with appointment, 15
minutes without appointment), simulated waiting times
are strikingly unfavorable for walk-in patients. We take
this to suggest that physicians in the real world avoid
excessive waiting times for walk-in patients through more
sophisticated treatment strategies like [62].

4.3 Scenario 1: Decline in PCPs

Scenario 1 models a decline in the number of PCPs for
a short- and a medium-term shift in time. To that end,
we exclude those PCPs from the baseline PCP population
G that reached the statutory retirement age of 65 by this
point. Specifically, we consider the year 2023, by which
4 out of 20 PCPs will reach the statutory retirement age,
and the year 2027, by which 7 out of 20 PCPs will reach
the statutory retirement age. Assuming that none of the
excluded physicians are replaced by a successor, we obtain a
decimated population of primary care physicians Gs for the
short-term and Gm for the medium-term shift. By replacing
the physician population G in our baseline scenario by Gs

and Gm, respectively, we obtain two variants for Scenario 1;
see Table 14.

The simulation results for Scenario 1 in Table 13 show
a severe deterioration of all patient and physician indicators
compared to the baseline scenario. The physicians’ expected
workload measured through the average number of treat-
ments increases by 23% for the short-term and 49% for
the medium-term shift. Due to the increased scarcity of
appointments, more and more patients are forced to visit
physicians as walk-in patients (56% for short-term and
63% for medium-term shift). The average weekly overtime
for physicians increases by 11 minutes for the short-term
and 54 minutes for the medium-term shift. On average,
patients wait 30% longer for their appointments in the
short-term and even 67% longer in the medium-term shift
scenario variant. Similar increases can be observed for the
patients’ average access distance, which increases by 26%
for the short-term and by 51% for the medium-term shift.
The average waiting time for patients with appointment is
almost unaffected by the decline in the number of physi-
cians, which can be explained by the strict prioritization
in PFCFS. The average waiting time for walk-in patients
increases by 30% for the short-term and 66% for the
medium-term shift.

Table 14 Populations in each simulation scenario variant

Scenario 1 Scenario 2 Scenario 3

s m s m s m

patients P P Ps Pm Ps Pm

physicians Gs Gm G G Gs Gm

s = short-term shift, m = medium-term shift

4.4 Scenario 2: Aging patients

Scenario 2 models the ongoing aging of the patient
population for a short- and medium-term shift in time. For
this purpose, we adjust the discrete probability distribution
determining the patients’ age classes to generate two
new patient populations. More precisely, we use current
population projections [34] for the years 2025 and 2030 to
obtain the two adjusted discrete probability distributions in
Table 15. Using these distributions, we generate the aged
patient population Ps for the short-term and Pm for the
medium-term shift. By replacing the patient populationP in
our baseline scenario by Ps and Pm, respectively, we obtain
two scenario variants for Scenario 2; compare Table 14.

The simulation results for Scenario 2 (Table 13) paint a
similar picture as in Scenario 1, i.e., the majority of patient
and physician indicators deteriorate, albeit far less severely.
The average number of treatments per physician increases
by 1% for the short-term and by 2% medium-term shift.
In contrast to Scenario 1, additional treatments distribute
more evenly across appointment and walk-in patients
and thus the expected ratio of walk-in patients remains
almost unchanged. Physicians seem to accommodate the
additional treatments within their regular opening hours,
as their average overtime is almost unaffected. Due to the
increased demand, patients wait on average 2% longer for
their appointments in the short-term and 5% longer in
the medium-term shift variant. Moreover, they are willing
to accept 1% longer average access distances in both
scenario variants. Patient waiting times with appointment
are unaffected by the increased demand. The average
waiting times of walk-in patients in the short-term shift
remain almost unchanged, while they increase by 1% for
the medium-term shift.

Table 15 Age class distributions for aged patient population

16-24 25-65 > 65

short-term shift 0.1051 0.6283 0.2666

medium-term shift 0.1025 0.6033 0.2942
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4.5 Scenario 3: Combined effects

Scenario 3 models a combined decline in the number of
PCPs and aging of the patient population for a short- and
medium-term shift. By replacing both populations from the
baseline scenario with the adjusted patient and physician
populations from Scenarios 1 and 2, we obtain two variants
for Scenario 3; compare Table 14.

Analyzing the simulation results in Table 13 for Scenario
3 confirms that the combined effects lead to the greatest
deterioration of indicators. The effect of the combined
changes compared to the combination of effects from
Scenarios 1 and 2 varies between indicators: For the average
number of treatments and the ratio of walk-in patients, the
effects of the combined changes correspond to the sum of
the effects for the individual changes, e.g., a 24% increase in
the average number of treatments in short-term shift variant
of Scenario 3 versus a 23% and 1% increase in the respective
variants of Scenarios 1 and 2. For the physicians’ average
overtime, a combined consideration of both changes has an
amplifying effect. For example, in the medium-term shift
variants of Scenarios 1 and 2 the average overtime increases
by 54 and 0 minutes, respectively, while the combined
changes in Scenario 3 lead to an increase of 63 minutes. Simi-
lar amplifying effects can be observed for the patients’ ave-
rage access time, access distance, and walk-in waiting time.

4.6 Sensitivity analysis

SiM-Care’s complexity and large number of input param-
eters make the model versatile, but also create the risks
of instability and high sensitivity towards small changes in
the input values. To ensure that such undesired behaviors
do not invalidate the outputs of simulation experiments, we
perform a sensitivity analysis.

The sensitivity analysis considers the baseline scenario
in the setup of the case study, i.e., 20 independent runs
modeling one year preceded by a warm-up of 30 years.
As the complexity of the model prohibits a full sensitivity
analysis within the scope of this paper, we demonstrate the
process for those input parameters from Table 8 that are
least anchored in empirical data. Specifically, we study the
model’s sensitivity towards the patients’ health condition
c ∈ [0, 1] and the age classes’ deviation from the illness
duration �d

a ≥ 0, deviation from the willingness to wait
�ω

a ≥ 0, and probability to cancel an appointment after
recovery pa ∈ [0, 1].

We vary each input parameter relative to its original
value between ±20% in increments of 1%. We analyze
the resulting impact on the PCPs’ average utilization and
number of rejected walk-in patients. Figures 7 and 8 show
the resulting average values and 95% confidence intervals
for both performance indicators.
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Fig. 7 Mean average utilization and corresponding 95% exact
confidence intervals

These results do not indicate that the complexity of
SiM-Care causes instabilities. Instead, both performance
indicators behave as expected towards variations of the input
parameters, e.g., increasing the patients’ deviation from the
willingness to wait �ω

a ≥ 0 causes patients to wait longer
for appointments, which in turn reduces treatments and thus
decreases utilization and rejected walk-ins.

The shape of the relationship between changes in
input and output reveals two phenomena. For the average
utilization shown in Fig. 7, the relationships is almost linear
with small confidence intervals. Moreover, the slopes within
these relationships are relatively flat, which indicates a low
sensitivity towards small changes in the input values. For
the average number of rejected walk-in patients (Fig. 8), the
relationship is non-linear with large confidence intervals.
The sensitivity and the variation in the number of rejected
walk-in patients furthermore increase with the system’s
utilization, which seems intuitive. Still, for small changes
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(±5%) of the considered input values, the sensitivities are
not extreme given the width of the confidence intervals.

5 Conclusion and future work

SiM-Care aims to support decision makers in planning,
analyzing, and adapting primary care systems. It produces
meaningful performance indicators that enable a far more
detailed assessment of primary care systems compared to
the current approaches based on patient-physician ratios.
SiM-Care can predict and quantify the influence of policy
decisions and changes in the systems population, e.g., an
aging of the population or a decline in the number of PCPs
as illustrated in Section 4. Because SiM-Care can particularly
model multiple simultaneous system changes, it enables the
analysis of combined effects. As all components of a simula-
tion scenario can be easily adjusted, this opens up a broad
field of potential applications ranging from physicians’ loca-
tion planning to the evaluation of specific PCP strategies,
e.g., in the field of appointment scheduling. However, as poin-
ted out in [68], we must note that the resulting predictions
can never be completely accurate and are therefore intended
to scan the horizon and “inform policy makers about future
problems and development”. Finally, the modular design of
SiM-Care and its planned availability as open source code
allows for easy model extensions, e.g., to model prospective
new supply concepts such as mobile medical units or
telemedicine. Moreover, one could also change the setup
of simulation experiments, e.g., by using the batch means
method instead of independent runs to trade robustness for
computational efficiency; compare [42].

The greatest challenge to using SiM-Care in practice
is the complex and time consuming task of generating
and validating the input scenarios. As SiM-Care models
each agent individually, it requires detailed empirical
data, which has to be obtained from various parties or
may be unavailable. Additionally, even the estimation of
parameters from empirical data is generally a challenge
on its own that we neglected in this work. The current
version of the system tailors some model components such
the service time distributions to the German system. These
components might have to be adjusted when using SSiM-
Care to analyze, e.g., a primary care system in the United
States. Such model changes potentially change the model’s
behavior and thus require a new validation process to ensure
that insights derived from SiM-Care are viable.

To help overcoming this challenge, we exemplified the
scenario generation and validation process for a real-world
primary care system. Particularly, we detailed the generation
process of all simulation entities and provided available
empirical data sources. Although data availability may vary
for other primary care systems, this may hint at where the

required empirical data can be obtained. We validated our
simulation scenario by comparing its output to available
empirical data. To show internal validity, we captured the
model variability through confidence intervals. However,
we need to stress that additional validation should be
performed before actual policy decisions are derived from
the presented case study. Such validation measures should
particularly include an expert validation which was out of
scope for the purpose of this study.

Conceptual modeling needs to be judged by validity,
feasibility, utility, and credibility [54, 55]. So far, we
discussed validity at length and demonstrated a degree of
feasibility and utility in our case study. However, trust can
not come from validation alone, but must also rely on the
credibility of modelers and stakeholders [30]. Thus, we
conclude by turning to the subject of credibility.

Credibility can only be given from the client’s perspec-
tive and requires stakeholder involvement and case studies,
as emphasized in [63]. For a stakeholder definition and
consideration of diverse stakeholder groups, we rely on
[12]. Based on flow charts and early prototypes of SiM-
Care, we discussed the conceptual model and experimental
designs with professionals (PCPs), health care providers,
and a municipal government agency. However, up to the
time of this writing, the project neglected, i.a., patient inter-
est groups. Furthermore, we did not implement a system-
atic framework for stakeholder involvement as proposed,
e.g., in [44, 63]. One reason for this was that SiM-Care
resulted from a project aiming to quantify the effects of
new mathematical planning approaches, e.g., to schedule
patient appointments. Therefore, the related project consti-
tuted what [12] term “curiosity-driven academic research”
rather than practice-based research.

Some arguments on generality and agility speak against
a strictly sequential development involving stakeholders
such as the PartiSim framework introduced in [63]: As
[63] point out, the health care domain is driven by
“many decision-makers” and “busy stakeholders”. At the
same time, SiM-Care aims to support applications from
“horizon scanning” (cf. [68]) to evaluate the impact of
changing specific submodels, e.g., a PCP’s approach to
scheduling patients. We consider it as highly challenging
to elicit views and involvement from a sufficiently broad
selection of decision-makers and stakeholders to create
such a generally applicable simulation model. Even more
importantly, an agile rather than sequential view of
developing simulation systems may reduce the risk of
project failure; compare [58].

Agile development does not strictly adhere to a process
that lays down the conceptual model before the coding phase.
Instead, it does allow for adjusting the model even in the
experimentation phase. To use an agile approach to devel-
opment, we suggest a systematic stakeholder involvement
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in the post-model-coding-stages as exemplified in [43].
In other words, we recommend emphasizing stakeholder
involvement more strongly when designing case studies that
rely on SiM-Care.

Finally, to implement more stakeholder-driven research
means working to overcome the challenges of stakeholder
“identification, contact, and elicitation” [12]. Somewhat
paradoxically, in doing that, having implemented and
published research with the current version of SiM-Care
might help engagement. This did appear to be the case when
presenting SiM-Care to the general public at a university
outreach event in 2019. During this event, participants
could generate appointment scheduling rules and discuss
the effects of their ideas as computed by the simulation. As
suggested in [43], a pick-and-mix approach might support
such a view and enable facilitated simulation modeling,
coding, and experimentation.

Future work on SiM-Care will include further effort
towards model validation and calibration as well as the
implementation model extensions. Currently, illness distri-
butions are considered as being static by SiM-Care. By
modeling dynamic illness distributions, we can incorporate
seasonality or the patients’ previous history of illnesses.
In the current model, the duration of an illnesses is inde-
pendent of the actual treatment. Interestingly, the results
are convincing even without this causal link. In the future,
we want to compare whether implementing this link in
the conceptual model significantly affects our findings. A
similar comparison shall investigate the influence of no-
show patients, who introduce unexpected idle time into the
physicians’ schedules. While the sole integration of patient
non-attendance into SiM-Care is straightforward, the actual
difficulty lies in the need for empirical no-show proba-
bilities as well as the necessity to decide how no-show
patients continue their course of treatment. Yet other possi-
ble model extensions include: Illness specific appointments,
intentional physicians’ breaks, implementation of additional
patient attributes such as gender, and mobile patient agents
that move between different locations, e.g., their home and
work. Finally, we are currently preparing the open source
release of our model implementation that comes with a
graphical user interface such that SiM-Care can be easily
accessed, studied, and adapted to the individual require-
ments of all modelers.

Appendix A

A.1 PCP strategies

The feasible set of appointment scheduling strategies Sapp

is defined via the interface shown in Fig. 9. That is, every
appointment scheduling strategy S ∈ Sapp has to provide

I IAppointmentSchedulingStrategy

Optional Appointment findAppointment(
AppointmentRequest request)

void scheduleAppointment(Appointment b)
void cancelAppointment(Appointment b)
int upcomingAppointmentsAfter(Time t)

I ITreatmentStrategy

void handleArrival(ArrivalEvent ae)
int[] waitingPatients()
void sessionStarted()
Optional(ArrivalEvent) getNextPatient()
float getConsultationSpeed()

I IAdmissionStrategy

boolean acceptPatient(IAppointmentSchedulingStrategy as,
ITreatmentStrategy ts, ArrivalEvent ae)

void adaptStrategy(Session session, ITreatmentStrategy ts)

Fig. 9 Interfaces implemented by strategies

the functionality to answer appointment requests with an
appointment suggestion (that can be empty). Thereby, every
appointment request specifies the requesting patient, earli-
est possible appointment time, willingness to wait, whether
the request is for a regular appointment, and whether
patient’s availabilities have to be respected. Furthermore,
every appointment scheduling strategy S ∈ Sapp has to
provide the functionality to schedule previously offered
appointments as well as the functionality to cancel previ-
ously scheduled appointments. Finally, every appointment
scheduling strategy S ∈ Sapp has to be able to compute the
number of upcoming appointments within a session that are
scheduled to take place after a specified point in time.

The Individual-block/ Fixed-interval (IBFI) appoint-
ment scheduling strategy evenly spaces out appointments
throughout each session; see [17, 40]. To that end, it divides
the opening hours of each session in a 140 day rolling hori-
zon into slots of 15 minutes length. Each slot can accom-
modate one appointment and slots are offered to patients
on a first-come-first-served (FCFS) basis. Thus, no appoint-
ments are withheld and every patient is offered the earliest
feasible appointment at the time of inquiry.

The feasible set of treatment strategies S tmt is defined
via the interface shown in Fig. 9. That is, every treatment
strategy S ∈ S tmt has to keep track of admitted patients,
count the number of waiting patients with and without
appointment, and define how the treatment strategy is
affected by the beginning of a session. Moreover, every
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treatment strategy S ∈ S tmt has to determine the next patient
to be treated (that might not exist) as well as the PCP’s
current consultation speed which is thoroughly discussed in
Appendix A.6.

The priority first come, first served (PFCFS) treatment
strategy is popularly used in studies of health systems [17].
In PFCFS, patients with appointment are prioritized over
walk-ins and within their respective groups, patients are
served in order of their arrival, i.e., FCFS; compare [19,
52]. Patients that arrive before the beginning o(λ) ∈ T of
session λ ∈ 	 have to wait and the physician does not start
treatments until the session has officially begun. The PCP’s
standard consultation speed in PFCFS is ζ = 1.0, which is
adjusted to ζ = 0.8 whenever more than 3 patients await
treatment; compare Appendix A.6.

The feasible set of admission strategies Sadm is defined
via the interface shown in Fig. 9. That is, every admission
strategy S ∈ Sadm has to be able to decide whether
an arriving patient is admitted or not given the PCP’s
treatment and appointment scheduling strategy. Moreover,
every admission strategy S ∈ Sadm may define adaptive
traits that allow PCPs to learn and adapt their treatment
strategy.

The priority threshold (PT) admission strategy admits
patients up to a certain utilization threshold; compare
[39, 51]. PT differentiates between appointment, walk-in,
and emergency patients: Emergency patients are always
admitted. Patients with an appointment in session λ ∈ 	

are admitted as long as their time of arrival tarr ∈ T is
before the end of the session’s buffer, i.e., tarr ≤ o(λ) + 1

24 .
For the admittance of walk-in patients, physicians predict
their remaining workload by multiplying an expected
service time with the number of currently waiting patients
and upcoming scheduled appointments. If this estimated
workload is lower than the remaining duration of the current
session including buffer, walk-in patients are admitted,
otherwise rejected. The expected service time is initialized
to 7min and adjusted at the end of each session as follows.
If three or more patients are awaiting treatment at the end of
the anticipated buffer, the expected service time is increased
by 1min. If the physician is idle at the end of the buffer
although walk-ins were rejected, the expected service time
is reduced by 20 sec.

A.2 Events

Arrival events are indicated by earv(φ, ρ). As illustrated
in Fig. 10a, they mark the event of patient ρ arriving at
physician φ’s practice for an appointment or as a walk-
in. The physician’s decision to admit or reject arriving
patients depends on φ’s admission strategy. Every admitted
patient is guaranteed to receive treatment and enters the
physician’s waiting room. If the physician is currently idle,

this triggers the physician’s treatment strategy and treatment
commences.

Follow-up events are indicated by efol(φ, ρ, i). Some
families of illnesses fi ∈ F cannot be treated via a
single visit. Instead, the related illnesses i ∈ I require
follow-up treatments in intervals defined by the parameter
νi �= ∅. Ensuring continuous follow-up treatments,
patients always try to arrange a follow-up appointment
immediately after the treatment of illnesses requiring
follow-up consultation. To account for the fact that no
feasible follow-up appointment might be available, SiM-
Care generates a follow-up event efol(φ, ρ, i) at time t treat+
νi every time illness i ∈ I with νi �= ∅ suffered by
patient ρ ∈ P is treated by physician φ ∈ G at time
t treat ∈ T . Follow-up events serve as the patient’s reminder
to actively re-pursue follow-up consultation for illness i

after the duration of the follow-up interval. Triggered by a
follow-up event efol(φ, ρ, i), patient ρ reattempts to arrange
a follow-up appointment with physician φ. Should φ once
again be unable to provide a suitable appointment, ρ seeks
follow-up consultation as a walk-in patient. Every follow-
up treatment of an illness i ∈ I invalidates all associated
existing follow-up events, as the follow-up interval is reset.

As a result, follow-up events only trigger if an illness has
not been treated for the duration of its follow-up interval
νi ∈ T .

Release events are indicated by erel(φ, ρ). As illustrated
in Fig. 10b, release events mark the event of physician φ

releasing patient ρ after a treatment is performed. Whenever
a new treatment begins, the sampled service time determines
the time of the subsequent release event erel(φ, ρ). All
treated illnesses i ∈ Iact without duration (di = ∅)

are cured through a one-time treatment and thus removed
from Iact. Subsequently, all existing follow-up events
corresponding to treated illnesses are deleted and new
follow-up events are generated in the previously described
manner. The successful treatment revokes emergency flags.
If the patient’s chronic illness ς ∈ I was treated, the
next recurrent regular appointment breg ∈ B with physician
φfam is requested at time t treat + νς . Then, patients request
an acute appointment bact ∈ B with physician φ for the
follow-up treatment of the persisting acute illness i∗ =
argmini∈Iact:νi �=∅ νi with smallest follow-up interval. The
requested appointments ensure the follow-up treatment of
all illnesses suffered by patient ρ and will preempt the
previously generated follow-up events. Finally, physicians
implement their treatment strategy to select the next
patient from the waiting room if the latter is non-empty.
Otherwise, physicians remains idle until the next arrival
event triggers the treatment strategy. As a result of this
behavior, physicians are never intentionally idle.

Illness events are indicated by eill(ρ). As illustrated in
Fig. 10c, they describe that patient ρ starts to suffer from

817Patients, primary care, and policy: Agent-based simulation modeling for health care decision support



φ accepts ρ according
to admission policy

yes no

admit ρ reject ρ

initiate treatment of next patient ρ

yes

noφ currently idle?

(a)

φ treats illnesses of ρ

ρ arranges follow-up

initiate treatment of next patient ρ

yes
waiting patients?

no

(b)

yes no

generate next illness event eill(ρ)

generate new illness i for ρ

appointment satisfying
patient ρ’s requirements?

make appointment walk-in

(c)

Fig. 10 Processing of a arrival events earv(φ, ρ), b release events erel(φ, ρ), and c illness events eill(ρ); ρ ∈ P and φ ∈ G

a new acute illness. This means that the model generates
a new acute illness i ∈ I act with stochastic qualities
that depend on the patient’s age and health condition and
adds it to their set of illnesses I. To treat the emerged
illness, patients request an appointment from their preferred
physicians or, in case this does not succeed, directly visit
the preferred physician as a walk-in. As a result, each illness
event generates a corresponding arrival event earv(φ, ρ) and
adds it to the queue Q. Finally, each illness event generates
a future illness event eill(ρ) for patient ρ and adds it to the
queue Q to mark the next point in time patient ρ develops
an acute illness.

Recovery events are indicated by erec(ρ, i). They mark
the event of patient ρ recovering from acute illness i ∈ Iact.
Whenever the model generates a new acute illness i ∈ I act

with di �= ∅, it also generates a corresponding recovery
event erec(ρ, i) at time t ill+di , where t ill ∈ T is the point in
time illness i is developed. Illnesses without duration (di =
∅) do not require a recovery event as they are immediately
cured through their initial treatment. A recovery event
removes illness i from I and deletes any associated follow-
up event efol(φ, ρ, i) ∈ Q. If patient ρ does not suffer
from acute illnesses following the removal of illness i,
i.e., Iact = ∅, the model revokes existing emergency
flags and assumes that ρ may cancel scheduled acute
appointments. Such cancellations occur with the patient’s
age-class-specific probability pa ∈ [0, 1] and consequently
delete the associated arrival event earv(φ, ρ). As a result,
some patients keep their existing acute appointment for
a final debriefing. Should patient ρ be currently seeking
walk-in treatment due to persisting chronic illness ς ∈ I,
this effort is continued. Otherwise, current walk-in attempts
are canceled and the associated arrival event earv(φ, ρ) is
deleted.

Open- and close events are indicated by eopn(φ) and
eclo(φ), respectively. They mark the beginning and ending
(including buffer) of a session λ ∈ 	 operated by physician
φ. They ensure that treatment strategies become aware of
a session’s beginning and that overtime is incurred for all
treatments performed beyond the anticipated buffer time.

A.3 Modeling variability

A.3.1 Frequency of acute illnesses

The occurrence of acute illnesses in SiM-Care is modeled
via a Poission process. Patients develop acute illnesses at a
frequency that depends on their age and health condition.
For patients ρ ∈ P of age class a ∈ A with health condition
c ∈ [0, 1], the expected number of acute illnesses per year is
given by the parameter Ia(c). The intensity (or rate) of the
Poission proccess is thus Ia(c)/364 per day. Moreover, the
duration between two consecutive illness events eill(ρ) for
patient ρ can be sampled from an exponential distribution
with rate Ia(c)/364 [21, chapter 2].

A.3.2 Type of acute illnesses

Whenever an illness event eill(ρ) occurs and patient ρ ∈ P
falls ill, the model generates an acute illness i ∈ I act

according to the patients’ age class a ∈ A and health
condition c ∈ [0, 1]. The model assumes a probabilistic
link between illness family fi ∈ Fact and the patient’s age
class a that is expressed via the age-class-illness distribution
πact; see Section 3.2.5. To that end, any emerging acute
illness of patient ρ is randomly assigned to an illness family
according to the discrete probability distribution f �→
πact(a, f ) for f ∈ Fact.

818 M. Comis et al.



A.3.3 Qualities of acute illnesses

For any new illness i ∈ I act of family fi ∈ F generated
through SiM-Care, its seriousness si ∈ [0, 1] depends on a
triangular distribution defined on the closed interval [0, 1].
The distribution’s mode is the health condition c ∈ [0, 1] of
patient ρ ∈ P developing illness i. Thus, patients with a bad
health condition tend to develop more serious illnesses.

The duration di ∈ T of illness i depends on a log-
normal distribution. Given i’s family of illnesses fi ∈ F ,
seriousness si ∈ [0, 1], and the patient’s age class a ∈ A,
we define the age-adjusted expected duration of illness i as
E

d
a(fi, si) := �d

a · Dfi
(si). Therefore, SiM-Care samples

the illness’ duration di from a log-normal distribution with
sdlog σ = 0.3 and meanlog μ = log(Ed

a(fi, si)) − σ 2/2.
The willingness to wait specified by ωi ∈ T depends

on a Weibull distribution. Given i’s illness family fi ∈ F ,
seriousness si ∈ [0, 1], and the patient’s age class a ∈ A,
the age-adjusted expected willingness to wait of illness i

is defined as E
ω
a (fi, si) := �ω

a · Wfi
(si). Analogously

to Wiesche et. al [67], we sample ωi from a Weibull
distribution with shape parameter p = 2 and derive the
scale parameter from the age adjusted expected willingness
to wait as q = E

ω
a (fi, si)/�(1+(1/p))where � denotes the

gamma function. Figure 11 visualizes the resulting density
functions for various choices of the age-adjusted expected
willingness to wait.

A.3.4 Patient punctuality

Patients do not always arrive on time for their scheduled
appointments b ∈ B. Instead, SiM-Care allows for patient
arrivals to vary around the scheduled time tb ∈ T of the
appointment by including an arrival deviation. As suggested
by Cayirli et al. [18], the arrival deviation from tb depends
on a normal distribution.We choose a mean arrival deviation
of μ = −5 minutes and standard deviation of σ = 6
minutes such that roughly 20% of all patients are expected
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Fig. 11 Weibull distributions of ωi ∈ T for different values of
patient’s age adjusted expected willingness to wait Eω

a (fi , si )

to arrive late for their appointments which is consistent with
the observations reported in [22].

A.3.5Walk-in arrivals

Walk-in patients have no prespecified time at which they
are expected to arrive. Instead, SiM-Care defines for every
walk-in patient an earliest arrival time a ∈ T as well
as a latest arrival time b ∈ T which are both situational
and thoroughly discussed in Appendix A.6. The walk-in
patients’ actual arrival within the given feasible arrival
interval [a, b] depends on a beta distribution. Specifically,
we fit a beta distribution using maximum likelihood
estimation to the empirical arrival rates reported by Wang
et al. [66]. As a result, we sample the arrival times of walk-
in patients from the interval [a, b] of feasible arrival times
according to a beta distribution with shape parameters p =
1.93 and q = 2.94; cf. Fig. 12.

A.3.6 Service time

SiM-Care treats the service times, i.e., the duration of
treatments, as a random parameter. To sample service times,
we collected a set of 21 service times in a local primary
care practice. As suggested in literature [17, 67], we divide
the sample into patients with and without appointment and
apply a log-normal maximum likelihood fit. Histograms
of our empirical samples and the resulting distributions
for walk-ins and patients with appointment are depicted in
Figs. 13 and 14. Based on the fitted distributions, we sample
the service times of patients with appointment from a log-
normal distribution with meanlog μ = 1.82 and sdlog σ =
0.692 and the service times for walk-in patients from a log-
normal distribution with a meanlog μ = 1.254 and sdlog
σ = 0.723. As our collected data set does not incorporate
transition times, we prolong all sampled service times by
one minute.
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Fig. 12 Histogram and beta distributed maximum-likelihood fit for
empirical walk-in arrival rates from [66]
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A.3.7 Appointment cancellations

Patients that recover from all their current acute illnesses,
i.e., Iact = ∅, cancel their existing acute appointment
bact ∈ B with the age-class-specific probability pa ∈ [0, 1];
compare Section 3.2.4. As long as patients suffer from
acute illnesses, they only cancel their acute appointment if
they require earlier treatment due to a newly emerged acute
illness. All patients that have not canceled their appointment
will arrive for it. As chronic illnesses are static within the
model, regular appointments are never canceled.

A.4 Key performance indicators

Access time measures the time a patient has to wait for an
appointment, i.e, given the earliest acceptable appointment
time t ∈ T and the time of the arranged appointment tb ∈ T
it is defined as ac-time := tb − t .

Access distance measures the one-way distance patient
ρ ∈ P has to travel when visiting physician φ ∈ G,
i.e., tr-dist := dist(�ρ, �φ), where dist(�1, �2) denotes the
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Fig. 14 Histogram and log-normal maximum-likelihood fit for
empirical service times of walk-in patients

driving distance between locations �1 ∈ L and �2 ∈ L in
kilometers.

Waiting time measures the patient’s time spent on-
site before the actual treatment commences. For walk-in
patients, we define the waiting time for given walk-in arrival
tarr ∈ T and treatment commencement t treat ∈ T as
wait-time := t treat − tarr. For patients with appointment, we
define the waiting time for given time of the appointment
tb ∈ T , patient’s arrival at the practice tarr ∈ T , and
treatment commencement t treat ∈ T as wait-time :=
max{t treat − max{tb, tarr}, 0}.

Utilization describes the percentage of the physician’s
available working time spent treating patients, i.e., for a
session λ ∈ 	 with total treatment duration t ∈ T it is
defined as util := t/(o(λ) − o(λ) + 1

24 ). Note that our
definition of utilization clearly underestimates a physician’s
actual utilization as we do not account for additional tasks
such as reporting, accounting, and answering phone calls
that are not modeled in SiM-Care.

Overtime describes the physician’s working time beyond
the anticipated buffer, i.e., if the last patient in session λ ∈ 	

is released at time t rel ∈ T it is defined as over := max{t rel−
o(λ) − 1

24 , 0}; compare Fig. 3.

A.5 Experiment initialization

At initialization, patients do not suffer from acute illnesses,
i.e., Iact = ∅ and are not considered emergencies, i.e., ε =
0. Furthermore, all patients are initialized without scheduled
appointments, i.e., bact = breg = ∅. The consideration set
of physicians Gcon ⊆ G per patient ρ ∈ P is determined
according to Algorithm 1 where rand(x) for x > 0 denotes
a uniformly distributed float from the half-closed interval
[0, x). As a result, each patient considers all physicians
within a 15 km driving radius. Physicians outside this radius
are considered with a 5% chance as some patients may
choose their physician according to criteria other than
proximity to their home, e.g., for historical reasons.
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To initialize patients’ appointment ratings r
app
ρ (φ) and

walk-in ratings rwalkρ (φ, [λ]) for every considered physician
φ ∈ Gcon and weekly session [λ] ∈ 	/∼, we denote the
number of matches between the physician’s opening hours
and patient ρ’s availabilities by m(ρ, φ) := |{[λ] ∈ 	/∼ :
α([λ]) ∧ o([λ]) �= ∅}| and the maximal shortest access
distance by distmax := maxρ∈P minφ∈G dist(�ρ, �φ). The
model then initializes appointment ratings as

r
app
ρ (φ) =

⎧
⎪⎨

⎪⎩

3m(ρ, φ) − dist(�ρ, �φ)

+rand(2 distmax) + 100 if m(ρ, φ)>0

0 else.

Walk-in ratings rwalkρ (φ, [λ]) are session specific as
immediate care requires physicians to be in service. Thus,
sessions in which a physician is closed are not feasible for
walk-in visits which is encoded by an empty rating. The
model initializes walk-in ratings as

rwalkρ (φ, [λ]) =

⎧
⎪⎨

⎪⎩

rand(distmax)

−dist(�ρ, �φ) + 100 if o([λ]) �= ∅
∅ else.

From the initialized ratings, SiM-Care subsequently
determines the family physician for chronic patients as the
physician from the consideration set that has the highest
appointment rating, i.e., φfam = argmaxφ∈Gcon r

app
ρ (φ)

which completes the setup of all simulation entities.
Following the patients’ initialization, the global event

queue Q is still empty and therefore running a simulation
experiment would result in no agent actions. To make
physicians take up their work, the model generates open-
and close events eopn(φ) and eclo(φ) for every session
operated by physician φ ∈ G and adds these to Q. To
start the process of patients continuously developing acute
illnesses, the model generates an initial illness event eill(ρ)

for every patient ρ ∈ P and adds it toQ. Finally, to start the
regular treatments of chronic illnesses ς ∈ Ichro, an initial
follow-up event efol(φfam, ρ, ς) is generated at a randomly
chosen point in time within ς ’s follow-up interval νς ∈ T
according to a uniform distribution and added to Q.

A.6 Submodels

A.6.1 Distances and travel times

SiM-Care does not feature a road network to compute travel
distances and travel times. Instead, it approximates the
driving distance dist : L×L → R between two locations in
kilometers using the great circle distance computed through
the haversine formula with a detour factor of 1.417 as
determined by Boscoe et al. [9]. These authors also point
out, that driving distances provide good approximations for
travel times in minutes, i.e., we compute travel times by

assuming a constant driving speed of 60 km/h. As a result
we define the travel time τ : L × L → T as τ(�1, �2) :=
dist(�1,�2)

60·24 .

A.6.2 Patients requesting appointments

Patient agents ρ ∈ P request an appointment with a
physician φ ∈ G, by specifying the earliest acceptable
appointment time t ∈ T and their willingness to wait
for this appointment ω ∈ T . As a result, newly-arranged
appointments are feasible, if and only if they are scheduled
in the time interval [t, t + ω].

The earliest acceptable appointment time t ∈ T depends
on the request. The initial treatment of acute illnesses
i ∈ Iact is urgent, so that patients seek to schedule an
appointment as soon as possible. Thus, for these initial
treatments, the earliest acceptable appointment time is the
time of the request t req ∈ T plus a 30 minute buffer
(corresponding to 1

48 in decimal time) plus the direct travel
time, i.e., t = t req+ 1

48+τ(�ρ, �φ). Follow-up treatments are
planned at regular intervals specified by the parameter νi ∈
T . Patients request follow-up appointments in two ways:
First, at the very beginning of the follow-up interval as every
patient requests a follow-up appointment directly after the
treatment of illnesses that require aftercare. Second, at the
very end of the follow-up interval (triggered by a follow-up
event) in case no feasible appointment was available at the
time of the previous treatment. In the latter case, the request
is urgent and therefore the earliest acceptable appointment
time is defined as above, i.e., t = t req + 1

48 + τ(�ρ, �φ).
If the follow-up appointment is requested at the beginning
of the follow-up interval, the next follow-up appointment
for illness i ∈ I should be scheduled after the follow-up
interval has passed, i.e., we set t = t req + νi .

The willingness to wait ω ∈ T defines the maximum
acceptable waiting period between the earliest appointment
time and the actual time of the appointment. As a result,
it serves as an upper bound to the patient’s access time
defined in Section 3.5. Patients’ willingness to wait for
the initial treatment of acute illness i ∈ Iact is illness
specific and given by ω = ωi . Analogously, the maximum
duration chronic patients are willing to wait for their regular
appointment depends on their chronic illness ς ∈ Ichro, i.e.,
ω = ως . If patients request a follow-up appointment for
acute illness i ∈ Iact, the willingness to wait is proportional
to the length of the follow-up interval νi ∈ T . To ensure that
the follow-up interval is not exceeded by an excessive time
span, the willingness to wait for follow-up appointments
regarding i ∈ Iact is ω = νi

5 +1. Finally, emergency patients
who were denied treatment are exceptionally impatient and
their willingness to wait is ω = 0.

Algorithm 2 describes how a patient requests an initial
appointment for a newly emerged acute illness. First,
patients check whether they have a pre-existing appointment
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within the acceptable time frame. From the patients’
point of view, pre-existing appointments are particularly
convenient as they require no further actions. Therefore,
patients accept pre-existing appointments as feasible, even
if they exceed their willingness to wait by up to 12
hours (or 1

2 in decimal time); see lines 1 and 2. If
the patient’s existing appointments are infeasible for the
newly emerged illness, the existing acute appointment is
canceled to make room for a new, earlier, acute appointment
(compare line 4 and 5).

Patients ρ ∈ P request appointments from the two
currently highest rated physicians φ1, φ2 ∈ Gcon in their
consideration set (compare line 7). Physicians φ1 and φ2 are
queried in order of their rating, i.e., patients first request
an appointment with the higher rated PCP φ1 and only
resort to φ2 if the request is unsuccessful. When a physician
cannot offer a fitting slot, patients reduce their rating for the
respective PCP.

When their willingness to wait is at least 3 days (compare
line 10), patients only accept appointments that fit their
personal availability α : 	/∼ → {0, 1} (cf. Section 3.2). In
case ω ≤ 3, the request is so urgent that patients are always
available.

If neither φ1 nor φ2 offer a feasible slot, the search for
a feasible appointment is deemed unsuccessful and patients
resort to a walk-in visit.

When patients request follow-up appointments, they
mostly follow the steps outlined in Algorithm 2. The
main difference concerns the inquiry process (cf. line 7
and 8), as new follow-up appointments are exclusively
arranged with the physician that performed the previous
treatment. Only pre-existing appointments can be used for
follow-up visits although they are not with the physician
that performed the previous treatment; compare line 1.
If the follow-up appointment request is made at the
end of the follow-up interval triggered by a follow-
up event, a failure initiates a walk-in attempt to ensure
the patient’s aftercare. If the follow-up appointment is
requested immediately after treatment at the beginning
of the follow-up interval, a failure does not lead to a
walk-in attempt as the corresponding follow-up event will
eventually lead to a reattempt at arranging a follow-up
appointment.

Chronic patients’ regular appointments are essentially
follow-up appointments and thus arranged according to the
same logic. The only difference concerns the evaluation
of pre-existing appointments: As regular appointments are
exclusively arranged with the patient’s family physician
φfam ∈ Gcon, pre-existing acute appointments are only
perceived as feasible if they are with the family physician
φfam (cf. line 1 and 2). Infeasible pre-existing acute
appointments are not canceled but instead an additional
regular appointment is arranged with the family physician
φfam (cf. line 4 and 5). Only if the newly arranged regular
appointment is before or at most 12 hours after an existing
acute appointment, i.e., tbreg ≤ tbact + 1

2 , the latter is
canceled as all acute illnesses will be treated at the regular
appointment.

A.6.3Walk-in decisionmaking

Within SiM-Care, all walk-in visits are preceded by an
unsuccessful appointment request. As walk-in visits are per
se urgent, the earliest possible time t ∈ T for a walk-in visit
of patient ρ ∈ P at physician φ ∈ Gcon is defined as the
current time tcurr ∈ T plus a 30 minute buffer plus the direct
travel time, i.e., t = tcurr + 1

48 + τ(�ρ, �φ). The patients’
willing to wait for the walk-in visit is the willingness to wait
ω ∈ T of the preceding appointment request. As a result,
the patient’s walk-in visit takes place in the time interval
[t, t + ω], unless this is impossible due to the physicians’
opening hours.

As part of the walk-in decision making, patients decide
on a physician φ∗ ∈ Gcon and session λ∗ ∈ 	 for their
walk-in visit. To that end, SiM-Care computes all physician-
session combinations W ⊆ Gcon × 	 that fall into the
interval [t, t+ω] and thus can be targeted for a walk-in visit.
If W = ∅, the model gradually increases the willingness to
wait ω until W �= ∅.
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Patients select the physician-session combination
(φ∗, λ∗) ∈ W targeted for their walk-in visit on the basis of
their walk-in ratings rwalkρ via

(φ∗, λ∗) = argmax(φ,λ)∈W 0.95wt (λ) · rwalkρ (φ, [λ]),
where wt(λ) := o(λ) − t denotes the time difference
between the earliest possible walk-in time t ∈ T and the
end of session λ ∈ 	. This takes into account that walk-
in patients urgently want to visit a physician by discounting
the ratings based on the approximate access timewt(λ) ≥ 0.
Note that this discounting model yields undesired results
if we allow for negative ratings, motivating the models
limitation to non-negative ratings.

Given the targeted physician-session combination
(φ∗, λ∗) ∈ W for the walk-in visit, the time interval during
which the actual visit at φ∗ may take place is defined as
follows: The earliest time for walk-in patients to arrive
in session λ∗ ∈ 	 is 15 minutes before its beginning
o(λ∗) ∈ T , but obviously not before the earliest possible
arrival t ∈ T . The latest possible arrival in session λ∗ ∈ 	

is its ending o(λ∗) ∈ T , but not after the latest possible
arrival t + ω. The resulting time interval for the patient’s
walk-in arrival is
[
max(o(λ∗) − 1

96 , t), min(o(λ∗), t + ω)
]
.

The patient’s actual arrival within the feasible time
interval is stochastic and sampled according to the
distribution specified in Section A.3.5.

As long as patients actively pursue walk-in treatment,
they never arrange new appointments. That is if a walk-in
patient develops a new acute illness or seeks an immediate
follow-up appointment triggered by a follow-up event, their
need for medical attention is met through the ongoing
walk-in visit.

A.6.2 Service time reduction

Physicians’ treatment strategies let them reduce service
times to prevent congestion and minimize overtime. Within
the model, the service time reduction operationalizes via
a multiplicative factor ζ ∈ [0, 1]. Thus, a treatment with
an original service time of 10 minutes (sampled from the
log-normal distribution described in Section 3.4) takes only
8 minutes when performed by a physician with current
consultation speed ζ = 0.8. When there is no effort to
reduce service times, i.e., ζ = 1, the actual services time
coincide with the sampled original service times.

A.6.3 Consequences from rejection of patients

Whenever a patient visits a physician either with an
appointment or as a walk-in, the physician’s admission
strategy determines whether the patient is admitted or

rejected. Following a rejection, patients reduce their
personal ratings r

app
ρ or rwalkρ depending on whether they

arrived for an appointment or as a walk-in. As rejected
patients have been denied treatment, they are subsequently
flagged as emergencies, i.e, ε = 1. In order to be treated,
rejected patients then start a walk-in attempt with reduced
willingness to wait ω = 0, i.e., they visit their preferred
physician according to the updated walk-in preferences
rwalkρ in the earliest possible session. A patient’s emergency
flag is only revoked after the next successful treatment or if
the patient fully recovers from all acute illnesses.

A.6.4 Rating adjustments

Throughout the simulation, patients adjust their ratings
of physicians according to their experiences via additive
factors. To that end, patients increase ratings based on
positive experiences and decrease ratings following negative
experiences. Thereby, patients with appointment update
their appointment ratings r

app
ρ while walk-in patients update

their walk-in ratings rwalkρ . Table 16 lists all events that
trigger a rating adjustment.

In SiM-Care, only the effect of a failed appointment
request and the effect of a successful treatment are
parameterized. All other event effects are hard-coded to
represent the following intuition about patient perceptions:
Unanticipated events cause a stronger adjustment, while
anticipated events only cause a slight adjustment. For
example, visiting a physician with an appointment and not
being admitted is considered highly unlikely and therefore
highly penalized. Furthermore, patients react more strongly
to negative experiences, reflecting the so-called negativity
bias [8].

When a physician fails to offer a fitting appointment,
the negative adjustment depends on the patient’s associated
willingness to wait ω ∈ T . As ω ≥ 0, the adjustment −ω is
always non-positive. When the willingness to wait is high,

Table 16 Adaptation of patient ratings r
app
ρ and rwalkρ

Positive Event Adjustment

Waiting time < 7 min +5

Successful arrangement of appointment +4

Successful treatment as walk-in +3ζ

Successful treatment with appointment +2ζ

Negative Event Adjustment

Waiting time > 30 min −10

No appointment within willingness available −ω

Rejected as walk-in −10

Rejected with appointment −20

Parameter ω ∈ T describes patient’s willingness to wait and ζ ∈
[0, 1] the physician’s consultation speed
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the expectation of receiving a fitting slot is also high, so
that the resulting disappointment leads to a stronger negative
adjustment.

When physicians reduce their service time as part of
their treatment strategy, patients feel rushed. Therefore,
the model scales the positive adjustment following a
successful treatment as dependent on the physician’s current
consultation speed. For example, at a consultation speed of
ζ = 0.5 a successful treatment with appointment increases
r
app
ρ only by a value of 0.5 · 2 = 1.
To ensure the desired behavior of discounting ratings

in the walk-in decision making, we bound all ratings
from below by zero, i.e., we enforce r

app
ρ (φ) ≥ 0 and

rwalkρ (φ, [λ]) ≥ 0 for all ρ ∈ P , φ ∈ G, [λ] ∈ 	/∼. As
a result, negative adjustments have no effect on physicians
with a rating of zero.

A.6.5 Family physician adjustments

Every time chronic patients adjust their appointment ratings
r
app
ρ (φ) for any φ ∈ Gcon, they simultaneously reevaluate
their family physician φfam according to Algorithm 3.
Thereby, chronic patients change their family physician
when another physician from the consideration set has a
rating that is at least 20% higher than the current family
physician’s rating.

A.6.6 Treatment effects

Physicians treat all of a patient’s current acute illnesses
i ∈ Iact during the same appointment. As a result, all
scheduled follow-up events efol(φ, ρ, i) for i ∈ Iact are
deleted. Moreover, all illnesses i ∈ Iact that require only
a single treatment, as indicated by di = ∅, are cured and
thus removed from Iact. Finally, new follow-up events are
scheduled for all illnesses i ∈ Iact that still require follow-
up consultation as indicated by a positive follow-up interval
νi > 0.

Chronic illnesses are only treated during the recurrent
regular appointments or during walk-in visits triggered
by the unavailability of a feasible regular appointment.
If ς ∈ Ichro is treated, any existing follow-up event
efol(φ, ρ, ς) ∈ Q is deleted and replaced by a new, updated
one.

Finally, the successful treatment revokes any emergency
flag the patient may have.
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2011: Vielfältiges Deutschland Statistische Ämter des Bundes und
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37. Kassenärtzliche Vereinigung Nordrhein: Suche nach Ärzten
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systematische Einführung. Verlag Hans Huber, Bern

57. Sargent RG (2013) Verification and validation of simulation
models. J Simul 1:12–24. https://doi.org/10.1057/jos.2012.20

58. Sawyer JT, Brann DM (2008) How to build better models: apply-
ing agile techniques to simulation. In: 2008 winter simulation con-
ference. IEEE, pp. 655–662. https://doi.org/10.1109/WSC.2008.
4736126

59. Schacht M (2018) Improving same-day access in primary care:
Optimal reconfiguration of appointment system setups. Oper

Res Health Care :119–134. https://doi.org/10.1016/j.orhc.2017.09.
003

60. Schruben L, Singh H, Tierney L (1983) Optimal tests for
initialization bias in simulation output. Oper Res 6:1167–1178

61. Shi J, Peng Y, Erdem E (2014) Simulation analysis on patient
visit efficiency of a typical VA primary care clinic with
complex characteristics. Simul Model Pract Theory :165–181.
https://doi.org/10.1016/j.simpat.2014.06.003

62. Stanford DA, Taylor P, Ziedins I (2014) Waiting time distributions
in the accumulating priority queue. Queueing Syst 3:297–330.
https://doi.org/10.1007/s11134-013-9382-6

63. Tako AA, Kotiadis K (2015) PartiSim: A multi-methodology
framework to support facilitated simulation modelling in health-
care. Eur J Oper Res 2:555–564. https://doi.org/10.1016/j.ejor.
2015.01.046
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