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Zebrafish, Denio rerio, can be an alternative to other classic animal models for human
infectious diseases to examine the processes of microbial infections and host–pathogen
interactions in vivo because of their small body dimension but large clutch size. We
established germ-free zebrafish infection models of Listeria monocytogenes through
different routes of infection: oral immersion and injection via yolk sac, brain ventricle and
blood island. Immersion of zebrafish larva even with 1010 CFU/mL L. monocytogenes
EGDe strain in egg water was unable to cause mortality, but GFP-expressing bacteria
in the gut lumen can be observed in frozen sections. Several selected maker genes of
the innate immune system, including cyp1a, irg1l, il1b, and mmp9, were significantly
induced by oral immersion not only with strain EGDe, but also with strain M7 and L.
innocua, though to a lesser degree (P < 0.01). Such induction appears to be transient
with peak at 48 h post-infection, but returned to basal level at 72 h post-infection.
Of the three injection routes, mortality after infection by yolk sac was 80% in early
stage of infection. Few eggs can survive and hatch. Injection into zebrafish embryos
via brain ventricle or blood island led to progressive lethal infection. L. mocytogenes
EGDe showed steady replication in the fish embryos and was far more pathogenic
than strain M7, which is consistent with findings in the murine model. We conclude
that zebrafish can serve as susceptible and microscopically visible infection models for
L. monocytogenes via different routes and can be applied to further studies on the
interactions between bacterial virulence factors and host immune responses.

Keywords: germ-free zebrafish, Listeria monocytogenes, infection model, immersion, innate immune responses

Introduction

Zebrafish, Denio rerio, as a hybrid animal model between invertebrate and vertebrate, has
been widely used for studying human infectious diseases. Zebrafish embryos can be an alter-
native to other classic animal infection models to examine processes of microbial infections
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and host–pathogen interactions in vivo because of their small
body dimension but large clutch size (Tobin et al., 2012).
Zebrafish larva has an independent innate immune system. The
adaptive immune system is immature until 4–6 weeks post fertil-
ization (Trede et al., 2004). This developing stage during the first
4 week can be employed to study innate immunity to infections
by pathogenic organisms.

Several infection techniques have been approached in
zebrafishmodels for over 20 different pathogenic bacterial species
(Stockhammer et al., 2009; Li and Hu, 2012) as well as several
fungal and viral pathogens (Sanders et al., 2003; Chao et al.,
2010). The most commonly used method is micro-injection via
the blood island near the urogenital opening in the 26 hpf
(hours post fertilization) zebrafish. With intravenous infection
via blood island, zebrafish is susceptible to almost all bacte-
rial pathogens used so far, including Mycobacterium marinum,
Salmonella typhmurium, and Escherichia coli (Prouty et al.,
2003; Davis and Ramakrishnan, 2009; Volkman et al., 2010).
Other routes of infection include micro-injection into brain
ventricle or yolk sac of fish embryos. The brain ventricle is
a good site to observe macrophage migration upon intraven-
tricular introduction of pathogens because it is a closed cav-
ity lack of macrophages in the embryonic stage (Davis et al.,
2002). Yolk sac injection is suitable for large-scale screen-
ing because of its easiness of operation (Carvalho et al.,
2011).

Additional advantages of using zebrafish as infection models
are that the fish can be readily made germ-free with simple meth-
ods (Pham et al., 2008) and that genetic manipulation is relatively
easy to generate transgenic lines (Tobin et al., 2012) for some
specific experiments to better understand the host–microbe inter-
actions. Two methods were examined for colonizing the devel-
oping gut of 5 dpf (days post fertilization) germ-free zebrafish
with a defined anaerobic microbial community derived from a
single human fecal sample (Toh et al., 2013). Inoculation per os
revealed a key role for adhesion in protection by probiotic bac-
teria in a zebrafish colonization model (Rendueles et al., 2012).
These studies suggest that germ-free zebrafish can serve as a use-
ful tool for studying the interaction between specific pathogen
and host intestinal mucosa.

Listeria monocytogenes, when orally exposed, can break
through the intestinal barrier and cause systemic infections, such
as septicemia and meningitis. It has been used as a model intra-
cellular organism in infection biology studies and its pathogenic
mechanisms are well illuminated (Cossart, 2007; Stavru et al.,
2011). Listeria strains can be isolated from fish (Rodas-Suárez
et al., 2006). However, it remains unknown if fish can develop
listeriosis by natural way. Adult zebrafish was found less suscep-
tible thanmice (Menudier et al., 1996). However, the experiments
were conducted at 22◦C, at which temperature Listeria viru-
lence genes are expressed (Johansson et al., 2002). Zebrafish
larva at 54 hpf was used for real-time analysis of responses of
macrophages to listerial infection by intravenous route (Levraud
et al., 2009). The group also indicated that intravenous infec-
tion was less lethal than yolk sac infection, and that immersion
infection did not induce lethality, possibly indicating failure
of the bacterium to cross the intestinal barrier. Edwardsiella

tarda, a pathogen natural to aquatic species, presented vari-
able lethality to zebrafish larva upon immersion infection (van
Soest et al., 2011). The channel catfish pathogen E. ictaluri was
highly pathogenic to zebrafish larvae as shown by high mortality
within 3 days after immersion exposure (Rendueles et al., 2012).
These studies suggest that pathogenic progression to systemic
lethal infection varies with the pathogens used for immersion
infection. However, these experiments were conducted on con-
ventional zebrafish where there might be native microbial flora
that can interfere with the outcome of infecting pathogens. Also
few studies were conducted on germ-free zebrafish for viru-
lence mechanisms of pathogenic bacteria by different routes of
infection.

We attempted to use germ-free zebrafish embryos as infec-
tion models by multiple routes of inoculation to investigate the
pathogenicity of L. monocytogenes strains and L. innocua that
are known to be of different virulence in mammalian species.
Expression of innate immune response genes was examined to
study if immersion can induce immune responses in infected fish
larvae.We found that immersion infection, though not lethal, can
lead to induction of several genes related to innate immunity.
Infections by multiple injection routes can clearly differentiate
the pathogenic potentials of listerial strains as assessed by hatch-
ing rate, surviving larvae and bacterial burden in the body. Such
models can be explored to examine the virulence factors of and
host responses to pathogenic bacteria other than Listeria.

Materials and Methods

Bacterial Strains and Culture Condition
Listeria monocytogenes strain EGDe, strain M7 (a low pathogenic
strain isolated from milk in our laboratory; Chen et al., 2010),
and L. innuoca strain ATCC33090 were used for infection exper-
iments. To observe the bacteria in vivo, GFP-expressing strains
EGDe-gfp, M7-gfp and ATCC-gfp were generated by transform-
ing the respective strains with the recombinant plasmid pFL251
carrying gfp under control of the listerial dlt promoter con-
structed in our laboratory using the shuttle vector pAM401 (a
kind gift from Dr. Nancy E. Freitag) as the backbone. The dlt
promoter (in front of dltA, D-alanyl-lipoteichoic acid, of the dlt
operon; Fortineau et al., 2000) was PCR amplified from L. mono-
cytogenes EGDe genome. Bacteria were grown in brain heart
infusion (BHI, Oxoid, UK) medium at 37◦C with shaking at
150 rpm.

Zebrafish Husbandry and Generation of
Germ-Free Embryos
The zebrafish line AB was provided by Professor JR Peng
(Zhejiang University, China). Adult fish were raised in the stan-
dard zebrafish unit (Aisheng, Beijing, China) at 28◦C under a
constant light cycle of 14-h on/10-h off. Germ-free embryos were
generated with the method previously described (Pham et al.,
2008). Natural breeding eggs were collected immediately after
hatching and transferred to a sterile dish with sterilized egg water
containing antibiotics (ampicillin and kanamycin). Unfertilized
embryos were removed timely over the next few days.
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Bacterial Immersion and Injection
Overnight bacterial cultures were washed with sterile egg water
and adjusted to OD600 nm at 0.6 (109 CFU/mL). Infection was
performed by oral immersion and by micro-injections via yolk
sac, brain ventricle or blood island, as previously described
(Jennifer and Hazel, 2009; Benard et al., 2012). For static immer-
sion, naturally hatched germ-free fish 5 dpf (when mouth and
gut are functional) were used. For yolk sac infection, an aver-
age of 11 CFU (range 8–14 CFU) of each listerial strain was
micro-injected directly at one-cell stage immediately after fertil-
ization. In models via injection (except for yolk sac infection),
26 hpf fish were dechorionated carefully with ophthalmic for-
ceps and anesthetized. At this stage, they developed into the
prim-stage forming closed cavity of brain ventricles and blood
island. One nanoliter of each bacterial suspension (mixed with
phenol red indicator and contained different concentration of
live bacteria depending on the infection routes and experimen-
tal purpose) was injected. Effect of different levels of inoculum
(EGDe from 11 to 1100 CFU per fish on average) on survival
was examined on yet-to-hatch zebrafish by infection via blood
island. Intraventricular or intravenous infection was also con-
ducted with fixed inoculum, about 11 (8–14) or 110 (80–140)
CFU. In all cases, injection with egg water was used as mock
infection.

RNA Isolation and Quantitative Reverse
Transcription PCR
Ten embryos of each group were pooled and collected by
centrifugation at 12,000 g for 10 min and stored at −80◦C
for later use. Embryos were homogenized in 500 μL lysis
buffer and total RNA was extracted according to the Uniq-
10 TRNzol total RNA Extraction and Purification Kit instruc-
tion (Tiangen, Beijing, China). DNaseI (Promega, USA) was
used to remove residual genomic DNA at 37◦C for 1 h before
cDNA synthesis. Reverse transcriptase (TOYOBO, Japan) was
used for cDNA synthesis. Quantitative reverse transcription
PCR was then performed in a 20 μl reaction mixture contain-
ing SYBR quantitative PCR mix (TOYOBO, Japan) to mea-
sure transcriptional levels of immune related genes (cyp1a,
irg1l, il1b, and mmp9) with specific primer pairs (Table 1)

TABLE 1 | Quantitative polymerase chain reaction primer sequences used
in this study.

Primers 5′-3′ Sequence

mmp9 Forward 5′-CATTAAAGATGCCCTGATGTATCCC

Reverse 5′-AGTGGTGGTCCGTGGTTGAG

il1b Forward 5′-GAACAGAATGAAGCACATCAAACC

Reverse 5′-ACGGCACTGAATCCACCAC

cyp1a Forward 5′-CCATTCAGACATATCGTAGTATCC

Reverse 5′-CGCACCAGTTCATCATCATC

Irg1 Forward 5′-GGTTAGAAGCAAGTCCTC

Reverse 5′-TGTGTTCATCCTCCTCAG

β-actin Forward 5′-CGAGCTGTCTTCCCATCCA

Reverse 5′-TCACCAACGTAGCTGTCTTTCTG

using an iCycler iQ5 real time PCR detection system (Bio-
Rad, USA). The housekeeping gene β-actin was used as internal
control for normalization of transcriptional levels of the target
genes.

Bacterial Enumeration
Eight embryos in each group were anesthetized at different time
points after intravenous injection. Each embryo was then rinsed
and homogenized in 1 mL sterile egg water. For fish infected
by immersion, trunks and intestines were separated by a sterile
syringe needle (gage size 26) under the stereo microscope. Five
trunks or intestines were pooled and homogenized in 100 μL
sterile egg water. Serial dilutions in PBS (10 mM, pH 7.4) of the
homogenates were plated on PALCAM agar (Listeria selective
medium; Luqiao, Beijing, China). The colonies were enumerated
after incubation at 37◦C for 24 h. The results were presented as
mean log10 CFU ± SE per five fish.

Cryosection
Embryos were fixed in 4% paraformaldehyde for 1 h at room
temperature, then washed three times in sterile egg water (each
for 5 min) before being embedded in 1.5% agarose/30% sucrose,
and mounted in a small chamber. The blocks were trimmed to
the shape of a pyramid with a surgical blade and equilibrated
in 30% sucrose for at least 1 day at 4◦C. After equilibration, the
pyramids were mounted in optimal cutting temperature (O.C.T.)
compound (SAKURA) in plastic molds which were then brought
onto dry ice for immediate freezing. Prior to cryosectioning, the
blocks were mounted on the supporter with O.C.T. compound
and equilibrated at −30◦C in a pre-chilled microtome (Leica,
HM505) for 2 h.

Infection with EGFP-Expressing Listeria and
Live Embryo Imaging
Zebrafish larvae were infected by injection with the EGDe-gfp
strain via brain ventricles or blood island and observed micro-
scopically at 6 hpi (brain infection) or at 6, 24, and 48 hpi
(intravenous). The GFP-expressing bacteria were monitored and
photographed in vivo by laser confocal microscope IX81-FV1000
(Olympus, Japan).

Confirmation to the Relevant Regulatory
Standards
All animal experiments in this study were approved by
the Laboratory Animal Management Committee of Zhejiang
University (Approval No. 2013038).

Results

Oral Infection Did Not Cause Death, but
Induced Transcription of Innate Immunity
Related Genes
In order to mimic the natural route of infection through the
digestive tract in mammalian species, we performed oral infec-
tion of germ-free fish by static immersion of different concentra-
tion of bacterial suspension of the EGDe strain. However, there
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was no death even with 1010 CFU/mL in egg water during the
10-days observation period. To test if the bacteria enter into the
gut, we imaged sections of zebrafish 24, 48, and 72 dpi by confo-
cal microscope and found that there were significant amount of
EGDe-gfp bacteria in the gut lumen 24 and 48 hpi but not in any
other tissues (Figure 1) while M7-gfp or ATCC-gfp can not be
observed. In 72 hpi fish sections, bacteria was no longer observed
in gut lumen.

To examine immune responses to such non-lethal infection,
the transcriptional levels of genes related to innate immunity
Cyp1a, Irg1l, Il1b, and Mmp9 were analyzed from fish at 24,
48, and 72 hpi. We found that these genes were significantly
induced at 48 hpi but returned to the normal level at 72 hpi
(Figure 2). Highest induction was observed in strain EGDe
infected fish. These results were consistent with the findings
by plate counting and confocal imaging that bacterial burden
in EGDe exposed fish was much higher than that in M7 or
L. innocua exposed fish both in the trunk and in intestine
(Figure 3).

Hatchability After Yolk Sac Injection was
Reduced and the Reduction Varied with
Strains
Infection with EGDe caused higher mortality (82%) with few
eggs survived and hatched than the strain M7 (20%, P < 0.005;
Figure 4) previously shown as low pathogenic in the mouse
model (Chen et al., 2010). There was virtually no difference
of hatchability between the L. innuoca and mock groups (88
vs. 90%), indicating the non-pathogenic nature of this listerial
species.

Survival Rate Differed Among Strains After
Brain Ventricle Injection
Brain ventricle inoculation led to progressive lethal infec-
tion with two L. monocytogenes strains (Figure 5). However,
EGDe showed more significant death than M7 at day 5
post-infection (dpi; 90 vs. 55%, P < 0.05). No further
death was seen with M7, while there was no survival
with EGDe at 10 dpi. Infection with L. innocua did not

FIGURE 1 | Bacterial distribution in representative frozen sections
of germ-free zebrafish infected at 5 dpf by 24 h of
immersion with GFP-expressing listerial strain. Images were
taken with the confocal microscope in samples taken at 24 and

48 h post infection (hpi; five fish/strain at each time point).
Lm-EGD and Lm-M7 stand for L. monocytogenes strains EGDe and
M7 respectively; and Ln, for L. innocua. Same abbreviations are
used for the following figures.
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FIGURE 2 | Transcriptional analysis by qPCR of innate immune related genes cyp1a, irg1l, il1b, and mmp9 of germ-free zebrafish infected at 5 dpf by
24 h of immersion with different listerial strains. Data are expressed as mean ± SD of four independent experiments (each with 10 embryos pooled for total
RNA extraction and qPCR). *P < 0.05, **P < 0.01 and ***P < 0.001.

cause significant death, as compared with the mock infec-
tion. Macrophages at the infected site (Figure 6A, white
box) were observed at 6hpi. Confocal microscopic exam-
ination showed that macrophages migrated to the brain
ventricle (Figure 6B) and contained engulfed/attached
bacteria (Figures 6C–F).

Survival Rate was Dose-Dependent and
Varied with Strains Upon Intravenous
Infection
Figure 7A shows that EGDe infection via the blood island
resulted in progressive death with 100% mortality from day 2
to 7, depending on the inoculum level from 11 to 1100 CFU
per fish. At similar inoculum levels (110 CFU per fish, ranges
from 80 to 140 CFU), EGDe was far more pathogenic than M7

at 4 dpi (survival rate: 30 vs. 85%, P < 0.001) and at 8 dpi (0
vs. 55%, P < 0.001). L. innocua caused marginal death. By bac-
terial enumeration, we found that that there was initial growth
of all inoculated strains from 6 to 24 hpi with EGDe having the
highest bacterial load (Figure 7C). While the M7 strain and non-
pathogenic L. innocua did not show further growth, the EGDe
strain continued its growth at 48 hpi when fish death began
(Figures 7A–C). To observe the bacterial load in vivo, we also
infected the fish with GFP-expressing EGDe. Figure 8 shows
that EGDe strain had substantial proliferation in the fish over
time. The bacteria could be randomly observed at the injection
site at 6 hpi (Figures 8D,G), and then distributed in trunk and
cardinal vessels at 24 hpi (Figures 8E,H). Substantial bacterial
proliferation was seen in the trunk (Figure 8F) or in cerebral and
retinal vessels (Figure 8I) at 48 hpi.
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FIGURE 3 | Bacterial burden in the body trunk and intestine of L.
monocytogenes EGDe infected germ-free fish was much higher
than that of the strain M7 or L. innocua infected ones. The fish
(50 per strain) were immersion-infected at 5 dpf and sacrificed at
24 hpi. The body trunk and intestine samples of each strain were

divided into 10 subgroups, each having five fish larvae to be
homogenized and resuspended in 100 μl of PBS, from which a volume
of 10-μl suspension was spotted in triplicate on the PALCAM agar
plates for bacterial enumeration. Data were expressed as log10 CFU per
five fish.

FIGURE 4 | Hatching rate of zebrafish eggs infected with different
listerial strains (10 CFU per fish, n = 50) via yolk sac injection.
***P < 0.001.

FIGURE 5 | Percent survival of 26 hpf germ-free zebrafish embryos
(n = 20) infected with different listerial strains (100 CFU per fish) via
brain ventricle injection. *P < 0.05.

Discussion

Stages of embryonic development of zebrafish have been well
described since 1990s (Kimmel et al., 1995). The small trans-
parent zebrafish embryos have been utilized as an alternative to

mammalian animal models for studies of microbial infection and
host responses (Cui et al., 2011; Meijer and Spaink, 2011; Novoa
and Figueras, 2012). Previous work mostly focused on infections
of conventional zebrafish embryos by individual routes of inoc-
ulation of their target microorganisms (Van Der Sar et al., 2003;
Levraud et al., 2009; Volkman et al., 2010). A growing number
of studies used the germ-free zebrafish to examine the immune
responses to infections (Rendueles et al., 2012; Toh et al., 2013).

To ensure the sterility of germ-free zebrafish embryos we
generated according to one of the methods described elsewhere
(Pham et al., 2008), we monitored the total bacterial count
in egg water and fish embryos on BHI agar up to 5 dpf. No
bacterial colonies were seen. To further ensure that zebrafish
embryos generated in our system were developing without the
activation of innate immunity due to possible microbial colo-
nization, we tested the expression of several Toll-like receptors
in 5 dpf zebrafish embryos. Homogenized samples of germ-
free and conventionally raised zebrafish were sacrificed for RNA
extraction and RT-PCR. Five tlr genes (tlr1, tlr2, tlr3, tlr4b,
and tlr5b) were selected from the list of 23 predicted zebrafish
tlr genes (Meijer et al., 2004). Their transcriptional levels were
barely detectable in zebrafish raised in the germ-free system,
but highly induced in conventionally raised zebrafish (data not
shown).

Initially we hypothesized that conventional zebrafish pro-
colonized with commensal bacteria might render the fish resis-
tant to immersion infection with pathogenic bacteria such as L.
monocytogenes. We attempted to infect germ-free zebrafish larva
to mimic the natural route of listeria infection through the diges-
tive gut using the strains of different pathogenicity already known
in other animal models (Schlech et al., 1993). Immersion inocu-
lation to germ-free zebrafish at 5 dpf, a time with their mouth
open and gut functional, did not cause any lethal infection even
with the inoculum of the pathogenic L. monocytegenes EGDe as
high as 1010 CFU/ml egg water. Lack of lethality was also seen
in immersion infection with L. monocytegenes (Levraud et al.,
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FIGURE 6 | Phagocytosis and bacterial proliferation in
macrophages in 6 hpi germ-free zebrafish after brain
ventricle injection with L. monocytogenes EGDe. (A):
Injection site at low magnification; (B): High magnification of

the injection site (red area) showing recruitment of macrophages
(white arrows) to the brain ventricle in response to bacterial
infection; (C–F): GFP-expressing bacteria were engulfed by
macrophages.

2009) or E. tarda (van Soest et al., 2011) using conventional
fish, while immersion infection of the conventional zebrafish with
E. ictaluri led to high mortality (Rendueles et al., 2012). These
results seem to indicate that the virulence determinants of the
pathogens might be the key players in breaking through the gut
barrier and cause systemic infection, and that deprivation of com-
mensal microbes and lack of pre-stimulated immune responses
do not predispose the fish to lethal infection.

To study if immersion could induce immune responses in
infected fish larvae, several immune related genes were exam-
ined. Cyp1a is involved in intestinal epithelial detoxication and
regulated by Toll-like receptor 2 in mice (Yamazaki et al.,
2002; Do et al., 2012). Irg1l is homologous to mammalian irg1
(immunoresponsive gene 1) which is expressed by macrophages
and can be induced by proinflammatory cytokines (Degrandi
et al., 2009). Il1b, a member of the interleukin 1 family of
cytokines, is an important mediator of the inflammatory response

(Barksby et al., 2007; Dinarello, 2009). Mmp9 is a member
of the matrix metalloproteinase (MMP) family that is impor-
tant for remodeling of the extracellular matrix (Yoong et al.,
2007). Oral immersion, though not lethal, induced expression
of selected genes that peaked at 48 hpi but returned to nor-
mal at 72 hpi. It is clear that the pathogenic L. monocytegenes
EGDe strain caused highest induction with nearly twice the
transcriptional level of the low-pathogenic strain M7 and L.
innocua. The latter two strains had similar induction levels in
general, but significantly higher than the un-inoculated control.
These findings suggest that stimulation of the innate immune
responses was closely related to the virulence of the strains
used.

Significant induction of Irg1l, mmp9, and il1b at 24 hpi
was also seen from 25-hpf conventional fish immersion-infected
with E. tarda (van Soest et al., 2011). However, we did not
found such significant induction at this time point. Robust
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FIGURE 7 | Infection of germ-free zebrafish embryos, via intravenous
injection, with graded inocula of L. monocytogenes EGDe (A, % survival
with n = 20), or with similar inocula (80–140 CFU on average) of L.

monocytogenes strains EGDe and M7 as well as L. innocua (B, %
survival with n = 20; and C, bacterial proliferation with n = 8; and same
color code for B and C). ***P < 0.005.

induction of IL-1β and TNF-α was observed as early as 2
hpi (TNF-α) or 4 hpi (IL-1β) in conventional zebrafish lar-
vae immersion-infected with E. tarda at 24 hpf (Pressley et al.,
2005). Besides different pathogenic species used, the micro-
bial status may contribute to distinct responses between germ-
free and conventional fish. Colonization of gnotobiotic 3 dpf
fish larvae with conventional zebrafish microbeta induces NF-
κB pathway activation in a dynamic temporal pattern with
peak at 6 dpf (72 hpi; Kanther et al., 2011), about 24-h later
than what we saw (48 hpi). Thus, it is tempting to spec-
ulate that priming of the fish with indigenous commensals
at early age could facilitate the innate immune responses to
invading pathogens. Bates et al. (2006) found that absence
of microbiota during developmental stages of zebrafish was
found to have arrested differentiation and altered function of
macrophages.

Similar to our finding that expression of the innate immune
genes returned to normal at 72 hpi, Pressley et al. (2005)
observed even quicker decline of IL-1β at 12 hpi (from

its peak at 4 hpi) in E. tarda infected fish by immersion.
Such phenomena may indicate clearance of invaded pathogens
by the macrophages. Herbomel et al have revealed that the
embryonic macrophages of zebrafish are different from the
adult, capable of proliferation and able to clear bacterial
infection efficiently (Herbomel et al., 1999). Macrophages of
zebrafish larvae could also control early M. marinum infection
(Clay et al., 2007).

With injection inoculation, we found that the EGDe strain
was far more pathogenic than the strain M7, as shown by signifi-
cantly lower hatchability (yolk sac infection) and higher mortality
(both intraventricular and intravenous infections). L. innocua
strain did not show apparent lethality in all these infection
routes. These results were consistent with murine models that
shows the virulent nature of the EGDe strain (Brosch et al.,
1993; Bécavin et al., 2014) and the low-pathogenicity of the
strain M7 (Chen et al., 2010). This is in general agreement
with major findings in a conventional zebrafish model showing
that L. monocytegenes strain EGDe was more pathogenic than
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FIGURE 8 | Bacterial distribution and proliferation in germ-free
zebrafish embryos infected with GFP-expressing L.
monocytogenes EGDe carrying pFL251-gfp at 26 hpf via
intravenous injection. (A–C): 6, 24, and 48 h post-infection

at low magnification; (D,G): Bacteria can be randomly observed
at the injection site; (E,F): Bacteria in trunk vessels; (H):
Bacteria in cardinal vessels; (I): Bacteria in cerebral and retinal
vessels.

L. innocua (Levraud et al., 2009). However, the germ-free fish lar-
vae were more susceptible to EGDe infection since the bacterial
number causing 100% mortality within 2 dpi in our study was
∼103 CFU, about 1 log less than that reported by Levraud et al.
(2009).

The brain ventricle is a closed cavity which contains
zero to two macrophages in zebrafish larva (Davis et al.,
2002). Migration of macrophages into this cavity has been

observed in several previous work examining the innate immune
responses to infection (Herbomel et al., 1999; Clay et al.,
2007). Besides the progressive lethality caused by brain ventri-
cle injection with EGDe, we also observed macrophage migra-
tion to the brain ventricle and bacterial proliferation within the
macrophages. This route of infection in the 26 hpf zebrafish
embryos, a developmental period not hatched and without pig-
ment formation, can serve as a good transparent model for
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visual observation of trafficking of phagocytic cells through the
blood–brain barrier if the transgenic fish line (Li et al., 2012) is
used.

In summary, our findings clearly indicate that immersion
infection of the germ-free fish larvae induces distinct innate
immune responses to Listeria strains of different pathogenicity.
Since there is clear distinction of responses to infection between
germ-free and conventional fish, possibly because of the con-
founding effects from the indigenous commensals in the conven-
tional fish, the germ-free fish are preferred to examine immune
responses to infection by pathogenic Listeria or other pathogens,
such as trafficking of phagocytes and induction of inflammatory
cytokines or genes related to innate immunity. Such work would
help elucidate the molecular determinants of the host immune
responses to infection and the virulence factors of the pathogen
in initiating successful infection, when combined with readily

available genetic manipulation technologies on both zebrafish
and pathogens of interests.
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