
Comparative studies of genomic and epigenetic factors
influencing transcriptional variation in two insect species

Xin Wu , Neharika Bhatia ,1 Christina M. Grozinger ,2 Soojin V. Yi 1,3,*
1School of Biological Sciences, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
2Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16801, USA
3Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA

*Corresponding author: Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
Email: soojinyi@ucsb.edu

Abstract

Different genes show different levels of expression variability. For example, highly expressed genes tend to exhibit less expression variabil-
ity. Genes whose promoters have TATA box and initiator motifs tend to have increased expression variability. On the other hand, DNA
methylation of transcriptional units, or gene body DNA methylation, is associated with reduced gene expression variability in many species.
Interestingly, some insect lineages, most notably Diptera including the canonical model insect Drosophila melanogaster, have lost DNA
methylation. Therefore, it is of interest to determine whether genomic features similarly influence gene expression variability in lineages
with and without DNA methylation. We analyzed recently generated large-scale data sets in D. melanogaster and honey bee (Apis
mellifera) to investigate these questions. Our analysis shows that increased gene expression levels are consistently associated with reduced
expression variability in both species, while the presence of TATA box is consistently associated with increased gene expression variability.
In contrast, initiator motifs and gene lengths have weak effects limited to some data sets. Importantly, we show that a sequence characteris-
tics indicative of gene body DNA methylation is strongly and negatively associate with gene expression variability in honey bees, while it
shows no such association in D. melanogaster. These results suggest the evolutionary loss of DNA methylation in some insect lineages has
reshaped the molecular mechanisms concerning the regulation of gene expression variability.
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Introduction
Expression levels of the same genes show variability at different
levels of biological units, from cells to populations. The widely
observed variability of gene expression at different levels is
thought to share some common underlying molecular mecha-
nisms (Ho et al. 2008; Tirosh et al. 2009; Lehner 2010; Li et al. 2010;
Alemu et al. 2014). This variation, which we will refer to as gene
expression variability, is implicated in several phenotypic traits
such as aging, development, disease, and immunity (Ho et al.
2008; Li et al. 2010; Hagai et al. 2018; Bashkeel et al. 2019).

Previous studies of gene expression variability have discov-
ered that highly expressed genes tend to have reduced variability
between individuals in diverse taxa (Bird 1995; Choi and Kim
2008; Huh et al. 2013; Wu, Lindsey et al. 2020). It is hypothesized
that natural selection has reduced the expression variability of
highly expressed genes due to the advantages associated with
the improved control of the inherent stochasticity of transcrip-
tion and subsequent protein synthesis (Fraser et al. 2004;
Newman et al. 2006; Wang and Zhang 2011; Barroso et al. 2018).
Genes that are constitutively highly expressed are typically es-
sential housekeeping genes, where noise is therefore minimized
by natural selection (Fraser et al. 2004; Wang and Zhang 2011;
Barroso et al. 2018).

Other traits that significantly associated with gene expression
variability include genomic features such as gene length, pres-

ence of a TATA box, and initiator motifs (Park et al. 2012; Huh

et al. 2013; Ravarani et al. 2016; Faure et al. 2017; Wu, Lindsey et al.
2020). The presence of a TATA box is strongly associated with

high gene expression variability, with other core promoter ele-
ments such as initiator motifs and GC motifs being associated

with higher gene expression variability to a much lesser degree

(Faure et al. 2017). Therefore, genomic features can play signifi-
cant roles in shaping gene expression variability.

Gene body DNA methylation, which is an ancestral form of

epigenetic regulation in animal genomes, is negatively associated

with gene expression variability in humans (Huh et al. 2013).
Studies in insects, in particular from hymenopteran species in-

cluding fire ants and wasps, also reported similar observations
(Zeng and Yi 2010; Hunt et al. 2013; Wang et al. 2016; Wu, Lindsey

et al. 2020). However, the relative contribution of gene body DNA

methylation compared to the aforementioned genomic features
has not been examined in insects. One of the reasons for this lack

of knowledge is due to the fact that the most extensively studied

model insect Drosophila melanogaster, and other species in the
Diptera, lacks DNA methylation which is best explained by

lineage-specific loss (Sarda et al. 2012; Yi 2012). To address the
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gap of knowledge, here we examined relative impacts of different
genomic features on gene expression variability through a com-
parative analysis of honey bees (Apis mellifera), a hymenopteran
lineage possessing ancestral gene body methylation, and D. mela-
nogaster. We integrated data from 15 D. melanogaster studies and 8
A. mellifera studies to comprehensively address these questions
(Table 1). Our study confirms impacts of several genomic fea-
tures on gene expression variability in both species. Intriguingly,
our analyses indicate pervasive and significant effects of DNA
methylation on gene expression variability in A. mellifera. These
results provide new insights into regulation of gene expression
variability in insects.

Materials and methods
Gene expression data
We analyzed a total of 20 published RNA-seq studies for this
study, 12 of which are from fly (D. melanogaster) and 8 from honey
bee (A. mellifera; Table 1). Our D. melanogaster datasets were
chosen from a diverse set of laboratories as well as recently
published with at least 10 samples (no more than 2 years old).
The A. mellifera studies were all of the RNA-seq datasets we could
access, as well as being fairly recent and a minimum of 10 sam-
ples (one from 2012, the rest were from 2016 to 2020).

Data processing
Reads for each study were trimmed to remove low-quality reads
and adaptors using default Trim_galore! (Martin 2011) settings.
Trimmed reads were then aligned to their respective genomes,
amel 4.5 and dmel r6.33 for A. mellifera and D. melanogaster, re-
spectively, using HISAT2 with soft clipping disabled (parameter
setting: –sp 1,000, 1,000). Following alignment, gene counts were
generated with HTSeq (Anders et al. 2015) default parameters and
imported into R (R Core Team 2014) for further downstream anal-
yses. Gene expression for each study was quantified and normal-
ized using the “estimateSizeFactors” function in the DESeq2

package (Love et al. 2014). To remove lowly expressed genes, we
removed genes with counts less than 5 and also required a
gene to be expressed in at least 10% of all samples in the study.
Gene expression variation was measured as the % coefficient of
variation (CV) of gene expression (Huh et al. 2013) and CpG O/E
values for the A. mellifera genome were calculated as previously
described (Lindsey et al. 2018).

Data processing
Core promoter element designations for TATA boxes and initiator
motifs were obtained from the Eukaryotic Promoter Database
(Cavin Perier et al. 1998; Dreos et al. 2017). Briefly, promoter classi-
fications for each organism were downloaded from the database
using the “EPDnew selection tool” as performed in a previous
study (Faure et al. 2017).

Statistics
For our full linear model, gene expression variation was used as
the response variable for the following quadratic model: log10(CV)
� log2(expression) þ log2(expression)2 þ log10(gene length) þ
TATA box þ Initiator motif þ X, where X are additional covariates
from each experiment based on its metadata file. In our second
set of linear models, we first regressed out the effect of gene ex-
pression with log10(CV) � log2(expression) þ log2(expression)2 and
then using the residuals as the response variable mirroring the
full linear model: residuals � log10(gene length) þ TATA box þ
Initiator motif þ X. Partial correlation was performed using the
“pcorr” function in R with gene expression as the variable that
was controlled for and gene length and CpG O/E (A. mellifera stud-
ies only) as the response variables.

Results
Core promoter elements are significant
contributors to gene expression variation
For all the data sets (Table 1), we first quantified gene expression
variability as the CV of gene expression, as in previous studies
(Huh et al. 2013; Islam et al. 2014; Fan et al. 2016). We then
evaluated the contributing factors using a linear model using the
following covariates: mean gene expression, gene length,
presence of a TATA box, and presence of an initiator motif (see
Methods). Our main motivation was to examine the impact of
DNA methylation on gene expression variability. However, for
data sets in A. mellifera, matching data on DNA methylation and
gene expression are sparse, and the existing data sets tend to
have small number of biological replicates. Therefore, for A. melli-
fera data sets, we included CpG O/E as an additional covariate
which is an approximate measure of DNA methylation (Elango
et al. 2009). Notably, CpG O/E strongly negatively correlates with
the measured DNA methylation levels in honey bee and other
invertebrates in literature (e.g. Sarda et al. 2012), and also in a
compiled data set from A. mellifera (Supplementary Fig. 2).

As expected, average gene expression was strongly negatively
correlated with gene expression variability and was by far the
most significant term with the largest coefficient in the linear
model in all datasets (Huh et al. 2013; Islam et al. 2014; Fan et al.
2016; Wu, Lindsey et al. 2020) (Fig. 1a and Supplementary
Table 1). Following mean expression, the presence of a TATA box
in the gene promoter region was a significant term in 12 of the 15
D. melanogaster datasets (Supplementary Table 1) and in 6 of the 8
A. mellifera datasets (Supplementary Table 1). The presence of a
TATA box was positively and significantly correlated with gene
expression variability in all but one study (Hood et al. 2020). The

Table 1. Source datasets for gene expression variability.

Source publication Sample
size

Sample
type

GEO
accession

Drosophila melanogaster
Genç et al. (2020) 23 Head GSE153225
Seong et al. (2020) 42 Head, fat body,

testes
GSE140950

Wang et al. (2020) 24 Head GSE109489
Shah et al. (2021) 24 Brain GSE140663
Lindsey et al. (2021) 48 Whole body GSE162666
Hood et al. (2020) 24 Whole body GSE158189
Agren et al. (2020) 72 Whole body GSE155395
Miozzo and Nagoshi,
unpublished results

18 Brain GSE156890

Thackray et al. (2020) 36 Brain GSE144028
Brown et al. (2020) 30 Head GSE144433
Weigelt et al. (2020) 78 Brain, Thorax,

Fat Body
GSE130158

Apis mellifera
Shpigler et al. (2017) 180 Mushroom body GSE85876
Harris et al. (2019) 29 Head and pupa GSE116629
Liberti et al. (2019) 18 Brain GSE127185
Rutter and Cook (2020) 24 Whole body GSE121885
Naeger and
Robinson (2016)

48 Mushroom body GSE85433

Jasper et al. (2020) 38 Fat body and brain GSE145395
Traniello et al. (2020) 96 Brain GSE130700
Doublet et al. (2016) 11 Brain GSE81664
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other core promoter element, presence of initiator motif, was
only significant in approximately half of the studies (6 out of
12 D. melanogaster studies; 4 out of 8 A. mellifera studies;
Supplementary Table 1). The direction of correlation for the initi-
ator motif was also less consistent than the previous 2 discussed
factors, as the coefficient was positive in 3 of the 6 D. melanogaster
datasets it was significant in and in 2 of the 4 A. mellifera datasets
it was significant in (Supplementary Table 1). Lastly, gene length,
while a significant term in the majority of datasets, also failed to
display a consistent direction of correlation in either D. mela-
nogaster or A. mellifera datasets. In conclusion, in the linear mod-
els, we observed a strong and significant negative correlation
between mean expression and expression variability along with
consistent, though not always significant, correlation between

the presence of a TATA box and expression variability (Fig. 1a).
The other promoter element, initiator motifs, and gene length did
not show a consistent relationship with expression variability.

Interestingly, CpG O/E, which we used as a proxy for the level
of gene body methylation, was highly significantly and positively
correlated with gene expression variability in A. mellifera data sets
(Fig. 1 and Supplementary Tables 1 and 2). Thus, in addition to
gene expression, CpG O/E displayed strong and stable correlation
with gene expression variability across all A. mellifera datasets.
Since CpG O/E itself is negatively correlated with DNA methyla-
tion, these results imply that gene body DNA methylation is asso-
ciated with reduced gene expression variability.

Because of the strong effects of mean gene expression on gene
expression variability, we applied another strategy to control for
this effect. We first regressed out mean expression using a qua-
dratic model (see Methods). We used the quadratic model as it
was shown to have fairly unbiased residual distributions and pre-
viously applied to model the relationship between gene expres-
sion and expression variability (Alemu et al. 2014). The residual
from this regression would reflect the remaining variability
independent of the mean gene expression levels, which then
can be interrogated for other genomic factors. This analysis
yielded almost identical results as our initial linear models
(Supplementary Table 2). For the TATA box term, the significance
at the P < 0.05 threshold and the direction of correlation
remained the same for all A. mellifera studies. Similarly, the P-
value for the TATA box term was nearly the same for the D. mela-
nogaster datasets, with only one study (Thackray et al. 2020), hav-
ing a small change going from P ¼ 0.055 in the full model to P
¼ 0.048 (Supplementary Table 2). For the initiator motif term, the
direction changed for one study (Thackray et al. 2020) while sig-
nificance remained the same for all D. melanogaster studies
(Supplementary Table 2). Gene length, as with the other covari-
ates, was the same across all studies with the exception of one
study (Brown et al. 2020), which was no longer statistically signifi-
cant after regressing out the effects of gene expression
(Supplementary Table 2). Due to the expected strong effects of
mean expression on expression variability, there was a sharp
drop off in R2 values across these analyses. Specifically, after
regressing out gene expression, only 3 D. melanogaster and 2
A. mellifera studies had models explaining more than 10% of the
variance in expression variability. Nevertheless, the results of
both linear model approaches indicate that the presence of a
TATA box in the gene promoter region is consistently correlated
with higher expression variability (Fig. 1b).

When mean expression is regressed out, the CpG O/E term
was the most impactful term in the A. mellifera datasets (Fig. 1b
and Supplementary Table 2). It was highly significant in all 8
studies (P < 0.001 in all cases) with an average coefficient of 0.14
(Fig. 1b and Supplementary Table 2). None of the D. melanogaster
datasets contained significant CpG O/E terms which was an
expected result given the lack of genomic DNA methylation
(Fig. 1b; Sarda et al., 2012; Yi, 2012). Therefore, controlling for
gene expression yielded similar results suggesting that outside of
gene expression itself, DNA methylation had the biggest impact
on gene expression variability followed by the core promoter ele-
ments (Fig. 1b and Supplementary Table 2).

We also used a partial correlations approach (Kim and Yi
2006; 2007) to examine effects of covariates free from the effects
of gene expression. Specifically, we separately applied partial cor-
relations for each numerical variable (gene length for both organ-
isms in addition to CpG O/E for A. mellifera) while controlling for
mean expression. Using this method, gene length was a
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Fig. 1. Linear model covariate coefficients summary. We used the
coefficient of variation of gene expression as a proxy for gene expression
variability and modeled it using a set of key factors hypothesized to
affect transcriptional noise. The log odds ratio was calculated for each
covariate coefficient (Methods) in each study. a) Box plot of log ratio of
covariate coefficients for the full linear model including gene expression,
presence of a TATA box, presence of an initiator motif, gene length, and
CpG O/E. b) Log ratio of covariate coefficients with mean regressed out
using a quadratic model (Methods). The number of boxes above the
boxplots represents the percentage of studies the covariate is significant
in. Three boxes mean the covariate is statistically significant (P < 0.05) in
all studies (100%), 2 boxes represent significance in 50–70% of all studies,
and 1 box represents significance in at most 30% of the studies. Boxes for
CpG O/E only apply for the A. mellifera datasets and not the D.
melanogaster data sets.
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significant term in 10 D. melanogaster and 6 A. mellifera datasets
(Supplementary Table 3). CpG O/E was once again highly signifi-
cant in all 8 A. mellifera datasets with an average partial Pearson
correlation of 0.157 (Supplementary Table 3).

These results remained (Supplementary Table 4) when we
used only a subset of gene sets that are likely to be methylated,
using the CpG O/E cutoff of 0.8, following Sarda et al. (2012).
Furthermore, to test of the results were affected by the tissue
heterogeneity, we used a subset of data sets from brain (3 from
the fly studies, 3 from honey bee studies, Table 1). Analyses of
this subset of data recapitulate the same patterns as seen in the
whole data set (Supplementary Fig. 2). Even though we need to
further consider additional tissues, this analysis indicates that
the significance of gene body DNA methylation on gene expres-
sion variability is apparent in the brain data sets from the 2
species. We also examined experimentally determined DNA
methylation data sets (Wu, Galbraith et al. 2020) and gene
expression (Galbraith et al. 2015). These data sets are from bees
in the same genetic background although the exact individuals
are not matched. Using DNA methylation levels instead of CpG
O/E, we performed the same statistical analyses. We found that
in the full model, DNA methylation level is a highly significant
predictor of gene expression variability, followed by the
mean expression level (P< 10�15 for both terms, Supplementary
Table 5). When the expression level is regressed out, DNA meth-
ylation was the best predictor of gene expression variability
(Supplementary Table 5).

Discussion
By utilizing the emerging richness of large-scale gene expression
data sets, we initiated a study of the genomic and epigenetic fac-
tors underlying gene expression variability in a canonical model
insect fruit fly (D. melanogaster) and the honey bee (A. mellifera).
Since D. melanogaster does not exhibit widespread DNA methyla-
tion and A. mellifera does, this comparison is useful to ask
whether DNA methylation is associated with gene expression
variability in insects. While a negative association between DNA
methylation and gene expression variability was previously
found in 3 studies (Hunt et al. 2013; Wang et al. 2016; Wu, Lindsey
et al. 2020), these were limited in sample size and did not control
for other genomic features.

We show that, as in other taxa, highly expressed genes tend to
have reduced expression variability in both flies and honey bees.
In addition, the presence of TATA boxes was often associated
with increased noise, consistent with previous studies (Blake et al.
2003; Lehner 2008; Ravarani et al. 2016; Faure et al. 2017). Initiator
motifs and gene lengths had some effects in some data sets, but
their effects were not consistent across the data sets (Fig. 1).

While the effect of gene expression levels and TATA box and
initiator motifs were consistent between D. melanogaster and A.
mellifera, these 2 species differ by the presence (A. mellifera) and
absence (D. melanogaster) of DNA methylation. To contrast the ef-
fect of DNA methylation on these 2 species, we utilized CpG O/E
as a proxy measurement for gene body DNA methylation (Elango
et al. 2009). As expected from the lack of DNA methylation in D.
melanogaster genome, CpG O/E in D. melanogaster is unimodally
distributed and shows no relationship with gene expression
(Fig. 1b). In contrast, in A. mellifera, for all of our statistical meth-
ods (full linear model, linear model with mean expression
regressed out, and partial correlations), the CpG O/E term was
highly significantly and positively correlated with gene expres-
sion variability (Fig. 1 and Supplementary Tables 1–3). Thus, both

mean expression, which was by far the most significant and im-

pactful covariate, and CpG O/E displayed strong and stable corre-

lation with gene expression variation across all A. mellifera

datasets. Since CpG O/E itself is negatively correlated with DNA

methylation (Sarda et al. 2012 and Supplementary Fig. 1), these

results align with previous findings in both mammals and insects

that DNA methylation is associated with reduced gene expres-

sion variation (Huh et al. 2013; Wu, Lindsey et al. 2020). These

results strongly imply that gene body DNA methylation is associ-

ated with gene expression variability in A. mellifera, and its effect

is stronger and more consistent than other genomic features

such as TATA box, initiator motif and gene lengths.
The molecular mechanism underlying this association be-

tween DNA methylation and gene expression variation is not re-

solved in A. mellifera, but studies in other taxa have revealed

several potential pathways (Choi and Kim 2009; Coleman-Derr

and Zilberman 2012; Huh et al. 2013). For example, gene body

methylation may directly or indirectly reduce spurious intragenic

transcription, by avoiding erroneous intron retention (Horvath

et al. 2019) or interacting with other epigenetic modifications

(Coleman-Derr and Zilberman 2012). Our results beg the question

of how D. melanogaster regulate expression variability in the ab-

sence of DNA methylation. There is no indication of D. mela-

nogaster having greater variability of gene expression in our data,

and there is very little difference in terms of R2 of any of the sta-

tistical models. It is likely that alternative mechanisms have

evolved in D. melanogaster to compensate the lack of DNA methyl-

ation. For example, gene body DNA methylation in A. mellifera

and several histone markers in D. melanogaster are highly associ-

ated (Hunt et al. 2013). Comparing taxa where the loss of DNA

methylation has occurred recently could provide some insight

into the evolution of regulatory mechanisms underlying gene ex-

pression variability.

Data availability
All data used in this study are found in public domain and the ac-

cession numbers are indicated in Table 1.
Supplemental material is available at G3 online.
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