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Abstract  

Staphylococcus aureus causes both hospital and community acquired infections in 
humans worldwide. Due to the high incidence of infection S. aureus is also one of the 
most sampled and sequenced pathogens today, providing an outstanding resource to 
understand variation at the bacterial subspecies level. We processed and downsampled 
83,383 public S. aureus Illumina whole genome shotgun sequences and 1,263 complete 
genomes to produce 7,954 representative substrains. Pairwise comparison of core gene 
Average Nucleotide Identity (ANI) revealed a natural boundary of 99.5% that could be 
used to define 145 distinct strains within the species. We found that intermediate 
frequency genes in the pangenome (present in 10-95% of genomes) could be divided into 
those closely linked to strain background (“strain-concentrated”) and those highly variable 
within strains (“strain-diffuse”). Non-core genes had different patterns of chromosome 
location; notably, strain-diffuse associated with prophages, strain-concentrated with the 
vSaβ genome island and rare genes (<10% frequency) concentrated near the origin of 
replication. Antibiotic genes were enriched in the strain-diffuse class, while virulence 
genes were distributed between strain-diffuse, strain-concentrated, core and rare classes. 
This study shows how different patterns of gene movement help create strains as distinct 
subspecies entities and provide insight into the diverse histories of important S. aureus 
functions.

Importance  

We analyzed the genomic diversity of Staphylococcus aureus, a globally prevalent 
bacterial species that causes serious infections in humans. Our goal was to build a 
genetic picture of the different strains of S. aureus and which genes may be associated 
with them. We used a large public dataset (>84,000 genomes) that was re-processed and 
subsampled to remove redundancy. We found that individual genomes could be grouped 
into strains by sharing > 99.5% identical nucleotide sequence of the core part of their 
genome. We also showed that a portion of genes that are present in intermediate 
frequency in the species are strongly associated with some strains but completely absent 
from others, suggesting a role in strain-specificity. This work lays the foundation for 
understanding individual gene histories of the S. aureus species and also outlines 
strategies for processing large bacterial genomic datasets. 
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Introduction  

S. aureus is a ubiquitous human pathogen capable of causing numerous disease 
manifestations, including more than 100,000 bloodstream infections in 2017 in the US 
alone1. S. aureus genomes typically have a ~2.8 Mbase chromosome and zero to a few 
plasmids. Like other bacterial pathogens, its success at responding to pathogenic niches 
comes from both adaptations in the “core” portion of the genome and non-core genes that 
form the extended species genome, or “pangenome” 2. Non-core genes form part of the 
extensive genetic repertoire for evading the immune response and damaging the host 
and have allowed S. aureus to survive treatment with various antibiotics developed since 
the middle of the twentieth century 3–6. 

Microbiologists have long known that there are consistent differences in phenotypes 
between taxonomic groups below the species level in S. aureus. Different “strains'' have 
been shown to be more likely to cause specific disease etiologies than others. Examples 
are Multi-Locus Sequence Type (MLST) ST582, which is associated with scalded skin 
syndrome 7 and livestock associated CC97 infections 8. Among other phenotypes, strains 
also show different propensity to acquire drug resistance genes, high or low levels of 
toxin production, and can produce different spectra of mutations when under strong 
selection 9–12. Understanding the genetic basis of strain-specificity therefore offers 
potential insight into many mechanisms that define S. aureus pathology. Interest in strain-
specificity has also been prompted by attempts to use shotgun metagenomic data to 
define environmental conditions that separate different genotypes with species 13,14. 
However, the cardinal problem with these approaches is that there is no generally 
accepted bacterial strain definition appropriate for the genomic era. Instead, the term 
“strain” has been used loosely to apply to different levels of sub-species variation.

The aims of this work were to seek a consistent definition of a S. aureus strain that could 
be applied to genomic and ultimately metagenomic data, to understand which portions of 
the non-core genome were strain-associated and to survey the extent of strain variation 
in the public data. We used an approach based on an earlier workflow 12, where we 
reprocessed all extant public Illumina whole genome shotgun (WGS) data. Here, we 
refined the strategy by implementing stringent steps to filter WGS potentially 
contaminated with other bacterial contigs and S. aureus mixtures. We also included high-
quality complete genomes and dereplicated the final data set to remove very highly 
similar sequences. Critically, we opted to define relationships between genomes based 
on average nucleotide identity (ANI) , rather than relying on the traditional clonal complex 
and sequence type designations of multi-locus sequence typing.
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Results  

ANI threshold of 99.5% defines 145 S. aureus strains from a large public genome 
dataset

To get a global view of S. aureus genetic diversity, we used all complete genomes 
without undefined (“N”) base calls and all Illumina whole genome data sets of the species 
available on the NCBI website in September 2022. The 83,383 whole genome data sets 
were filtered down to 58,034 (56,771 short read genomes + 1,263 complete genomes) 
based on having high sequence depth and quality, having no non-S. aureus genome 
content, and not being potential intraspecies mixtures based on minor-allele frequency 
(Figure 1, Figure S1A; Methods). To remove redundancy, the high-quality shotgun sets 
and 1,263 complete genomes were clustered based on a mash distance of 0.0005 
(approximately 50 SNPs) 12,15,16. A randomly chosen representative of each of these 7,954 
“substrains'' was selected for downstream analysis.

The 7,954 representative substrains came from 1706 multi-locus sequence types (STs), 
with 386 substrains not belonging to a previously assigned ST. The uneven distribution of 
genomes across substrains and STs reflected the sampling skew towards well-known S. 
aureus strains from predominantly clinical settings. We found that the fifteen substrains 
that represented the most collapsed genomes, comprised 50% of the shotgun datasets. 
The most numerous substrain, from CC22, comprised 7688 of the 58,034 whole 
genomes (13%), while there were 5597 substrains represented by only one genome. 
3857 out of 7,954 substrains(48%) were in ten most abundant STs (ST5, ST8, ST30, 
ST398, ST45, ST1, ST22, ST15, ST59 and ST239), representing 39,366 out of 56,771 
genomes (69%).

The 7,954 representative substrains were used to create a species pangenome (the 
‘7954-set’), using the PIRATE software17 based on a minimum 50% protein sequence 
identity. 9,533 distinct orthologous gene families were identified (we use the shortened 
“genes” to refer to these gene families in this manuscript). Of these genes 2,008 (21.1%) 
were considered core (found in > 95% of the genomes), 71.3% (6,794 ) were rare (<10% 
of genomes) and 7.7% (731) were intermediate between core and rare. 90% of genes 
were in single copy (Figure S2). 

When pairwise average nucleotide identity (ANI) between substrains based on the 
concatenated nucleotide sequences of the core genes (2,101,692 nt) was plotted as a 
histogram there was a clear pattern of three strong peaks separated by distinct valleys 
(Figure 2A). The left peak (smallest AN distances), we interpreted as intra-strain 
distance, the second and third as between-strain distances within the two major S. 
aureus clades 18, and between the clades, respectively. The threshold for intra-strain 
relatedness appeared to be at, or very near to, 99.5%: identical to a value suggested by 
Rodriguez-R et al to separate strains across 330 bacterial species19. When we used 
99.5% as a threshold for clustering we obtained 145 groups of genomes that we termed 
“strains'' and marked each with a suffix “S99.5_” . All strain clusters had median within-
cluster ANI > 99.7 (Figure S1B). Both gene discovery rate and lineage discovery rate 
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were improved by dereplicating the initial 58,034 genomes compared to using a random 
set (Figure S1C, S1D). 

Currently, ten clonal complexes (CCs) of closely related STs are defined by the S. aureus 
PubMLST site20. Of these, CC1, CC5, CC8, CC15, CC45, CC97 and CC121 were split 
into 14, 3, 6, 2, 3, 5 and 5 strains, respectively, at the 99.5% clustering threshold (Figure 
2B). In the case of CC1, ten strains had 7 or fewer substrains (Figure 2C). Two strains, 
S99.5_9 and S99.5_36, contained substrains that had been assigned to different CCs. 
S99.5_36 had substrains assigned CC1, CC8 and CC97 (56, 3 and 1, respectively) and 
S99.5_9 had substrains from CC1 and CC97 (17 and 1, respectively). Substrains from 
different CCs assigned to both S99.5_9 and S99.5_36 had at least 5 alleles in common, 
suggesting that they were close to the threshold of being in the same CC by the rules of 
MLST assignment (which require 5/7 common alleles). Across all strains we found that 
>99.9% of genomes in the same strain had the same agrD specificity allele (1-4) of the 
agr quorum sensing system (Figure 2D). (The one exception was strain 
PS/BAC/317/16/W (GCF_018093225.1)21, the single agr group 2 genome in 4,469 CC30 
genomes). This result confirmed an earlier genome-based screen15 showing that agr type 
is strongly strain specific in S. aureus. 

We noted that there was a “bump” of pairwise distances (~99.5-99.1% ANI) in the 
otherwise clear gap between within-strain and between-strain comparisons (Figure 2A). 
When we clustered substrains at 99.1% core genome ANI we found that 30 99.5%-
defined strains merged together to form 115 putative strains. One of the merged strains 
comprised genomes of S99.5_2 and S99.5_27, both largely mapped to CC8. The 
S99.5_27 strain consisted of ST239, which is known to have been created by 
recombination of a large portion of a CC30 genome with a CC8 background 22,23. The 
other 9 sets of merged strains consisted of a small number of genomes. For two of the 
merged strains, we had a complete genome which we used to align 10,000 bp sliding 
windows against a genome from the same strain at 99.5% ANI and one from a different 
strain that was merged at 99.9% ANI. These were strains S99.5_33 and S99.5_4 (both 
mapped to CC45) S99.5_7 and S99.5_111 (CC15), each pair merged into one strain 
using ANI 99.1% thresholds. Neither analysis revealed the clear pattern of large scale 
genome replacement seen in ST239.  

Intermediate frequency genes in the pangenome can be divided into strain-
concentrated and strain-diffuse 

We wanted to know what proportion of the S. aureus accessory gene was strongly linked 
to strain background, in the same manner as agr type. We adapted the commonly used 
genetic statistic FST (also known as fixation index) as a measure of segregation of a gene 
between different strains 24. FST of 0 indicated a gene that displays no genetic 
segregation, i.e it was indiscriminately found across different strains. In contrast, FST of 1 
indicated perfect genetic segregation, with the gene limited to all members of a group of 
strains. Rare and core genes were constrained in their distribution and had uninformative 
FST scores around 0. Therefore we concentrated our analysis on intermediate gene 
families.
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Strikingly, the FST distribution across intermediate genes showed a distinct bimodal 
distribution (Figure 3A). This pattern disappeared when the strain labels were randomly 
mixed and FST recalculated (Figure 3B), reverting to a normal distribution, showing that it 
was a feature of the specific population structure of S. aureus rather than an inherent 
property of the data. From this result we divided intermediated genes into two groups 
based on a FST threshold of 0.75. Those genes with high FST (296/731 (40%) intermediate 
genes), which we termed “strain-concentrated” were strongly linked to strain 
backgrounds, while those with low FST (“strain-diffuse”) (495/731 (60%) intermediate 
genes) were more promiscuous with respect the strain background. These patterns were 
illustrated using ten S. aureus toxins with a range of FST scores: Leukocidins LukFS 
(Panton Valentine Leukocidin) and LukED, Toxic Shock Syndrome toxin 1 (TSST), 
superantigen-like protein SSL8, and different types of Staphylococcal Enterotoxins (SEA, 
SEB, SEG, SEU) (Figure 4). Leukocidins comprise two proteins, the F component and 
the S component, both acting synergistically to form pores in host-cell membranes 25. 
TSST, SEs and SSL8 are superantigens or superantigen-like proteins (SAs), highly 
potent toxins that can elicit severe inflammatory responses and other immunomodulatory 
effects 26. The leukocidin LukFS, enterotoxins SEA & SEB, and TSST, showed high levels 
of gain and loss on the species tree typical of low-FST . In contrast, the enterotoxins SEG 
and SEO, Leukocidin LukED, found together on genomic island vSaβ had high FST (> 0.9) 
and were either almost entirely present or absent in each strain background.

We also used FST to test whether there was any association between the agr type of a 
strain and intermediate gene distribution but found no similar pattern (Figure S3).

To investigate the differences between strain-concentrated and strain-diffuse genes 
further in a S. aureus pangenome with more balanced sampling, we created the “740-
set”, created by randomly sampling 20 shotgun assembled substrains from the most 
common 37 strains. The 740-set had similar numbers of core and intermediate genes 
(2,139 and 739, respectively) to the 7954-set but fewer rare genes (2,687), the latter 
expected to increase with the number of genomes sampled in a species. The FST 
distribution of the 740-set to the original pangenome was almost identical. 

When we plotted the number of strains each gene was found in given the numbers of 
genomes we saw two distinct patterns. The strain-concentrated genes were close to the 
minimum possible number of strains for a given gene (dashed red line), while the strain-
diffuse genes were more similar to the shape of a random assortment of strains 
(asymptotic exponential distribution; dashed blue line)(Figure 5A). Strain-diffuse genes 
were present in markedly more strains at a given prevalence than strain-concentrated 

From Figure 5A it was clear that rare gene distributions were extensions of the trends 
seen in intermediate genes. These trends could not be discerned in the 7954-set 
because the number of substrains represented in each strain was unbalanced.

Figure 3 and 4 depict a pattern where strain-diffuse genes appeared to undergo gain and 
loss on the phylogenetic tree at a higher rate than strain-concentrated genes . Based on 
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the results of homoplasyFinder27 analysis on genes arrayed on the core gene phylogeny 
of the 740-set, we found this pattern was consistent across all intermediate genes 
(Figure 5B). Strain-concentrated genes mostly had fewer than 30 minimum predicted 
state changes on the tree and there was no trend in increase of this number with 
prevalence. Strain-diffuse genes had a higher rate of character state change, which rose 
with prevalence initially but fell with the most common genes, probably due to saturation 
of available state changes. 

Because of the relatively slower rate of gene gains and losses, the strain-concentrated 
genes contributed more to characteristic strain-specific differences in gene content than 
strain-diffuse genes. This could be effectively visualized using t-SNE (t-distributed 
stochastic neighbor embedding; Figure 6). When strain-concentrated was used as input 
for t-SNE, the genomes that comprised individual strains were resolved into distinct 
spatial units (Figure 6C). However, there was no similar pattern when strain-diffuse was 
used (Figure 6B). Rare genes produced an intermediate result, with some distinctive 
strains and some areas of the plot with mixtures of strains (Figure 6A) . When all non-
core genes were used the strains could be readily distinguished, indicating that for the t-
SNE approach, the strain-specific structure of strain-concentrated and rare gene content 
was dominant to the non-strain specific strain-diffuse genes (Figure 6D). We also 
visualized the effect of the different classes of non-core gene is a way that was 
independent of strain classification: plotting the gene content similarity (represented by 
hamming distance) of each pair of genomes against the patristic distance on the core 
gene phylogeny (Figure S4). The rare and strain-diffuse genes had greater numbers of 
gene differences between strains very closely related to each other (Patristic distance < 
0.005) but the rate of growth of the distance in strain-concentrated genes over larger 
distances on the phylogeny was greater. Together these results showed that strain-
concentrated genes provided more information about gene content differences between 
strains than other non-core genes. We suspected that the underlying differences between 
the two groups of genes were due to strain-concentrated genes being primarily located 
on the chromosome and primarily spread between strains by homologous recombination, 
whereas strain-diffuse genes were on mobile elements such as prophages, plasmids and 
integrative conjugative elements that would be located more frequently on non-
chromosomal contigs. This was supported by the rate of linkage to single copy highly 
conserved core genes (defined as whether the gene was found to be on the same contig) 
was much lower in strain-diffuse genes (65.5%) than strain-concentrated (86.5%). By 
comparison, the rates for rare genes were 61.5% and randomly selected genes were 
93.5%. We used the geNomad software and database of mobile element gene 28 to see if 
there were different distributions in the different classes of genes in the pangenome. 
While differences between the classes were mostly statistically significant at p < 0.05 in 
pairwise Tukey’s tests (Figure S5), the difference in mean scores were mostly quite 
small, probably reflecting the relatively small size of the S. aureus training set for the 
software compared to our large pangenome sampling. The strain-diffuse genes had the 
most distinctive signal, having the lowest mean scores for “chromosome” and “plasmid” 
and highest for “virus”. This result corroborated the association of strain-diffuse genes 
with prophage regions of the genome.

We noted that the intermediate genes had a lower median clustering threshold than the 
rare or core genes (the PIRATE software uses iterative thresholds at increasing 
stringency to find the final clustering threshold for a gene 17). To ensure the patterns seen 
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were not an artifact of lower clustering, we ran the 740-set pangenome with a minimum 
clustering threshold of 90% amino acid identity (which we called “740-set-90”). While the 
more stringent clustering split several rare and intermediate gene families (the “740-set-
90” pangenome consisted of 4,490 rare, 982 intermediate and 2,085 core) the 
characteristic divergence in features between strain-concentrated and strain-diffuse 
genes did not change (Figure S6). We also obtained similar results when the same 
analyses were run with the original 7,954 substrain pangenome, although the unbalanced 
nature of the collection (some strains had thousands of genomes, many only one) 
obscured the differences between strain-concentrated and strain-diffuse in regards the 
relationship between strains each gene was detected in at different prevalence (Figure 
S6A). The strain-concentrated genes though had many fewer predicted state changes on 
the phylogenetic tree (Figure S6B).

Different non-core gene classes cluster in specific regions of the S. aureus 
chromosome, with a strong tendency for rare genes to be near the origin of 
replication

We used two orthologous methods to view the distribution of non-core genes on the S. 
aureus chromosome (Figure 7, Figure S7). In the first method we plotted the start 
coordinate of genes from 337 complete chromosomes(Figure 7A, Figure S7). There was 
noise in the exact coordinates of individual genes but overall this method showed discrete 
peaks in the locations of rare, and strain-concentrated and diffuse genes. The second 
method was to link non-core genes from all 7,954 substrains to the nearest core gene on 
the same contig (non-core genes on contigs without core genes were excluded). The 
gross patterns of distribution of the counts of non-core genes mapped to the core nearest 
core gene coordinate (Figure 7B) were similar to that in Figure 7A. Differences between 
plots in the proportion of genes within each category at each genomic bin (y-axis) were 
probably due to a combination of the indirect measurement of gene position in the linked 
core gene method and the fact that the 7,954 substrains were are more balanced 
reflection of S. aureus diversity than the 337 complete genomes.

Strain-diffuse and strain-concentrated genes had markedly distinct distributions on the 
chromosome and were mostly located as part of distinct clusters (Figure 7). This could 
also be seen clearly in the individual chromosomes of six substrains chosen to represent 
both MRSA and MSSA from three strains (Figure S7). The vSaβ genome island was a 
notably strain-concentrated-rich gene cluster, while the vSaγ island, phiSa2 and phiSa3 
prophage were rich in strain-diffuse. The presence of strain-diffuse gene clusters was 
more variable between genomes than strain-concentrated clusters (Figure S7). Some 
genetic elements (e.g SCCmec, type VII secretion loci, phiSa1) contained a relatively 
high proportion of both types of intermediate genes. Three regions of the chromosome 
relatively rich in strain-concentrated genes (at approximate coordinates 100,00-300,000, 
1,250,000-1,500,000 and 2,500,000-2,800,000) did not correspond to known genetic 
elements , although the first region contained several genes involved in polysaccharide 
capsule synthesis.

The high number of rare gene genes in the 0-100,000 region (which includes the 
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SCCmec cassette) was an outlier compared to other chromosomal regions (p-value < 
2.2e-16, Grubbs 1-tailed test) (Figure 7, Figure S7). This was the case in both MRSA 
and MSSA strains, suggesting that this region might be a hotspot for insertion of rare 
genes, possibly through plasmid integration, rather than being specifically linked to 
SCCmec.

Functional differences in strain-concentrated and strain-diffuse genes

FST and prevalence of intermediate gene families can provide insight into ongoing 
evolutionary processes in the species. This is illustrated by analysis of three classes of 
genes encoding AMR (antimicrobial resistance), phage defense and virulence 
determinants (Figure 8). No AMR genes31 were found to be in the strain-concentrated 
group but were either rare or strain-diffuse (70 (82.4%) and 15 (17.6%), respectively) . 
This result follows from the recent introduction of many AMR genes into S. aureus on 
mobile genetic elements and their frequent gains and losses below the strain level 32. The 
absence of fixation within strains also suggested possible loss of mobile elements in the 
absence of antibiotic selection. Genes associated with protection from phage infection in 
the defense-finder database 33 were mostly low prevalence (69/80 (86.3%) were rare and 
10/80 (9.1%) intermediate had prevalence < 0.5). The low prevalence may reflect 
diversifying selection caused by phage countermeasures. However, unlike AMR genes, 
the majority of intermediate genes in this class were strain-concentrated, suggesting that 
defense from phage infection may help define S. aureus strains. Intermediate virulence 
genes (mostly toxins 34,35) in the AMRFinder+ database fell into two groups: one strain-
diffuse with low prevalence and the other strain-concentrated with mostly higher 
prevalence. strain-diffuse virulence genes were mostly associated with prophages and 
Sa-PIs, while strain-concentrated genes were associated with the vSaβ genome island. 
This partition suggested an as-yet unexplained complexity in the hierarchy of functions 
that make up the toxin profile of an individual substrain.
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Discussion  

In this study, we distilled a starting set of >84,000 S. aureus genome sequences to 145 
strains using an ANI cutoff of 99.5%, which we found to be in a natural valley between 
clustered isolates. This threshold, or values close to it, has been reported in other studies 
as a bacterial subspecies boundary 19. A large number of S. aureus strains were rare 
(92/145 (63.4%) represented by 1-2 substrains). While this could represent some aspect 
of the true distribution of strain abundances in the species, it could also be a function of 
uneven sampling of S. aureus genomes. There are large ascertainment biases in 
selection as most strains are from clinical settings in western countries. It is probable that 
the number of strains will grow significantly in the future as we extend sampling.

There is no agreed term for the highest-level bacterial subspecies level although some 
names such as “genomevar” have been proposed 19. We had two reasons for choosing to 
use “strain”, which is a word frequently used in microbiology but currently has a multitude 
of different meanings . The first is to use “strain” in a way that gives it a precise definition, 
in this case genomes that cluster together above the natural 99.5% ANI gap. The second 
reason is that as the word is now frequently being used in metagenomic studies 13,14,36,37, 
and by choosing “strain” to mean the highest level of subspecies, this reduces the 
number of reference genomes needed to represent strain diversity in a species. This also 
increases the chances of discrimination between strains using the low coverage 
sequence read data often found in metagenome projects. However, sub-species 
terminology needs to be formalized through standards developed by consultation with the 
international microbiology community. 

The 145 representative genomes defined here could be used for assignment of a new 
genome to an existing strain using fastANI or similar software. If the genome was found 
not to have >99.5% ANI to an existing strain it would be a candidate for a new strain. This 
simple approach for strain assignment has the advantage of not needing a core 
phylogeny calculated that is inherent to tree-based clustering and may turn out to be 
similarly accurate owing to the population structure of the within- and between-strain 
differences in the species (Figure 1). The existing MLST clonal complexes were mostly 
mapped with a 1:1 relationship to the strains defined, and the names, which are familiar 
in the literature, could be used as aliases for the strains. However, in some cases 
different genome backgrounds had been designated as part of the same CC but were 
split into more natural strain clusters by ANI. This is not surprising, as MLST schema was 
developed for PCR amplification and sequencing, before routine whole genome 
sequencing was available, and the seven loci used for assignment only cover a small 
portion of the variation in the chromosome 38,39. MLST, though useful for rapid strain 
typing, is outperformed by whole-genome based methods for lineage assignment 39,40. 

Several pangenome studies with S. aureus genomes have been performed for 
epidemiological investigations 41–46, vaccine candidate discovery 47,48, and evolutionary 
phylogenomics 49–52. These produced a wide range of results, from 4,250 - 21,358 gene 
total pangenome size, with cores ranging from 890 to 2,700 genes(Table S1). The 
variability is a feature of the many factors that influence pangenome estimation, which 
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can be classed into three main groups: sample collection, data quality and bioinformatics 
approaches. In terms of the collection, more individual genomes of a species tend to 
produce a larger number of gene families (in an “open” pangenome) and smaller core 53. 
Similarly, the more genetic diversity within the species increases pangenome size. We 
used essentially all the genome data available in the public domain by Fall 2022 
(although we ended up excluding several thousand experiments based on quality (Figure 
1). Therefore this study probably has the largest and most diverse input S. aureus set 
used to date. By reducing genome redundancy we also mitigated some of the 
overcounting of highly sampled clones in the public databases. Ideally, all genomes for a 
pangenome should be high-quality and complete. However, we chose to include shotgun 
assembled genomes, which may contain a certain percentage of missing genes due to 
contig breaks, to maximize diversity. Using shotgun assemblies also allowed us to 
sample multiple genomes from a larger number of strains, which was important for 
characterizing strain-diffuse and strain-concentrated genes. By reprocessing the data 
from raw reads, we were able to filter out lower quality data and have consistent 
assemblies (Figure 1). In tests, we found that pangenomes based on our shotgun 
assemblies produce similar metrics to those estimated used only complete genomes, as 
evidenced by the 740-set, which was composed entirely of shotgun data. For most 
complete genomes there is no matching raw read data available in public archives, so it 
is not possible to know whether the sequence is based on highly redundant reads 
coverage, as it is for our Bactopia processed genomes used here. The final group of 
factors concerns choices about bioinformatic software, and what parameters to use. Out 
of a wide range of open source options available we chose to use highly-cited tools Bakta 
54 (which uses the Prodigal 55 gene finder) for annotation and PIRATE 17 for pangenome 
estimation. PIRATE iteratively increases the threshold to report the maximum identity that 
clusters each gene family and therefore avoids over-splitting gene families. PIRATE also 
identifies alleles within families without creating artificial paralog gene families. Tools that 
split paralogs into separate gene families (e.g ROARY 56 using default parameters) will 
also produce larger numbers of gene families and fewer core genes. The choice of 
minimum threshold for clustering proteins or genes into orthologous families (usually 
based on percentage identity of a pairwise alignment) is important. We realized from 
constructing the pangenome with a minimum 50% threshold that 85% of S. aureus genes 
families were clustered with at least the 90% identity. When we tested the 740-set 
pangenome with the minimum threshold increased to 90% we found a similar number of 
core genes (2139 at 50% minimum versus 2085 at 90% minium) but the number of non-
core genes increased to from 3,426 to 5,472 (90%). This was because many intermediate 
gene families had been split at the higher threshold.  However, the different threshold did 
not affect the key result of this study was that intermediate genes could be placed into 
two groups based on segregation with the strains defined by ANI using the FST statistic. 
Although we did not thoroughly explore different options in this study, pangenome 
estimation in S. aureus could be further optimized in future benchmarking studies based 
on the genome data collected here.

We defined three classes of S. aureus non-core genes with different properties. Strain-
diffuse genes are maintained in the population yet have a high turnover, i.e they are 
gained and lost frequently (e.g LukFS, TSST, SEA, SEB in Figure 4). These genes are 
associated with mobile elements on the chromosome such as prophages, SaPIs and 
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SCCmec and also often found on contigs unlinked to core genes, as would be expected 
of plasmids. These genes include niche-specific functions under high selection such as 
antibiotic resistance and certain toxins, which are classically segregated onto genetic 
elements that undergo frequent horizontal gene transfer in bacteria. S. aureus strain-
diffuse genes are strikingly promiscuous in their strain background. Outside intra-strain 
comparisons, there is almost no signal of phylogenetic relatedness in strain-diffuse gene 
composition (Figure S4). This suggests high rates of horizontal transfer and, over the 
longer term, relatively weak barriers to genetic exchange compared to the strength of 
selection for strain-diffuse genes.

The second, previously unrecognized group of intermediate genes in S. aureus had a 
high FST score, indicating that they segregated closely with strain core gene background. 
Many of the genes cluster in the S. aureus genome islands, particularly vSaβ. The 
elements have been described as having complex, strain-specific genetic structure 57,58. 
Strain-concentrated genes also include significant virulence related functions located 
outside of previously defined genetic elements such as certain type VII secretion and 
capsule genes. strain-concentrated genes have many fewer predicted gene gains and 
losses than strain-diffuse genes (Figure 5) and a much stronger phylogenetic signal 
(Figure S4). This suggests that the rate of horizontal transfer of strain-diffuse genes is 
much higher and the probable reason is that they are on self-transmissible elements such 
as phages, plasmids (conjugative and mobilizable). The genome islands appear to have 
evolved from prophage or SaPIs that have acquired null mutations in their genes for site-
specific recombination. We propose the mechanism of horizontal transfer of strain-diffuse 
genes is indirect: homologous recombination following introduction of DNA into the donor 
cell. Transduction is the dominant mechanism of DNA transfer in S. aureus and hence 
the genes likely rely on phages and/or SaPIs for their mobility.

Rare genes probably have properties either of strain-diffuse genes (high rates of HGT) or 
strain-concentrated genes (lower HGT rate) (Figure 5) but their low abundance makes 
calculation of FST the statistic meaningless. In other species (e.g E. coli 59) rare genes 
(and in some cases intermediate genes) have been reported to be strain-specific. We 
found that rare genes had strain-specificity levels between the two classes of 
intermediate frequency genes. In Figure 3 some of the rare genes present in less than 
10% of genomes are found in a significant majority 29/37 (78%) of strains. Both rare and 
strain-diffuse genes were frequently found to be genetically linked to core genes on the 
chromosome. While a higher proportion of strain-diffuse genes were distributed to a 
limited number of loci, representing common insertion points for SaPIs and prophages, it 
was a compelling finding of this study that a much higher proportion of rare genes were 
inserted in the region near the origins of transfer (approximate coordinates 1-100,000 in 
Figure 7). This was true in both MRSA and MSSA strains, hence the SCCmec element, 
which also integrates in this region, was not solely responsible for this pattern. This 
region of the chromosome, which is less dense in core genes, may serve as a “plasticity 
zone” 60,61 in S. aureus for capture of novel genes entering the species by HGT.

This study raises two questions about the manner in which the S. aureus genome 
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evolves and the underlying selective pressures that drive the observed patterns: 1) what 
are the forces that create the “valley” of ANI in the range of 99.1-99.5% (Figure 1)? and 
2) what are the functional implications of the partitioning of intermediate genes in strain-
concentrated and strain-diffuse groups? The ANI valley implies that there is a limited time 
that strains can survive as coherent taxonomic units, as measured by accumulation of 
neutral mutations. In a recent evolutionary reconstruction, all extant S. aureus clonal 
complexes tested had inferred last common ancestors in the past 250 years, most much 
sooner49, suggesting frequent turnover of new strains. The reasons for these replacement 
events could be a unique historical feature of the past 2-3 centuries, caused perhaps by 
the development of human healthcare systems and the changing chemical environment 
of human and animal microhabitats due to technological advances but the pattern of 
frequent strain replacement seems common to many bacterial species19. Possibly, strains 
are replaced from within by the wavelike expansion of successful clones. Something like 
this process may be happening with the expansion of USA300 since the late 1980s, 
gradually becoming the most common CC8 strain in the USA 62,63. This explanation 
implies that strains occupy distinct niches, with adaptation possibly defined by the 
composition of their non-core genes 64,65. Substrains would then be competing with each 
other to occupy the strain niche. There is not strong evidence of distinct within-host 
niches for most S. aureus strains but there are clear associations of strains with particular 
animal hosts66. New strains can also emerge from outside by genome-scale 
recombination events, exemplified by CC239 strains, which were formed by 
recombination of a large segment of a CC30 chromosome into a CC8 background 22,23. 
Judging by the relatively small size of the “99.1-99.5% bump” (Figure 1) these types of 
events may be a rare but ongoing process.

The second question we highlight concerns the functional implications of the partition of 
strain-concentrated and strain-diffuse genes. There is a bias for deletion in bacterial 
genomes67 that implies genes maintained over time are under enduring strong selection. 
Conversely, the strain-diffuse gene pattern can be seen as cycles of gene gain under 
neutral selection (i.e. driven by gene transfer alone) or short term positive selection 
followed by rapid removal. However we do not know of any studies that address the 
underlying reasons for the difference in strain-level versus substrain-level selection. 
Toxins are interesting in this regard because of their importance for S. aureus virulence. 
Why are some toxins maintained as core functions (e.g alpha-toxin (hly)), some strain-
concentrated (e.g enterotoxin G (seg)) and some strain-diffuse, present in diverse 
substrains (e.g Panton-Valentine leukocidin (lukFS))? (Figure 4). The superantigen-type 
toxins are split between strain-concentrated and strain-diffuse genes, suggesting that 
former functions may be strongly linked to strain niches. Related to these issues is the 
question of long-term maintenance of diversity of strain-concentrated genes under 
conditions of relatively low transfer rate and rapid strain extinction that would suggest a 
high rate of stochastic loss. Could there be frequency-dependent selection operating 
across the S. aureus species on strain-concentrated genes?.

In summary, this work revealed a new partition in the structure of the S. aureus 
pangenome that will spur further studies on genome evolution and subspeciation in the 
species. The methodology for refining large amounts of public data, defining strains using 
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ANI and following strain-specificity of the pangenome using Fst can also be applied to 
other bacterial species.  Comparisons to other species, particularly from the 
Staphylococcus genus, will reveal the commonalities and unique selective pressures 
acting on the pangenome of this dangerous pathogen.
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Methods  

Public genome collection, processing and filtering

Bactopia v1.7.0 was used to download and process all genomes used in this dataset. 
Bactopia is a software pipeline for comprehensive analysis of bacterial genomes based 
on Nextflow 68,69. The command “bactopia search "Staphylococcus aureus" --prefix 
saureus” was used to download all S. aureus short-read sequences available on 
Sequence Read Archive (SRA) as of September 2022. Bactopia used SKESA to 
assemble genomes, Bakta to annotate and Snippy for variant calling 70,71. Assembly 
quality was evaluated using QUAST and CheckM 72,73. S. aureus CC and ST were based 
on the pubmlst database 20. (https://pubmlst.org/bigsdb?
db=pubmlst_saureus_seqdef&page=downloadProfiles&scheme_id=1). AgrVATE v1.0.5 
was used to assign agr types 15. Only samples having greater than 50× coverage, mean 
per-read quality greater than 20, mean read length greater than 75 bp, and an assembly 
with less than 200 contigs were considered for the analysis (corresponding to ‘Gold’ and 
‘Silver’ ranks as designated by Bactopia. Samples that were detected as not S. aureus 
according to kmer based identification or CheckM were then removed. Coverage for all 
samples were capped at 100x. For every sample, bactopia performs variant calling using 
Snippy against an auto-chosen reference sequence based on the smallest MASH 
distance to a complete S. aureus genome in RefSeq 70,74. For each variant identified, the 
allele frequencies were calculated from the bam files using bcftools mpileup 75. Samples 
having average minor allele frequency > 0.05 were considered mixed strains and 
therefore removed. Samples having total number of variants > 150,000 compared to the 
auto-chosen reference (or more than 5% of the genome) were also considered non-S. 
aureus and removed 76. This process reduced 83,383 samples to 56,771. Since Bactopia 
collected and processed only short read S. aureus data, we added complete S. aureus 
genome sequences to this set. Out of 1,475 complete genomes publicly available as of 
February 2023, 1,263 did not have any ‘N’ characters in their assemblies and were added 
to the filtered dataset of 56,771, leading to a total of 58,034 genomes. The 212 complete 
genomes containing ‘N’ characters were not used in this study. 

Substrain dereplication

Samples were grouped by their MLST types as assigned by Bactopia and for each ST, an 
all vs all MASH distance estimation 74 was run. Samples with a MASH distance < 0.0005 
were grouped into clusters and a random genome was chosen as the cluster 
representative 16. However, where possible, we used complete genomes as the cluster 
representative. Samples with unassigned STs were grouped together and treated the 
same. The resulting final dereplicated set comprised 7954 genomes and was used for 
pangenome construction.

Pangenome analysis

The bakta annotation produced by the original Bactopia run was used as input for 
pangenome estimation with PIRATE 1.0.5 17. PIRATE was run using default parameters 
with the additional flags -a to obtain core genome alignments and -k “--diamond” to use 
DIAMOND for the amino-acid sequence comparisons 77. SNP-sites v 2.5.1 78 was run on 
the PIRATE core genome alignment to extract only polymorphic sites (709,911 sites) and 
the resulting alignment was used to construct a core genome phylogeny with FastTree v 
2.1.11 79(GTR model, 1000 bootstrap resamples). The phylogeny was visualized using 
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the R package ggtree 80,81. We used Homoplasyfinder27 to count the number of state 
changes of each non-core gene on the phylogeny. geNomad v1.528 was used to predict 
mobile genetic elements. 

Strain definition based on ANI

All-vs-All pairwise ANI was calculated for the 7,954 dereplicated genomes using fastANI 
v1.33 76. Strain assignments were performed based on average linkage hierarchical 
clustering and samples that had ANI 99.5% or greater were clustered together. The 
average ANI of each genome with every other genome in a given cluster was calculated 
and the genome with the highest average ANI was assigned as the strain representative. 

Calculating FST

We created a custom R function to calculate the FST for each gene, with group membership 
defined as strain type, clonal complex or agr group, depending on the purpose of the 
comparison. The input was a binary presence/absence data frame, with genes as columns 
and genomes as rows. FST was calculated using Weir’s formula 24.

Creating the 740-set and 740-set-90 pangenomes

We randomly subsampled the 37 strains with > 20 substrains to 20 substrain genomes 
each. We rerun PIRATE 1.0.5 with default parameters and created a core pangnome tree 
using FastTree v 2.1.11 as described above. To create the “740-set-90” pangenome we 
the 740 genomes through PIRATE 1.0.5 with minimum clustering threshold of 90% amino 
acid identity.

Chromosomal locations of non-core genes

We used two methods for mapping chromosomal locations of non-core genes based on 
the co-ords output of the PIRATE 1.0.5 pipeline for the 7954-set and 740-set 
pangenomes. First we screened 377 complete substrain genome that had dnaA as their 
first gene by BLAST and collated the start coordinate of each non-core gene. The second 
method was to collate the start coordinate of nearest core gene on the same contig as 
each non-core gene. For each class of non-core gene 20,000 random genes were 
selected as well as a control of 20,000 genes of all classes (including core). If the non-
core gene was on a contig that did not have a core gene then its status was returned as 
“unlinked”.

Antibiotic resistance, virulence and phage defense functions

To assign antibiotic-resistance genes we queried representative protein sequences of 
each gene family of the 7954-set produced by PIRATE against the AMRFinder+31 
database using tblastn 82 with a threshold of >= 90% identity as a match. We filtered the 
out virulence-associated genes using matches the terms: "serine_protease", 
"enterotoxin", "hemolysin", "Panton", "adhesin", "complement", "aureolysin", "exfoliative", 
"toxin", "intracellular_survival", "serum_survival" and "leukocidin" and the kept the 
remainder as antibiotic-resistance gene matches. To assign phage defense related 
functions, we queried the 7954-set representative proteins against the online 
defensefinder database33 (https://defense-finder.mdmparis-lab.com/) on 2023-10-17.

Statistical analysis and data visualization

All statistics and tSNE were performed in R using package rstatix 83. All plots were 
visualized using R package ggplot2 84. Other visualizations were performed using draw.io 
and Sakneymatic 85,86. 
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Data availability

PIRATE pangenome outputs, genes and strain lists and representative genome sets are 
available on Zenodo https://zenodo.org/records/10471309.
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Figures

Figure 1

Figure 1: Sankey diagram showing the fate of 83,383   S. aureus   whole genome shotgun   
datasets and 1475 complete genomes through processing and filtering. 
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Figure 2

Figure 2: An average nucleotide identity of >99.5% in the core genome defines the strain   
boundary of   S. aureus  .   
For our dataset of 7954 substrains, all-vs-all pairwise Average Nucleotide (AN) distances were 
plotted as a histogram. (A) Sample pairs less than 0.005 AN distance apart (i.e. greater than 
99.5% ANI) were grouped as a strain. ( B) Strains and clonal complex designations don’t exactly 
overlap. The pairwise AN distance histogram was colored by whether the genomes were in the 
same clonal complex. (C) CC1 genomes are in different strains. AN distances of genomes 
assigned to CC1 showing that there are within- and between- strain distances. (D) Genomes in the 
same strain have the same agr group.The pairwise ANI distance histogram was colored by 
whether the genomes were in the same agr group.
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Figure 3

Figure 3: Bimodal distribution of F  ST for intermediate genes.
Each circle represents an individual intermediate gene from the 7954 substrain pangenome. 
Percentage prevalence on the x axis is the percentage of genomes the gene is found in. FST or 
‘fixation index’ is on the y axis. (A) FST scores calculated for each intermediate gene with 99.5% 
ANI-based clustering. (B) As a control, FST scores were calculated for each intermediate gene 
when clusters were randomly assigned.
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Figure 4

Figure 4: Strain-group specificity and co-occurrence of specific Staphylococcal toxins.  
Core genome of the 7954-set. Heatmap on right shows presence absence and FST of specific 
Staphylococcal toxins -  Panton-Valentine Leukocidin (LukF and LukS), Toxic Shock Syndrome 
Toxin (TSST), and Staphylococcal Enterotoxins type A, B, G, U (SEA, SEB, SEG, SEU), 
Superantigen like protein (SSL8), Leukocidin ED (LukE, LukD) . The colors of the whole-genome 
phylogeny are based on strain assignments.
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Figure 5

Figure 5: Relationship between gene prevalence, number of strains and homoplasy for   
non-core genes.
Each dot represents a non-core gene in the 740-set pangenome. Purple = rare genes, green = 
concentrated, Brown = diffuse. In panel a, the relationship between overall prevalence (number of 
genomes out of 740) and number of strains (out of 37) each gene is found in is shown. The curves 
for the theoretical minimum number of strains for a given number of genomes (x/20) is shown in 
solid black and the extreme random distribution (37*(1-exp(-x/37)) is shown in dashed black. Panel 
b shows the relationship between prevalence of estimated number of changes on the species tree 
calculated by homoplasyfinder27.
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Figure 6

Figure 6: t-SNE analysis of 740-seq differentiated by non-core gene sets  
Each dot represents one of the genomes of the 740-set colored by its strain membership. Different 
sets of non-core genes were used as input for the t-SNE: a) only rare; b) only strain-diffuse; c) only 
strain-concentrated; d) all non-core.

28

958

959

960
961
962
963

964

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 1, 2024. ; https://doi.org/10.1101/2024.01.29.577756doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.29.577756
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 7

Figure 7: Distribution of different categories on non-core genes on the   S. aureus   
chromosome using two orthologous methods.
A: Location based on 337 complete genome sequences. The start site for every gene in each 
category was obtained for 337 chromosomes. The totals were placed in 10,000 bp bins on the 
chromosome and the proportion of the total for each class is plotted (i.e. the sum of the values of 
the 10,000 bins is 1). Purple = rare genes; green = strain-concentrated; brown = strain-diffuse. B: 
Location based on the nearest core gene. For all 7,954 substrains, the closest core gene on the 
same contig was determined. The x axis are start sites for the core genes of genome N315 
(GCA_000009645)29. The values were binned and proportionalized as in A. For both A and B the 
location of selected features is shown: I = SCCmec; II = type VII secretion system; III = vSaα; IV = 
phiSa1; V=vSaγ; VI = phiSa2; VII = vSaβ; VIII = phiSa3; IX=vSa4). N315 coordinates are based on 
Gill et al 29 and Warne et al 30, except phiSa2 and phiSa3, which are from Mu50 and MW2, 
respectively.
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Figure 8

Figure 8: Prevalence versus Fst for intermediate antimicrobial-resistance (AMR),   
virulence and phage defense genes 
AMR and virulence genes were identified using AMRFinder+31, phage defense genes were 
identified using defense-finder33. The dashed horizontal line represents the boundary between 
strain-diffuse and strain-concentrated.
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Supplemental Data  

Figure S1: Effect of filtering, clustering and dereplicating 83,383   S. aureus   genomes  
(A) The x-axis shows the total number of variants when compared with the Bactopia auto-chosen 
reference, and the y-axis shows the average minor allele frequency (MAF). Each dot is one of 
57,093 genomes which were obtained after filtering out samples ranked ‘Bronze’ or ‘Exclude’ by 
Bactopia and/or found to have non-S. aureus genome content by Bactopia and CheckM (Figure 1). 
Samples in the top quadrant (Above red horizontal line - Average MAF > 0.05) were considered to 
be S. aureus strain mixtures and were discarded. The remaining 56,771 samples in the bottom 
quadrant (< 0.05 Average MAF) were used for further analysis. (B) Boxplots showing spread of 
pairwise ANI within each “strain” cluster. Only strain clusters having more than 10 genomes are 
shown. Black horizontal line within each boxplot shows the median within strain-cluster pairwise 
ANI. Total number of unique genes discovered (C) and total number of strains discovered (D) for 
every new genome added from the dereplicated set (red dots) or a random genome from the un-
dereplicated 58,034 (blue dots). Up to 1000 random genomes were added from each set and the 
total number of unique genes or strains were measured for every genome added (light red and 
light blue dots). This procedure was repeated 5 times and the median number of genes or strains 
discovered are shown in dark red and dark blue dots. More genes and more strains were 
discovered from the same number of genomes (after observing 1000 genomes) in the dereplicated 
set compared to the un-dereplicated set.
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Figure S2: The 7,954 substrain pangenome of   S. aureus  .   
Histograms depicting the (A) frequency distribution of genes in our dataset, (B) the average 
dosage of each gene per genome, (C) the average length distribution of each gene, and (D) the 
distribution of the number of unique PIRATE gene families per genome. 
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Figure S3: There are no   agr   group specific intermediate genes aside from   agrD  .   
Dot plot showing percentage prevalence of only intermediate genes (> 10%, < 95%) on the x-axis 
and the corresponding FST on the y-axis. FST scores calculated for agr type-based population 
segregation. The three dots > 0.75 FST correspond to the agrD, which are known to be lineage 
specific . The agrD of the fourth agr type is absent in this plot as it is present in < 10% of the 
population 15. 
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Figure S4: strain-concentrated gene content declines gradually with core-gene distance.  
Each dot represents a comparison between substrains in the 740-set. Patristic distance was tip-tip 
distance on the phylogeny. Hamming distance was calculated from a presence absence matrix of 
each non-core gene type: A) rare genes, B) strain-diffuse, C) strain-concentrated, D) all non-core 
(note different y-axis scale). Red lines show the linear model fit.
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Figure S5: Genomad score distributions for 7954-set pangenomes.  
The geNomad 28 probability scores for A) chromosome B) plasmid and C) virus were grouped by 
gene class. All differences were significant in a Tukey's pairwise comparisons at < 0.05 (corrected 
for multiple tests), except strain-diffuse-Core plasmid_score and strain-concentrated-Core virus 
score.

35

1029

1030

1031
1032
1033
1034
1035

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 1, 2024. ; https://doi.org/10.1101/2024.01.29.577756doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.29.577756
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S6     Relationship between gene prevalence, number of strains and homoplasy for   
non-core genes for the 7954-set (a,b) and the 740-set-90 (c,d)
The plots are formatted as Figure 5. Each dot represents a non-core gene. “concentrated” = strain-
concentrated, “diffuse” = strain-diffuse. Panels A and C show the relationship between overall 
prevalence (number of genomes out of 740) and number of strains (out of 37) each gene is found 
in. Panels B and D show the relationship between prevalence of estimated number of changes on 
the species tree calculated by homoplasyfinder27. In panel A, the unbalanced nature of the 7954-
set (a few strains have thousands of genomes, many have only one) obscures the differences 
between concentrated and diffuse: it not possible to plot simple bounds of lowest possible and 
random gene distribution into strains as it is for the 740-90 set (panel C).

36

1036

1037

1038

1039
1040
1041
1042
1043
1044
1045
1046
1047
1048

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 1, 2024. ; https://doi.org/10.1101/2024.01.29.577756doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.29.577756
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S7: Chromosome start locations of non-core genes on six S.aureus complete   
chromosomes.
The name on the left-hand side refers to NCBI assembly database designations. GCA_014731755 
is CC30 MRSA; GCA_000160335 is CC30 MSSA; GCA_000024585 is CC5 MSSA; 
GCA_0000134525 is CC8 MRSA; GCA_000012045 is CC8 MRSA; GCA_000009645 is CC5 
MRSA (N315 the S. aureus type strain). “Intermediate_Hi_Fst” = strain-concentrated; 
“Intermediate_Lo_Fst” = strain-diffuse.
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Table S1:   S. aureus   studies quoting pangenome statistics.   
“?” indicates that the corresponding information could not be found

Title Date
No. of 

genomes
Sampling 

space
Assembly 

level
Pangenome 

tool
No. 
core

Total gene 
families

Comparative Pan-Genomic Analysis 
Revealed an Improved Multi-Locus 
Sequence Typing Scheme for 
Staphylococcus aureus 87

2022-11-19 502 Diverse Complete
PanRV 
(Roary)

2320 12477

Pan-Genome Analysis of 
Staphylococcus aureus Reveals Key 
Factors Influencing Genomic 
Plasticity 88

2022-11-01 1519 Diverse All Roary 1000 16794

Pangenomic Approach To 
Understanding Microbial Adaptations 
within a Model Built Environment, the 
International Space Station, Relative 
to Human Hosts and Soil 50

2022-01-08 106
ISS, human, 

soil
All Roary 1935 6847

The Epidemiological and Pangenome 
Landscape of Staphylococcus aureus 
and Identification of Conserved Novel 
Candidate Vaccine Antigens 47

2022-02-01 355 Diverse All ? 2025 7199

Analyses of Livestock-Associated 
Staphylococcus aureus Pan-
Genomes Suggest Virulence Is Not 
Primary Interest in Evolution of Its 
Genome 51

2019-05-22 14
Livestock 

associated
Complete Roary 1969 4637

Comparative genome-scale 
modelling of Staphylococcus aureus 
strains identifies strain-specific 
metabolic capabilities linked to 
pathogenicity 89

2016-06-10 64 Diverse All
dGenome 
DuctAPE

1441 7457

PanRV: Pangenome-reverse 
vaccinology approach for 
identifications of potential vaccine 
candidates in microbial pangenome 
48

2019-03-12 301 Diverse All
PanRV 
(Roary)

1524 11384

Whole-Genome Sequencing of 
Staphylococcus aureus and 
Staphylococcus haemolyticus Clinical 
Isolates from Egypt 43

2022-06-21 90

56 from 1 
hospital and 

34 from 
greater Arab 

region

All Anvio 1501 4283

Phylogenomic Analysis Reveals the 
Evolutionary Route of Resistant 
Genes in Staphylococcus aureus 52

2019-11-03 152 Diverse Complete

Manual 
alignment 

and 
clustering

2426 6326

Comparative genomic analysis of 
Staphylococcus aureus isolates 
associated with either bovine 
intramammary infections or human 
infections demonstrates the 
importance of restriction-modification 
systems in host adaptation 90

2022-02-18 187
Human and 

cattle
All Roary 2700 6812
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Molecular Epidemiology of 
Staphylococcus aureus in China 
Reveals the Key Gene Features 
Involved in Epidemic Transmission 
and Adaptive Evolution 44

2022-10-03 332

Human 
clinical 

strains from 
China

All
Heap's law 
algorithms

890 5832

Estimated Roles of the Carrier and 
the Bacterial Strain When Methicillin-
Resistant Staphylococcus aureus 
Decolonization Fails: a Case-Control 
Study 45

2022-08-24 477

MRSA 
carriers from 

Denmark 
hospitals

All panX 1671 5925

Forecasting Staphylococcus aureus 
Infections Using Genome-Wide 
Association Studies, Machine 
Learning, and Transcriptomic 
Approaches 91

2022-07-05 356
Mostly 
human

All Panaroo 1489 8827

Carriage prevalence and genomic 
epidemiology of Staphylococcus 
aureus among Native American 
children and adults in the 
Southwestern USA 46

2022-05-13 92

Native 
Americans 

from 
Southwester

n USA

Complete Roary 1808 ?

Polyclonality, Shared Strains, and 
Convergent Evolution in Chronic 
Cystic Fibrosis Staphylococcus 
aureus Airway Infection 42

2020-03-23 1382

Longitudinal 
sampling 
from 246 

children with 
CF from the 

US

All Roary 1142 21358

PIRATE: A fast and scalable 
pangenomics toolbox for clustering 
diverged orthologues in bacteria 17

2019-10-09 253 Diverse All PIRATE 2433 4250

Whole-Genome Sequencing for 
Routine Pathogen Surveillance in 
Public Health: a Population Snapshot 
of Invasive Staphylococcus aureus in 
Europe 92

2016-05-05 308

Invasive 
isolates from 

Europe 
hospitals 
within a 6 

month period

All
BlastP & 
TribeMCL

? 4281

39

1060

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 1, 2024. ; https://doi.org/10.1101/2024.01.29.577756doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.29.577756
http://creativecommons.org/licenses/by-nc-nd/4.0/

