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Abstract: The guinea pig is the only small animal model for congenital cytomegalovirus (cCMV) but
requires guinea pig cytomegalovirus (GPCMV). Current GPCMV research utilizes prototype strain
22122, which limits the translational impact of GPCMV as numerous human CMV strains exist and
cCMV is possible in the setting of re-infection. A novel strain of GPCMV (TAMYC) exhibited differences
to 22122 in various glycoproteins with GP74 (gO homolog) the most variable (25% difference). Antibody
ELISAs for TAMYC-convalescent animals evoked similar immune response to viral glycoprotein
complexes (gB, gH/gL, gM/gN, pentamer) and cell-mediated response to pp65 homolog (GP83).
Convalescent sera from TAMYC-infected animals neutralized GPCMV infection on fibroblasts but was
less effective on epithelial cells. TAMYC-convalescent animals were not protected from dissemination
of heterogenous virus challenge (22122). However, in a cCMV protection study, TAMYC-convalescent
animals challenged mid-pregnancy (22122) exhibited high-level protection against cCMV compared to
seronegative animals with pup transmission reduced from 80% (control) to 12%. Overall, pre-existing
immunity in guinea pigs provides limited ability to prevent GPCMV re-infection by a different viral
strain but provides a high level of protection against cCMV in heterogenous strain challenge. This
level of cross protection against cCMV should be a prerequisite of any CMV vaccine.

Keywords: guinea pig; cytomegalovirus; vaccine; glycoproteins; neutralizing antibody; congenital
CMV; pentamer complex; gO

1. Introduction

Human cytomegalovirus (HCMV), a betaherpesvirus, is a leading cause of congenital disease in
newborns [1]. Congenital CMV (cCMV) can lead to serious symptomatic disease including cognitive and
vision impairment as well as sensorineural hearing loss (SNHL) in newborns [1–3]. Globally, congenital
HCMV occurs in approximately 1–5% of live births including areas with high seropositivity [4].
Alarmingly, cCMV can occur in women convalescent for the virus which may result from infection by a
new strain and/or impaired immunity against the virus [4]. Consequently, cCMV can occur in mothers
both seropositive and seronegative prior to pregnancy [5]. Ideally, a vaccine against cCMV should
provide protection at the level higher than natural convalescent immunity. The viral gB glycoprotein
which is essential for virus entry into all cell types, and an immunodominant neutralizing antibody
target, remains a significant focus in various vaccine approaches. [6]. In clinical trials, a subunit gB
vaccine attains at best about 50% efficacy against maternal infection [7]. Consequently, vaccine strategies
that include the viral pentamer complex (PC), which is important for infection of non-fibroblast cells are
also being evaluated [8]. Although the correlates of protection against cCMV are poorly defined, it is

Int. J. Mol. Sci. 2020, 21, 5997; doi:10.3390/ijms21175997 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
http://dx.doi.org/10.3390/ijms21175997
http://www.mdpi.com/journal/ijms
https://www.mdpi.com/1422-0067/21/17/5997?type=check_update&version=2


Int. J. Mol. Sci. 2020, 21, 5997 2 of 17

generally thought that neutralizing antibodies to viral glycoprotein complexes significantly contribute
to protection, but immunity can also be enhanced by response to T cell target antigens (e.g., pp65) in
convalescent individuals [9].

Intervention strategies against cCMV should ideally be investigated in a preclinical animal model.
Species specificity of HCMV makes direct study of infection in animal models untenable. Species-specific
animal CMV crosses the placenta in rhesus macaque (rhesus cytomegalovirus virus, RhCMV) and guinea
pig (guinea pig cytomegalovirus, GPCMV) [10,11]. No CMV vaccines have been evaluated to date in a
cCMV non-human primate (NHP) model. The guinea pig is the only small animal model for cCMV
and the focus of this paper. Unlike mouse, the guinea pig and human placentas are hemomonochorial,
containing a homogenous layer of trophoblast cells separating maternal and fetal circulation [12,13].
Congenitally infected newborn pups can have similar disease symptoms as humans, e.g., SNHL [14].
Therefore, the guinea pig is potentially well suited for evaluation of strategies against cCMV.

GPCMV encodes functional viral glycoprotein complexes to HCMV (gB, gH/gL/gO, gM/gN), which
are important for virus cell entry [15–17]. Unlike murine cytomegalovirus (MCMV), GPCMV also
encodes a pentamer complex (PC) found in clinical HCMV strains. The PC is a gH/gL based complex
and in HCMV consists of gH/gL/UL128/UL130/UL131 viral proteins. The GPCMV homolog PC consists
of gH/gL/GP129/GP131/GP133 [16]. Similar to HCMV, the GPCMV PC is essential for viral infection
of non-fibroblast cell types [16] including placental cells leading to cCMV [16,18,19]. As with HCMV,
the GPCMV viral glycoprotein complexes are important for neutralizing antibody targets [15,20–22].
GPCMV gB [21,23] is essential for infection of all cell types [15,16] and is the most extensively studied
vaccine antigen against cCMV, either as a subunit vaccine [23], or expressed in recombinant vaccine
vector delivery platforms [24–27]. These studies demonstrated that gB antibodies neutralized infection
on fibroblast cells. However, in cCMV protection studies, the various gB vaccines attained approximately
50% efficacy [23,24,26,27]. Infection of non-fibroblast cells for both HCMV and GPCMV are dependent
upon the PC for endocytic pathway cell entry and the process of PC-dependent entry is only partially
defined. Expression of the viral cell receptor platelet-derived growth factor receptor alpha (PDGFRA)
on fibroblasts enables HCMV and GPCMV cell entry by direct cell fusion independent of the PC but
requires gH/gL/gO triplex and gB [28–30]. Despite the essential nature of gB for infection by HCMV and
GPCMV, neutralizing antibodies to the PC might constitute a better vaccine target [31,32], especially
since antibodies to the PC are more effective at virus neutralization on non-fibroblast cells including
placental trophoblasts and amniotic sac membrane cells [8,19,25,29,33]. Additionally, GPCMV encodes
homolog T cell target antigens to HCMV such as pp65 (GP83) and cell-mediated response to GP83
provides partial protection against cCMV [20,34,35].

Although various vaccine strategies against cCMV have been evaluated in the guinea pig, the
most effective approach to date has been the use of a replication incompetent live viral strain, which
is described as a Disabled Infectious Single Cycle (DISC) vaccine [20]. The GPCMV DISC vaccine
incorporates various antibody and T cell target antigens and mimics natural infection but does not
produce progeny virus in the host because of a lethal CMV capsid gene (GP85) mutation and requires a
complementing cell line for virus production [20,29]. Protection against wild type virus challenge was
significantly increased with high efficacy when this DISC vaccine incorporated the PC [29] compared
to DISC (PC-) [20]. A PC+ DISC vaccine for HCMV is currently being evaluated in clinical trials [36].
All GPCMV animal studies to date were carried out in the context of vaccine protection against the
same strain of virus (GPCMV strain 22122). An expectation of any successful HCMV vaccine is the
ability to cross protect against multiple strains. Importantly, the antibody response to the PC has been
shown to be important for broad spectrum neutralization of various HCMV clinical strains [32].

A current failing in GPCMV studies is that all vaccine candidates have been evaluated for protection
against the prototype 22122 GPCMV strain (ATCC VR682) which was isolated in the 1950s and passaged
multiple times on fibroblasts prior to being deposited with the ATCC [37]. Although cCMV challenge
virus stocks for 22122 strain are generated serially in animals from salivary gland homogenate, potentially,
strain 22122 might not typically represent viral strains present in animal colonies. Furthermore, the
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lack of available additional viral strains prevents the ability to evaluate immunity and vaccine cross
strain protection against cCMV, which reduces the translational impact of GPCMV studies. Therefore,
a new strain of GPCMV (designated TAMYC) was isolated from commercial animals. The encoded
GPCMV glycoprotein genes and predicted proteins of TAMYC strain were compared to 22122 strain and
TAMYC convalescent immunity determined for antibody and cell-mediated response. Additionally, the
ability of convalescent immunity (TAMYC strain) in animals to cross-protect against heterogenous virus
challenge (22122 strain) and dissemination to target organs was evaluated. Furthermore, the ability
of TAMYC convalescent immunity to protect against cCMV infection by 22122 strain challenge was
explored. Overall, results suggested a minimum threshold expectation for an effective vaccine strategy
and cross strain protection against cCMV in this model.

2. Results

2.1. New Strain of GPCMV Has Hypervariable gO and Highly Epitrophic

Animals sourced from the same commercial holding room were identified as seropositive for
GPCMV by anti-GPCMV ELISA. Seropositive animals were used to isolate GPCMV from salivary
gland tissue. Initially, salivary gland tissue from individual animals was PCR screened for GPCMV
DNA using primers to the viral polymerase subunit as described in materials and methods. Salivary
gland tissue from one animal with high viral load was used to isolate the virus by co-culture of tissue
homogenate with guinea pig renal epithelial cells [16].

Viral DNA was isolated from pass 1 virus stock from renal epithelial (REPI) cells in culture and
used to PCR clone various virus glycoprotein genes: GP55 (gB); GP73 (gN); GP74 (gO); GP75 (gH);
GP100 (gM); GP115 (gL); GP129 (HCMV UL128 homolog); GP131 (UL129 homolog); GP133 (UL131
homolog) as described in materials and methods using specific primer sets (Table S1) or previously
described primers for GP100, GP115, GP129, GP131 and GP133 [15,16]. Three independent clones for
each GPCMV glycoprotein gene were completely sequenced and consensus DNA and predicted amino
acid sequence were determined. In HCMV, the predicted gO (UL74) glycoprotein amino acid sequence
is the most diverse between various strains with 10–30% difference [38–41]. ClustalW protein alignment
of the predicted GP74 (gO homolog) amino acid sequence [15] between GPCMV 22122 and newly
isolated virus demonstrated significant differences in the coding sequence (75% identity), see Figure 1.

Consequently, the virus isolated from the commercial lab animal was provisionally considered
to be a novel strain isolate and designated as TAMYC strain. The N-terminal half of the TAMYC
strain GP74 protein encoded the majority of differences with 22122 strain GP74 and this is commonly
observed between HCMV strains gO sequence [38–41]. Similar to HCMV gO, GP74 protein (22122
strain) is heavily glycosylated with 13 predicted sites [15]. In the TAMYC strain, the first two predicted
N-glycosylation sites (N-X-T/A) are lost (amino acids 41 and 57) [15] (Figure 1) and the potential impact
of this loss in this N-terminal domain glycosylation awaits further study but the second glycosylation
site is conserved between HCMV and GPCMV gO [42]. Potentially modified glycosylation could impact
on ability of gO to interact with PDGFRA cell receptor [30]. Sequence analysis of other viral glycoprotein
genes and predicted proteins demonstrated additional differences between TAMYC and 22122 strains
(Table 1, Figure S1).

The additional predicted individual glycoprotein amino acid sequence of TAMYC proteins
exhibited varying levels of identity by ClustalW analysis with 22122 strain counterparts. The gH
glycoprotein being the most variable (84% identity) after gO with all nine predicted N-glycosylation
sites conserved (Figure S1) [15]. Other proteins had greater similarity between strains (88–99% amino
acid identity), see Table 1, Figure S1A–F. Importantly, the TAMYC strain encoded unique components
of the PC (GP129, GP131 and GP133) which were relatively strongly conserved with 22122 strain
counterparts with minor changes at the nucleic acid and amino acid level (Table 1 and Figure S1D–F).
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Figure 1. ClustalW protein alignment of TAMYC GP74 (gO). ClustalW alignment of predicted amino
acid sequence of TAMYC GP74 (gO) compared to GP74 22122 strain (GenBank accession # AB592928).
Sequence alignment was carried out using MacVector software. Gray background with consensus letter
in the third row indicates amino acid sequence identity; gray background with black dot (.) in the third
row indicates conservative amino acid substitution; unhighlighted with empty consensus row indicates
mismatch. Arrow represents missing glycosylation sites (2) in the TAMYC strain. N-glycosylation
consensus sequence = NXS/T.

Table 1. Nucleic acid and amino acid homology comparison between guinea pig cytomegalovirus
(GPCMV) TAMYC and 22122 strains.

Glycoproteins Nucleic Acid (%) Homology Amino Acid (%) Homology

GP55 (gB) 99 99
GP73 (gN) 95 92
GP74 (gO) 84 75
GP75 (gH) 85 84

GP100 (gM) 98 99
GP115 (gL) 99 98

GP129 90 88
GP131 86 89
GP133 91 91

GPCMV TAMYC strain infection of REPI cells was verified by immunohistochemical (IHC)
staining of infected monolayers for gB viral protein at 4 days post infection (Figure 2i, panels A–B).
TAMYC strain virus easily replicates on other non-fibroblast cell lines established in the laboratory
similar to 22122 strain, including trophoblast and amniotic sac cell lines [18,19] (data not shown).
TAMYC strain virus growth on REPI cells was highly cell-associated with very little cell-released virus
(Figure 2ii) in contrast to 22122 strain which was 50% cell-associated and 50% cell-released virus in
REPI-derived virus from infected wells of a six-well plate [19] (Figure 2iii). Importantly, TAMYC strain
virus stock generated on renal epithelial cells was unable to easily replicate on fibroblast cells (Figure
S2 panel A) which sharply contrasted with 22122 strain where REPI cell-derived virus stock was able
to infect all available cell types including fibroblasts (Figure 2i panel E, Figure S2 panel I) [25]. Growth
of TAMYC strain on fibroblast cells required extensive passage of fibroblast-infected cells over several
months prior to virus being capable of replicating on fibroblasts with similar kinetics to 22122 strain.
Figure S2 shows TAMYC-infected fibroblast cells at 3 days post infection using non-fibroblast-adapted
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(Figure S2 panel A) and TAMYC fibroblast-adapted virus stock (Figure S2 panel E) and IHC staining
for gB compared to 22122 strain-infected cells (Figure S2 panel (I). A basis for this contrasting difference
in virus tropism between strains awaits further evaluation but this observation is similar to HCMV
clinical isolates, which require prolonged passage on fibroblasts to enable virus to adapt and this
usually results in modifications of the virus compared to clinical strains. All subsequent studies for
TAMYC virus were carried out on REPI cell-derived stock virus.
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Figure 2. Comparison of TAMYC and 22122 GPCMV strain infection on renal epithelial (REPI) cells. (i)
Viral gB protein staining of renal epithelial (REPI) cells infected with TAMYC strain (A–D) or 22122 strain
(E–H) were carried out in six-well plates. Monolayers infected with TAMYC or 22122 strain GPCMV (moi 1
pfu/cell) (A,B,E,F) and mock infected (MI) monolayers (C,D,G,H) were immunostained with monoclonal
anti-gB (GPCMV) primary antibody (Dr. Britt, UAB) + anti-mouse IgG-HRP secondary (Vectastain)
(A,C,E,G) or secondary antibody only (B,D,F,H). Individual bright field images are representative of
multiple fields (minimum 10 per panel). Magnification 10×. (ii,iii) Evaluation of cell-associated (CA),
cell-released (CR) fractions and total virus titer at 3 days post infection (dpi) on REPI cells from 6 well
plates for TAMYC (ii) and 22122 (iii).

Pathogenicity of GPCMV TAMYC in comparison to 22122 was evaluated in separate groups of
seronegative animals. At day 0, animals (n = 12/group) were challenged with virus (105 pfu/animal, SQ):
TAMYC (group 1); 22122 (group 2). Subsequently, at 4, 8, 12, and 27 days post infection (dpi) animals
(n = 3/group) were evaluated for viral load in target organs (liver, lung, spleen) and blood. At day
27 dpi, the salivary gland was additionally evaluated for viral load as well as other tissues and blood.
Results are shown in Figure 3.

The TAMYC strain had roughly similar dissemination pattern to 22122 strain with ability to
disseminate to all target organs (liver, lung, spleen and salivary gland) (Figure 3). TAMYC viremia
was detected at early stages of infection (4–8 dpi) but 22122 strain had extended viremia (4–12 dpi),
see Figure 3E. Additionally, 22122 strain was detected in all organs at 27 dpi but TAMYC was only
detected in the salivary gland at 27 dpi at a similar viral load to 22122 (Figure 3). We concluded that
TAMYC virus had roughly similar dissemination pattern to 22122 strain despite impaired replication
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Figure 3. Dissemination of different GPCMV strains to target organs. Seronegative animals (n = 12/

group) were inoculated with TAMYC (blue) or 22122 wt GPCMV (orange). At 4, 8, 12 and 27 days post
infection (dpi), 3 animals from each group were evaluated for viral load in target organs: (A) lung; (B)
liver; (C) spleen, by real-time PCR of DNA extracted from tissues. Viral load plotted as viral genome
copies/mg tissue. Salivary gland tissue (D) was only evaluated at 27 dpi. Viremia detected at 4, 8, 12
and 27 dpi was plotted as genome copies/mL blood (E). Unpaired t test at 95% confidence interval
* p < 0.05; ** below level of detection; ns = not significant.

2.2. Animal Antibody Immune Response to New Strain GPCMV (TAMYC)

Our previous evaluations of the immune response to GPCMV has been in the context of
hyperimmune animals that received multiple challenges with wild type virus, viral mutants or specific
viral vaccine candidate antigens [15,20,25,29]. Commercial guinea pigs, seropositive for GPCMV
TAMYC strain that were socially housed in the same holding room, had a lower immune response to
all viral glycoprotein complexes compared to hyperimmune animals that received multiple injections
of wild type virus (22122) over several months. In order to provide a more realistic comparison with
the immune response to natural GPCMV infection, we evaluated antibody responses of guinea pigs
at 12 weeks after single challenge dose (105 pfu, SQ) of TAMYC, or 22122 strain. TAMYC strain
seropositive animals (n = 8) with similar anti-GPCMV titers to 22122 infected animals (1:5120) were
subsequently evaluated for antibody response by ELISA to individual glycoprotein complexes (gB,
gH/gL, gM/gN and PC). Results shown in Figure 4 demonstrated that TAMYC-infected animals
exhibited an antibody response to all viral glycoprotein complexes.

The highest antibody titer for a specific glycoprotein complex was to the immunodominant gB,
which was slightly higher for TAMYC compared to 22122 sera but this was not statistically significant
(Figure 4A). Immune responses to gM/gN and PC were similar between 22122 and TAMYC sera but
the ELISA antibody titer to gH/gL was threefold higher for TAMYC sera compared to 22122 infected
animal sera (1:213 v 1:67) which was statistically significant (p < 0.05), see Figure 4B. Overall, the
antibody titers for individual glycoprotein complexes were lower for both 22122 or TAMYC strain
single-dose-infected animals compared to that obtained in hyperimmune 22122-infected animals [29].
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Next, pooled sera from TAMYC or 22122 strain single-dose-infected animals were evaluated on guinea
pig fibroblast lung cells (GPL) and REPI epithelial cells to determine if there was a difference in ability
to neutralize virus (22122 strain) infection by cell fusion PC-independent pathway (GPL) or endocytic
PC-dependent pathway (REPI) [16,29]. Results demonstrated that sera from both strains were equally
effective in virus neutralization on fibroblast cells (Figure 4C). However, both TAMYC and 22122 sera
had weaker NA50 values on REPI cells (approximately three- to four-fold lower). Overall, neutralizing
antibody titer from both groups was approximately fourfold lower on GPL and approximately sixfold
lower on REPI cells compared to hyperimmune sera from 22122 strain animals [29]. We concluded
that TAMYC and 22122 single-dose animals produced roughly similar immune responses to various
target antigens but TAMYC evoked a statistically significant stronger antibody response to gH/gL and
a non-statistically significant higher response to gB and PC. However, there was little difference in
NA50 titers between TAMYC or 22122 strain animal sera. It is likely that virus neutralizing titers for
guinea pig trophoblast and amniotic sac cell lines would also be similarly low compared to fibroblast
NA50 value based on previous studies [19,25,29] but this awaits further evaluation.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW  7  of  18 
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Figure 4. Comparative immune response of TAMYC and 22122 infected animals. Animals were infected
with TAMYC (gray, n = 5) or 22122 GPCMV (orange, n = 5). Convalescent animals with comparable
anti-GPCMV titer of 1:5120 were evaluated for specific antibody ELISAs to viral glycoprotein complexes.
(A) Anti-gB ELISA titers or (B) antibody ELISA response to specific glycoprotein complexes (gHgL;
gMgN; and PC). (C) Antibody neutralization (NA50) of wt GPCMV of TAMYC (gray circle), 22122
(orange square) or GPCMV negative (red inverted triangle) on guinea pig fibroblast lung cells (GPL)
and REPI cell lines. Statistical analysis by Unpaired t test (A and B) and ANOVA (C) * p < 0.05; ns = not
significant. (D) T cell response to GPCMV GP83 peptide pools in TAMYC strain seropositive animals
determined by IFN-γ ELISPOT assay. Two reactive GP83 peptide pools, peptide pools X (yellow) and
XX (red), previously identified [20], responded with splenocytes isolated from animals naturally infected
with the TAMYC strain. Black, ConA positive control; brown, DMSO control; blue, unstimulated control;
green, unresponsive negative (neg) peptide pool II; purple, unresponsive negative peptide pool IV. Final
counts were calculated based on the number of spot-forming cells (SFC) per 106 cells.

In addition to antibody response to the virus, seropositive TAMYC animals were also evaluated for
cell-mediated immune response to tegument protein GP83 (pp65 homolog), which has previously been
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demonstrated to be a T cell target antigen in GPCMV studies [20,35]. An IFN-γ ELISPOT of splenocytes
of GPCMV TAMYC convalescent animals demonstrated a response to specific GP83 peptides (Figure 4D)
and confirmed that convalescent animals had a response to GP83 as previously noted for animals
infected with GPCMV 22122 strain [20,29]. We concluded that convalescent TAMYC strain-infected
animals had a roughly similar immune response to GP83 as previously noted for 22122 strain.

2.3. Natural Immunity and Cross Strain Protection against Reinfection

A recent 22122 strain GPCMV DISC vaccine was highly effective in protection against challenge
by wild type 22122 strain and prevented challenge virus dissemination [29], unlike a full length gB
vaccine strategy [25]. A prerequisite of a successful vaccine strategy against congenital CMV is the
ability to provide protection against multiple strains of CMV. However, all GPCMV vaccine studies to
date have only evaluated vaccine efficacy against prototype 22122 strain in homogenous strain studies.
Consequently, it was important to determine the level of cross protection provided by convalescent
immunity to establish a minimum level of expectation for a successful vaccine strategy against multiple
GPCMV strains. A group of animals (n = 12) convalescent for TAMYC strain infection and matched
for anti-GPCMV titer (1:5120) were challenged with 22122 strain GPCMV (105 pfu, SQ). At various
time points (4, 8, 12 and 27 dpi), animals (n = 3/group) were euthanized and viral load in target organs
(liver, lung, spleen and blood) was evaluated. At 27 dpi the viral load in the salivary gland tissue was
additionally evaluated. Results in Figure 5A demonstrated that virus dissemination to target organs
was observed in lung, liver and spleen on days 4–12 and in liver and spleen on day 27. Additionally,
convalescent immunity did not prevent virus infection of the salivary gland at day 27 dpi (Figure 5A).
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Figure 5. GPCMV pathogenesis in seropositive animals (TAMYC) challenged with heterologous virus
strain (22122). Convalescent TAMYC seropositive animals (n = 12) were challenged with 22122 GPCMV,
105 pfu SQ. At 4, 8, 12, and 27 dpi, 3 animals per group were evaluated for viral load in target organs
by real-time PCR and plotted as viral genome copies/mg tissue (A). Salivary gland tissue was only
evaluated at day 27. Viremia evaluated at 4, 8, 12, and 27 dpi plotted as genome copies/mL blood (B).

Convalescent immunity did shorten viremia, which was detected on days 4–8 dpi at comparable
levels but absent at 12 dpi (Figure 5B) compared to seronegative animals infected with 22122 strain [16].
Therefore, pre-existing immunity to GPCMV (TAMYC strain) had limited ability to cross protect against
heterogenous 22122 strain GPCMV challenge. We concluded that although convalescent immunity
of GPCMV seropositive animals can provide sterilizing immunity to the homogenous challenge of
a viral strain [29], this requires a robust immune response observed in hyperimmune animals [29].
Immunity to re-infection in heterogenous virus challenge (TAMYC strain seropositive and 22122 strain
challenge) is more limited as heterogenous viruses remained capable of disseminating to target organs
and the salivary glands. This potentially indicates a limitation of adaptive immune response evoked in
virus-infected convalescent animals. Possibly, the same limitation might also apply to the GPCMV
DISC vaccine strategy [29], but cross strain protection remains to be evaluated.
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2.4. Natural Immunity and Cross Strain Protection against Congenital Infection

Currently, in the guinea pig model, only a PC+ DISC vaccine strategy has been demonstrated to
provide complete protection against cCMV [29]. However, the DISC vaccine as well as all other vaccine
studies performed by various investigators in the guinea pig model have only evaluated protection
against cCMV by GPCMV strain 22122 and no other strain. Since multiple strains of HCMV enable
the potential for re-infection despite convalescent immunity, vaccine-based cross strain protection
should be evaluated as part of vaccine efficacy studies and especially at the preclinical stage. In order
to establish a base line for cross protective immunity against cCMV between strains, we evaluated the
ability of convalescent TAMYC strain-seropositive female animals to provide cross protection against a
heterologous challenge virus strain (22122) during pregnancy. Convalescent TAMYC strain-seropositive
female animals (n = 8, group 1) matched for anti-GPCMV titer (1:5120) were mated with seronegative
males and at day 30–35 of gestation (mid–late second trimester) challenged with wild type salivary
gland stock 22122 strain GPCMV (105 pfu, SQ). A control group of seronegative female animals (n = 15,
group 2) were mated and similarly challenged with 22122 strain GPCMV (105 pfu, SQ) at day 30–35
of gestation. All animals were allowed to proceed to term. Pups were evaluated for viral load in
target organs (liver, lung, spleen and brain). The overall outcome of the study is shown in Table 2. All
group 1 pups (seropositive, convalescent TAMYC) were born live. In contrast, the control group 2
(seronegative) animals, had both live and still-born animals present in litters with a total of 56.2% live
pups and 43.8% still-born dead pups (Table 2).

Table 2. Congenital infection outcomes for live versus dead pups.

Group 1 Seropositive Group 2 Seronegative

Pregnant 8/8 (100%) 15/15 (100%)
Litters delivered 8 14 a

Litters with only live pups 8 7
Litters with mix (live and dead) pups 0 3

Litters with only dead pups 0 4
Total pups (live) *

Pups evaluated by PCR
33 (100%)

33
27 (56.25%)

24 b

Total pups (dead) *
Pups evaluated by PCR

0 (0.00%)
0

21 (43.75%)
11 c

* p = 0.0001 Fisher’s exact test; a 1 dam died during pregnancy on day 8 post challenge; b 3 live pups were not
evaluated by PCR due to premature birth (sub day 12 post challenge); c 10 dead pups were not evaluated by PCR
due to premature birth (sub day 12 post challenge).

Evaluation of viral load in pups from both groups (Table 3) identified 4/33 pups in group 1 with
detectable viral load in one or more target organs, in contrast to 28/35 pups in the control group 2 with
detectable viral load in one or more target organs (Table 3). Overall, convalescent immunity reduced the
cCMV transmission rate from 80% in the control to 12% in group 1, seropositive TAMYC convalescent
dams (Table 3). Additionally, pups from group 1 with detectable viral load had lower levels in the
target organs compared to control group 2 pups (Table 3). Overall, despite an inability of convalescent
immunity to prevent challenge virus dissemination in dams (Figure 5), immune response was sufficient
to substantially reduce the risk of cCMV. We concluded that an ideal minimum expectation of a
successful vaccine strategy in this model would be to provide high-level protection against cCMV by a
heterogenous virus challenge in addition to high efficacy against a homogenous strain.
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Table 3. Congenital infection outcome and mean viral load (genome copies/mg tissue) based on
cytomegalovirus (CMV) detection in target tissues of pups.

Vaccine Lung Liver Spleen Brain CMV + Pups

Group 1
Seropositive

3/33 * (9.1%)
2.43 × 102

1/33 * (3.0%)
3.6 × 102

1/33 * (3.0%)
1.52 × 102

1/33 * (3.0%)
1.38 × 102 4/33 * (12.12%)

Group 2
Seronegative

21/35 (60.0%)
4.62 × 102

15/35 (42.9%)
4.25 × 102

19/35 (54.3%)
1.33 × 103

18/35 (51.4%)
1.87 × 103 28/35 (80.00%)

* p = 0.0001 Statistical analysis comparing number of CMV-positive organs in each group determined by Fisher’s
exact test.

3. Discussion

Candidate CMV vaccines should be evaluated for efficacy in a relevant preclinical animal model
but studies are complicated by the requirement of a species-specific animal CMV. A further limitation is
that there are only two models for cCMV (rhesus macaque and guinea pig). Although no cCMV vaccine
protection studies have been evaluated in the NHP model, it is potentially more relevant to HCMV
disease. Various vaccines have been evaluated against horizontal virus transmission for RhCMV. Both
gB and PC vaccines have separately failed to prevent RhCMV natural infection, despite robust immune
response, which potentially indicates a limitation of approaches focused on an individual glycoprotein
complex [43,44]. RhCMV T cell target antigens (IE1 and pp65 homologs) have also failed to prevent
natural infection [45]. A complication of NHP studies is the limited number of RhCMV seronegative
rhesus macaques. Consequently, the guinea pig is perhaps the most realistic animal model to evaluate
cCMV vaccine strategies in a high throughput approach. However, the model is not without specific
shortcomings including reagents and assays. We have developed a number of novel cell lines and
assays to enable evaluation of virus tropism and host immune responses [15,16,18–20,25,29,30].

A potentially important limitation of the current guinea pig model is the use of a single viral
strain of GPCMV, which was passaged on fibroblast cells multiple times prior to ATCC deposition [37].
Consequently, despite the ability of 22122 strain from salivary gland virus stock to cause cCMV, an
underlying concern is that this strain might not truly resemble a wild type virus and additionally if
immune response was cross protective between strains. Therefore, studies with an additional GPCMV
strain would seem logical, especially since numerous HCMV strains exist [46]. The novel strain of
GPCMV (TAMYC) fulfills the criteria of a new strain by exhibiting altered predicted sequence for
gO protein (GP74) compared to 22122 strain as well as other glycoprotein sequences. Variability in
sequence is commonly observed in HCMV strains, especially in gO with up to 30% difference between
strains [38–41,47]. In the case of GPCMV, TAMYC and 22122, strains exhibited 25% difference in the
gO amino acid sequence and importantly two N-terminal region glycosylation sites were missing,
which potentially alters ability of the viral trimer (gH/gL/gO) to interact with cell receptor PDGFRA
which can be influenced by glycosylation [30]. In HCMV, gO polymorphisms modify virus cell-free
and cell-to-cell spread [48] and this might account for the basis of the TAMYC strain being highly
cell-associated but this requires further study. Potentially, there are additional differences between the
two GPCMV strains but this also awaits further evaluation.

Phenotypically, it is important to note that unlike 22122, the TAMYC strain was extremely
cell-associated and grew poorly on fibroblasts compared to growth on epithelial cells unless TAMYC
was extensively adapted to fibroblasts. In contrast, 22122 strain virus stock generated on REPI cells
grows equally well on fibroblasts and various non-fibroblast cell lines [18,19,29]. In this regard, the
new GPCMV strain more closely resembles a low pass HCMV clinical isolate [49]. Altered tropism
might be a result of modified ratio of PC to gH/gL/gO trimer between strains and/or perhaps differential
expression of a homolog UL148 [50] but these aspects await future study. An additional novel GPCMV
strain (designated CIDMTR) was recently identified [51] and TAMYC differs from this strain with 87%
identity for gO protein based on ClustalW protein alignment of predicted amino acid sequence [51]
(unpublished observation McGregor and Choi). Therefore, based on HCMV gO strain genotypes, which
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vary between 10 and 30%, TAMYC should be considered a separate strain to CIDMTR as well as 22122.
A specific concern related to this additional reported CIDMTR strain is that it was likely passed on
fibroblast cells and so potentially incurred modifications during adaptation and so may have limited
advantage in use over the existing 22122 strain. In HCMV, initial mutation and virus adaptation can
occur within one pass on fibroblast cells but other modifications can occur with additional passes [52].
Another GPCMV strain isolate was also reported by Cardin and colleagues [53]. Unfortunately, immune
response or virus tropism associated with any other new strain of GPCMV awaits specific study so
further comparisons are not possible. It is interesting to note that in MCMV, despite differences in
DNA sequence between strains, there is limited or no variation in glycoprotein amino acid sequence
between strains. In the case of Smith and K181 strains of MCMV, M74 (gO) exhibit 100% homology at
the protein level [54]. Therefore, GPCMV would appear to differ from MCMV as novel strains carry
protein polymorphisms.

In HCMV, because of the risk of re-infection by a new strain of virus, a vaccine needs to provide
protection that exceeds convalescent natural immunity. In homogenous virus challenge studies of
convalescent animals, it appears that in the guinea pig model, protection against re-infection by
the same strain of virus is possible but the immune response must be greater than that of natural
immunity as only hyperimmune animals or DISC(PC+) multi-vaccinated animals are protected from
re-infection [29]. Antibodies to HCMV gB can constitute 40–70% neutralizing activity to HCMV
in convalescent patients [55,56] but a gB vaccine strategy provided approximately 50% efficacy in
clinical trials [57,58]. GPCMV gB is essential for infection of both fibroblast and non-fibroblast cell
types [15,16,19] but gB vaccine strategies against 22122 strain provided about 50% efficacy against
cCMV. Previous GPCMV gB vaccine studies had utilized truncated gB protein. Our recent studies
with a full length gB Ad vector strategy [25] demonstrated that full length gB with an ability to form a
higher-order trimer complex generated a higher neutralizing antibody titer on fibroblast cells. However,
full length gB vaccine sera were less effective for neutralization on non-fibroblast cells compared to
convalescent sera with antibodies to the PC. This would suggest that a gB vaccine strategy would have
limited ability to cross protect against multiple strains, especially if the virus preferentially infected
non-fibroblast cells as is the case for TAMYC strain. However, the Ad vector gB vaccine did not prevent
homogenous virus dissemination. Consequently, results would suggest that a gB vaccine would be
limited in protecting against infection by additional strains despite relatively high identity between
strains. It is possible that a PC vaccine strategy might also be limited in protection against GPCMV
infection and we are currently evaluating PC specific vaccine strategies. In HCMV, the antibody
response to the PC has been shown to be important for broad spectrum neutralization of clinical strains
on various cell types [32].

In conclusion, it should be an expectation of any strategy against cCMV that it meets or exceeds
protection levels attained by convalescent immunity because of the risk of re-infection by new strains of
CMV. In this current study, we have isolated a novel strain of GPCMV and demonstrated that although
convalescent immunity does not protect against re-infection by a heterogenous strain challenge,
the existing immunity is sufficient to provide relatively high level of protection against cCMV by
heterogenous challenge virus. Consequently, this outcome indicates a likely important standard that
any vaccine against cCMV should meet and ideally exceed. Undoubtedly, the new strain of GPCMV
will be important in future vaccine research. Overall, these studies demonstrate that GPCMV has
potential strain diversity similar to HCMV and further emphasizes the importance of this model for
translational studies.

4. Materials and Methods

4.1. Virus, Cells, Synthetic Genes and Oligonucleotides

Wild type GPCMV (strain 22122, ATCC VR682 or new strain isolate, designated TAMYC) propagated
on guinea pig fibroblast lung cells (GPL; ATCC CCL 158) and REPI cell line as previously described [16,18].
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Virus stocks for antibody neutralization assays were generated on REPI cells. Virus titers were
determined by GPCMV titration on REPI and fibroblast cells [59]. Recombinant defective adenovirus
(Ad5) vectors encoding GPCMV glycoproteins (gB, gH, gL, GP129, GP131 and GP133) were previously
described [15,16,25]. Oligonucleotides were synthesized by Sigma-Genosys (The Woodlands, TX, USA).

4.2. Ethics and Animal Studies

Guinea pig (Hartley) animal studies were performed under guidance and permission by Texas
A&M University animal use review committee, IACUC (Texas A&M University, College Station, TX,
USA), under permit 2017-0227 granted in 2017 to AM. All study procedures were carried out in strict
accordance with the recommendations in the “Guide for the Care and Use of Laboratory Animals of the
National Institutes of Health.” Animals were observed daily by trained animal care staff, and animals
that required care were referred to the attending veterinarian for immediate care or euthanasia. Terminal
euthanasia was carried out by lethal CO2 overdose followed by cervical dislocation in accordance
with IACUC protocol and NIH guidelines. Animals purchased from Charles River Laboratories were
screened for GPCMV by anti-GPCMV ELISA of sera collected by toenail clip bleed as previously
described [15]. Animal studies were performed to evaluate (a) immune response to GPCMV infection,
(b) virus dissemination in seropositive and seronegative animals, (c) congenital GPCMV in seropositive
and seronegative animals. Experiment 1. GPCMV strain dissemination (TAMYC) was carried out on
seronegative animals. On day 0, animals were challenged with virus (105 pfu, SQ). At various days post
infection, 3 animals were euthanized and viral load determined for target organs and blood at 4, 8, 12,
and 27 dpi as previously described [29]. Comparative study was carried out on an additional group of
animals for 22122 virus strain as described above. Experiment 2. Convalescent immunity (TAMYC) and
cross strain protection by heterogenous challenge (22122) were assessed. Twelve animals convalescent
for TAMYC matched for anti-GPCMV titer were challenged with 22122 strain virus (105 pfu, SQ) and
viral load evaluated for target organs and blood at 4, 8 12 and 27 dpi. Seronegative animals challenged
with 22122 strain in experiment 1 served as the control group. Experiment 3. Congenital GPCMV in
seropositive and seronegative animals was analyzed. Animals convalescent for TAMYC strain (n =

8, Group 1) matched for anti-GPCMV titer (1:5120) were mated with seronegative males and at day
30–35 of gestation (mid-late 2nd trimester) challenged with wild type salivary gland stock 22122 strain
GPCMV (105 pfu, SQ). A control group of seronegative female animals (n = 15, Group 2) were mated
and similarly challenged with 22122 strain GPCMV at day 30–35 of gestation. Animals proceeded to
term and pups were evaluated for viral load in target organs (liver, lung, spleen and brain).

4.3. Isolation of a New Strain of GPCMV

Guinea pigs purchased under permit 2017-0227 granted in 2017 to AM by IACUC (Texas A&M
University) were sourced from the same holding room from a commercial vendor and screened by toe
nail clip bleed for GPCMV sera status by anti-GPCMV ELISA [15]. Animals seropositive for GPCMV
were euthanized and salivary gland tissue and spleen isolated, homogenized and a portion used to
evaluate viral load by real time PCR for individual animals. Positive tissue homogenates (salivary
gland) from individual animals were separately co-cultured on REPI cells. Virus studies are based on
new strain GPCMV isolated from one animal (TAMYC) and virus passaged once on REPI cells prior to
storage at −80 ◦C as P1 REPI stock. TAMYC is an anagram of the institute where the virus was isolated
(Texas A&M) and the investigators that isolated the virus (AM and YC). TAMYC viral DNA isolated
from P1-infected REPI cells was used as template for PCR cloning of TAMYC glycoprotein genes into
TA cloning vectors as previously described [16]. Individual GPCMV glycoprotein genes (Table 1) were
PCR amplified with primers shown in Table S1 (see supplementary data) or using primers previously
published [15]. DNA sequence of 3 independent bacterial clones for each gene was determined and
subsequently assembled and analyzed in comparison to 22122 strain GPCMV genes by MacVector
software. Predicted glycoprotein amino acid sequences for 22122 and TAMYC were compared by
ClustalW protein alignment by MacVector software. Additional analysis was made to the CIDMTR



Int. J. Mol. Sci. 2020, 21, 5997 13 of 17

GPCMV strain [51] (data not shown). DNA sequencing was carried out by Functional Biosciences and
Eurofins Genomics.

4.4. GPCMV Glycoprotein ELISAs

Specific glycoprotein complex ELISAs were carried out as previously described using positive
coating antigen derived from renal epithelial cell monolayers transduced with recombinant
replication-defective adenovirus (Ad) vectors expressing specific glycoprotein complexes or control
recombinant Ad vector expressing GFP for negative coating antigen [15,16,20,25]. Except for the case of
gM/gN ELISA which utilized transient expression, plasmids with synthetic codons optimized expression
plasmids for transfection onto guinea pig cells [15]. Harvested cells were washed with PBS and cell
pellets fixed prior to processing as coating antigen. Protein concentration was normalized by Bradford
assay. MaxiSorp ELISA plates (NUNC) were coated with 1.0 µg of either Ag+ or Ag− preparations
diluted in carbonate coating buffer overnight at 4 ◦C, washed in 1X PBST then blocked with 2% nonfat
dry milk. Test sera were diluted in blocking buffer from 1:40 to 1:20480 in doubling dilutions, incubated
for 2 h at 37 ◦C and then reacted with anti-Guinea Pig IgG peroxidase antibody (Sigma) diluted (1:1000)
in blocking buffer for an additional 1 h at 37 ◦C before reacting with TMB membrane peroxidase
substrate (KPL). Net optical density (OD) (absorbance 450 nm) was attained by subtracting OD of Ag−

from OD of Ag+. All ELISAs described in this report were carried out with the same batch of coating
antigen. The described approach is based on similar strategies for glycoprotein complex expression for
HCMV and RhCMV and ELISAs [60,61]. All ELISAs were run a minimum of three times in duplicates.
ELISA reactivity was considered positive if the net OD was greater than, or equal to 0.2, as determined
by GPCMV-negative serum. Final antibody titer was determined as the reciprocal of the highest serum
dilution above the background OD 0.2 ABS.

4.5. GPCMV Neutralization Assays

GPCMV neutralization assays (NA50) were performed on GPL fibroblasts and REPI cells with
PC+ GPCMV (22122 strain) virus [15,16] using pooled sera from a specific group of animals (22122
seropositive, TAMYC seropositive or control seronegative) as previously described [20]. Serially diluted
sera were incubated with GPCMV in media containing 1% rabbit complement (Equitech Bio, Kerr
County, TX, USA) for 90 min at 37 ◦C before infecting cells for 1 h. Infected cells and supernatant were
collected on day 4 then titrated on GPLs. Final neutralizing antibody titer was the inverse of the highest
dilution producing 50% or greater reduction in plaques compared to virus only control. NA50 assays
were performed from each sample three times concurrently with the same virus stocks between groups.

4.6. Guinea Pig Interferon Gamma Enzyme-Linked Immunospot (ELISPOT) Assay

The guinea pig IFN-γ ELISPOT assays were performed following a previously described protocol
using freshly isolated splenocytes and GPCMV GP83 peptide pools [20]. Anti-guinea pig IFN-γ
monoclonal antibodies (V-E4 and N-G3) were previously characterized [62]. Briefly, PVDF membrane
96-well plates were coated with guinea pig IFN-γ capture antibody, V-E4, and incubated overnight
at 4 ◦C, blocked then freshly isolated splenocytes added before being exposed to GPCMV GP83 9
mer peptide pools and incubated for 18 h. Biotinylated detection antibody, N-G3 was added before
streptavidin-AP conjugate (R&D Systems) then detected with BCIP/NBT (Life Technologies, Carlsbad,
CA, USA). Membranes were dried before spots were counted on ImmunoSpot S6 (CTL). Final counts
were calculated based on spot-forming cells (SFC) per 106 cells after background spots (cells only
without any stimulation) were subtracted. ConA (10 µg/mL) was used as positive control and other
controls included cells only control, DMSO control (peptide background), and nonspecific peptide
control and media only control.

4.7. Real Time PCR

Blood and tissues (lung, liver, spleen, salivary gland) were collected from euthanized guinea pigs
to determine the viral load as previously described [15,20]. Briefly, for tissue DNA extraction, FastPrep
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24 (MP Biomedical, Santa Ana, CA, USA) was used to homogenize tissues as a 20% weight/volume
homogenate in Lysing Matrix D (MP Biomedicals). To obtain DNA from whole blood, blood was
collected into tubes containing ACD anticoagulant and 200 µL of blood was subsequently used per
extraction. DNA was extracted using the QIAcube HT (Qiagen, Hilden, Germany) according to
manufacturer’s blood or tissue protocols. Viral load was determined by real time PCR on LightCycler
480 (Roche Applied Science, Penzberg, Germany) using primers and hydrolysis probe to amplify a
product from the GPCMV GP44 gene. Data was collected by “single” acquisition during the extension
step. Standard curve was generated using GPCMV GP44 plasmid [63] for quantification and assay
sensitivity. The sensitivity of the assay was determined to be 5 copies/reaction. Viral load was expressed
as genome copy number/mL of blood or genome copy number/mg tissue. Results calculated were a
mean value of triplicate PCR runs per sample.

4.8. Statistical Analysis

All statistical analyses were conducted with GraphPad Prism (version 7) software. Replicate
means were analyzed using one-way analysis of variance (ANOVA), Unpaired t test at 95% Confidence
interval, or Fisher’s exact test, with significance taken as a p value of <0.05 or as specified in the
figure legends.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/17/
5997/s1.
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