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Abstract

Introduction: It has been known for some time that neutrophils are present

in the tumour microenvironment, but only recently have their roles been

explored.

Sources of data: Comprehensive literature search of neutrophils and cancer

(PubMed, Google Scholar and CrossRef) for key articles (systematic

reviews, meta-analyses, primary research). References from these articles

cross-checked for additional relevant studies.

Areas of agreement: Neutrophils are a heterogeneous population with both

pro- and antitumour roles, and display plasticity. Several neutrophil subpo-

pulations have been identified, defined by a combination of features (dens-

ity, maturity, surface markers, morphology and anatomical site).

Areas of controversy: Limitations in translating murine tumour models to

human pathology and paucity of human data. Consensus in defining

human neutrophil subpopulations.

Growing points: Neutrophils as therapeutic targets and as possible play-

makers in the biological response to newer targeted cancer drugs.

Areas timely for developing research: Understanding the metabolic pro-

gramming of neutrophils in the tumour microenvironment.
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Introduction

The ability of malignant cells to establish them-
selves in a niche and subsequently metastasize is not
entirely dependent on their own intrinsic cellular
signalling pathways; complex interactions with a
myriad of immune cells in the tumour microenvir-
onment are a key.1 It has taken time for neutrophils
to be recognized as an active player (rather than
spectator) in the immune response to malignancy.2

This review will highlight the progress made to date
in understanding their role in cancer, emphasizing
areas where more work is needed.

The association between neutrophils

and cancer prognosis

Neutrophil-to-lymphocyte ratio

Peripheral blood neutrophil counts are increased in
patients with cancer. Tumours produce granulocyte
colony-stimulating factor (G-CSF) which skews the
neutrophil retention/release balance in bone mar-
row, leading to this increase in blood neutrophils.3

G-CSF downregulates chemokine receptor type 4
(CXCR4) expression in human myeloid lineage cells,
reducing their response to the bone marrow reten-
tion signal stromal cell-derived factor 1 (SDF-1).4

Many research groups have investigated whether
the number of neutrophils present in peripheral
blood correlates with patient outcome. Most have
done this using neutrophil-to-lymphocyte ratio
(NLR). A meta-analysis of 100 such studies by
Templeton et al. comprising over 40 000 patients,
showed NLR > 4 to be associated with worse over-
all survival, cancer-specific survival, progression-
free survival and disease-free survival.5 This was
seen in all types and stage of cancer.

Intra-tumoural neutrophils

The association between peripheral blood neutro-
phils and survival does not however give any infor-
mation about what might be happening at the
tumour site itself i.e. whether tumour-associated
neutrophils (TANs) are associated with outcome.

A meta-analysis of nearly 4000 patients has shown
high levels of intra-tumoural neutrophils to be asso-
ciated with unfavourable survival.6 In addition,
Gentles et al. used a computational approach to
analyse bulk tumour transcriptomes in order to
infer the frequency of different immune cell popula-
tions (including neutrophils) in over 3000 solid
tumours (14 cancer types). They found intra-
tumoural neutrophils to be the most adverse prog-
nostic cell population.7

Neutropaenia

In direct contrast, neutropaenia in patients undergo-
ing chemotherapy has been shown (by meta-analysis)
to be beneficial to survival.8 This may of course just
be a reflection of adequate toxicity of the drug being
achieved to kill tumour cells, however the question
does arise as to whether the direct effect on neutro-
phils themselves is beneficial. This is clinically relevant,
as the use G-CSF in patients who are profoundly neu-
tropaenic post-chemotherapy (used with the aim to
prevent sepsis) could in fact be detrimental to longer
term clinical outcome. Indeed, it has been shown that
G-CSF may promote metastatic disease via neutro-
phils forming a pre-metastatic niche.9

What about neutrophil function, site and

regulation?

Measuring the number of neutrophils in the blood
and/or in the tumour of cancer patients and associ-
ating this with survival is of course quite a crude
measure and does not give any indication regarding
mechanism. It must also be remembered that blood
neutrophil levels increase under other conditions,
such as infection. Within the same patient, neutro-
phils may display varying roles at different sites.
Furthermore, appropriate inflammatory responses
are dependent upon a functioning balance of neu-
trophil production, release from bone marrow,
recruitment to the site of injury and clearance.
Dysregulation of this homeostatic process, for
example, by tumour-derived G-CSF, could perpetu-
ate malignancy.
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Neutrophil polarization at the tumour

site

Transforming growth factor beta and

interferon beta have opposite effects on

TAN polarization in mice

Fridlender was the first to suggest that TAN may be
polarized to N1 (antitumour) or N2 (pro-tumour)
phenotypes, in a similar manner to macrophages.
Using tumour-bearing mice, he demonstrated that
transforming growth factor beta (TGF-β) blockade
favoured the accumulation of N1 TAN that were
morphologically and functionally different to N2
TAN. N1 TAN had hypersegmented nuclei in con-
trast to the nuclei of N2 TAN that were circular.
N1 TANs were cytotoxic to tumour cells via an
oxygen radical-dependent mechanism and had
increased tumour necrosis factor alpha (TNF-α) and
intercellular adhesion molecule 1 (ICAM-1) expres-
sion, whereas N2 TAN expressed high levels of
arginase which is known to suppress T cell immun-
ity. Of key importance, TGF-β blockade promoted
a T cell antitumour response.10 Using IFN-β1−/−

tumour-bearing mice, the Jablonska group have
shown interferon beta (IFN-β) to have the opposite
effect to TGF-β on TAN polarization, i.e. IFN-β
promotes antitumour N1 TAN.11

Limitations of N1 vs N2 model

It should be noted that the work described above in
murine models is yet to be replicated in human
TAN. Furthermore, in a similar manner to M1 vs
M2 macrophage classification in malignancy, it may
be that a binary N1/N2 classification of neutrophils
is an oversimplification.12 It seems increasingly likely
that N1 and N2 represent laboratory extremes of a
biological continuum, with plasticity dependent upon
the local environment. Therefore rather than focus-
ing on N1/N2, we should possibly instead be defin-
ing neutrophils by the distinct functional phenotypes/
subpopulations that aid or abate the process of
tumourigenesis (e.g. proliferation, angiogenesis, inva-
sion, immunosuppression and metastatic seeding) in
the different microenvironments (i.e. primary tumour,
circulation, pre-metastatic and metastatic).

Neutrophil roles in aiding or abating

tumourigenesis

Tumour proliferation

Neutrophil elastase (NE) has been shown to promote
tumour proliferation. Houghton et al. showed that
NE is taken up by tumour cells, where it degrades
insulin receptor substrate-1 (IRS-1). Lower levels of
IRS-1 were associated with an increase in the inter-
action between phosphatidylinositol 3-kinase (PI3K)
and the potent mitogen platelet-derived growth fac-
tor receptor (PDGFR), which directed the PI3K axis
to favour tumour proliferation.13

In contrast, neutrophils can also induce lysis of
tumour cells via hypochlorus acid produced from
reactive oxygen species (ROS).14 Of note, the MET
proto-oncogene is expressed in neutrophils and is
required for neutrophil chemoattraction and cyto-
toxicity towards tumour cells in response to its lig-
and hepatocyte growth factor.15 Neutrophils can kill
tumour cells via TNF-α expression.11 Furthermore,
neutrophils stimulated by interferons release tumour
necrosis factor-related apoptosis-inducing ligand
(TRAIL) which induces tumour cell apoptosis.16

Angiogenesis and invasion

The angiogenic and invasive mechanisms of matrix
metallopeptidase 9 (MMP-9), vascular endothelial
growth factor (VEGF) and Bv8 (prokineticin) have
been previously described.17,18 It is thought that
neutrophils may drive angiogenesis in malignancy
by providing a significant source of MMP-9 which
acts to release VEGF from the extracellular matrix
(ECM).19,20 In addition to roles in angiogenesis,
MMP-9 is also postulated to aid the direct invasion
of tumour cells via degradation of ECM/basement
membrane.

Of note, it has been shown that neutrophil extracel-
lular traps (NETs), formed during neutrophil death,
and composing of chromatin, NE and myeloperoxidase,
have a role in angiogenesis, by stimulating vascular
endothelial cells to release proangiogenic cytokines.21

Countering the above mechanisms, neutrophils
can also have an opposing function with regard to
angiogenesis; it has been reported that neutrophils
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can be conditioned ex vivo to release the antiangio-
genic isoform of VEGF (VEGF-A165b),

22 but it is yet
to be proven if this occurs in vivo.

Immunomodulation

As previously mentioned, neutrophils are known to
express arginase. Arginase degrades arginine, an
essential amino acid important in many cellular pro-
cesses, e.g. the proliferation of T cells. High arginase
levels can be found in the tumour microenvironment
and result in inhibition of T cell receptor expression
and antigen-specific responses, aiding tumour eva-
sion.23 Neutrophils have been widely reported to
suppress T cell proliferation in ex vivo studies, with
Coffelt et al. demonstrating this is inducible nitric
oxide synthase (iNOS)-dependent,24 but it must be
noted that recently concerns have arisen about the
accuracy of these assays when T cell activating
microbeads have been used.25 Neutrophils have also
been shown to induce the apoptosis of CD8 T cells in
a TNF-α- and nitric oxide (NO)-dependent manner.26

In addition, neutrophils can suppress T cells via pro-
grammed death ligand 1 (PD-L1).27 Moreover, neutro-
phil depletion studies suggest that they may act to
reduce the effectiveness of PD1 immunotherapy.28

Finally, neutrophils recruit regulatory T cells into
tumours via secretion of chemokine ligand 17
(CCL17), which may inhibit antitumour immunity.29

Whilst there appears to be an ever-expanding list
of ways in which neutrophils immunosuppress in
the tumour microenvironment, nonetheless neutro-
phils can also be immunostimulatory and antitu-
mour. Neutrophils can have a role in antigen
presentation,30 can stimulate T cell proliferation31

and suppress pro-tumoural IL-17 γδ T cells via
ROS.32

Extravasation and metastatic seeding

NETs have been shown to sequester circulating
tumour cells at distant sites and promote metastasis.33

Extravasation into tissues is aided by interactions
between β2 integrin on neutrophils and ICAM-1 on
tumour cells, promoting anchoring to the vascular
endothelium.34 Tumour-derived G-CSF can initiate
a pre-metastatic environment in distant organs,

mobilizing neutrophils from the bone marrow to
swarm at the metastatic site before tumour cells
arrive.35

Conversely, Granot et al. showed that tumour-
entrained neutrophils (i.e. stimulated by the primary
tumour) can inhibit metastatic seeding via hydrogen
peroxide (H2O2) killing of disseminated tumour
cells.36 It has recently been shown that H2O2 from
neutrophils kills tumour cells by triggering a lethal
influx of calcium via transient receptor potential
cation channel subfamily M member 2 (TRPM2),
an H2O2-dependent calcium-permeable channel
expressed on cancer cells.37

Defining neutrophil subpopulations by

phenotypic features: density, maturity,

surface markers, morphology and

anatomical site

It is clear from earlier sections in this review that
neutrophils display heterogeneity and plasticity of
function in malignancy. But what other features
define these neutrophils that are pro- or antitumour?
Eruslanov and Fridlender groups have carried out
seminal work in the last few years where functional
neutrophil subpopulations have been distinguished
further by density, maturity, surface markers,
morphology and anatomical site (Fig. 1).30,31,38–40

Peripheral blood neutrophils

Ex vivo, neutrophils are commonly isolated from
the blood by discontinuous density gradient. This
results in the formation of a red cell pellet, a
normal-density (sometimes referred to as ‘high
density’ in the literature) layer of cells and a low-
density layer of cells. Neutrophils are usually the
predominant cell type in the normal-density layer
(normal-density neutrophils, NDNs) and peripheral
blood mononuclear cells (PBMCs) are found in
the low-density layer.41 In malignancy, there is an
expanded population of neutrophils in the low-density
layer (low-density neutrophils, LDNs), which can be
further defined by maturity/morphology. LDNs are
large and are either immature with a banded/ring
nuclei, or mature with segmented nuclei. All LDNs are
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pro-tumour, displaying immunosuppressive properties.
NDNs are small and mature with segmented nuclei
and are antitumour. Of note, neutrophils from
patients with malignancy resist apoptosis compared
with healthy donor neutrophils. Finally, murine
models showed LDN to originate from the bone
morrow, but of interest TGF-β could also mediate
the transition of HDN to LDN (displaying
plasticity).39,40

Tumour-associated neutrophil

The features of TAN in murine models have already
been described. In humans, TANs in early-stage
cancer are mature with segmented nuclei and are
antitumour, activating T cell responses. Study of
TAN from more advanced malignancies is proving
more difficult, due to lack of availability of tissue to

study (patients with advanced cancer do not typic-
ally undergo surgical resection).30,31,38

Neutrophil surface marker immunotyping

(human)

To date, it has proven difficult to distinguish between
the neutrophil subpopulations described above, by
surface marker immunotyping. Furthermore, there
have been difficulties when attempting to compare
neutrophil subpopulations found in murine models
with those found in humans.42 However, most
groups use CD11b+CD15+CD66b+CD14− to iden-
tify neutrophils in humans. In addition, CD10 is
proving to be a key marker for the maturation and
suppressive potential of neutrophils. Indeed, going
forward CD10 may reduce the need to use density
gradients to define neutrophil populations.43

Fig. 1 Neutrophil subpopulations defined by density, maturity, surface markers, morphology and anatomical

site. At present, it is unclear whether there is any crossover between LDN, N2 TAN and G-MDSC populations.

LDN, low-density neutrophils; NDN, normal (high)-density neutrophils; TAN, tumour-associated neutrophils;

G-MDSCs, granulocytic myeloid-derived suppressor cells.
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Myeloid-derived suppressor cells

The name myeloid-derived suppressor cells (MDSCs)
was originally coined over 10 years ago to describe a
group of myeloid cells with immunoregulatory activ-
ity, i.e. suppressed antitumour T cell functions (via
arginase and ROS). Broadly speaking, they compose
two phenotypical/morphological groups of cells:
those similar to neutrophils (granulocytic/poly-
morphonuclear MDSCs or G-MDSCs/PMN-MDSCs)
and those similar to monocytes (M-MDSCs). It is
thought that during chronic inflammatory processes,
such as malignancy, there is a persistent signal to
recruit neutrophils and monocytes from the bone
marrow (e.g. GM-CSF, G-CSF, M-CSF). As time goes
on, the rate of demand on the bone marrow is such
that these recruited cells are increasingly immature
and have aberrant function. These cells are MDSC,
and as cancers progress they form a greater propor-
tion of circulating cells. In humans as G-MDSCs and
neutrophils can both be defined by the surface mar-
kers CD11b+CD14-CD15+(or CD66b+)CD33+, it has
been difficult to distinguish between them. However,
it is known that G-MDSCs are found in the low-
density fraction of peripheral blood. Furthermore, G-
MDSCs express lectin-type oxidized LDL receptor 1
(LOX-1) and so this marker may be used to distin-
guish them from neutrophils, without the need for a
density gradient.44,45

There is debate as to how closely neutrophils and
G-MDSCs are related.46 It seems increasingly likely
that in humans, immature peripheral blood LDN
and G-MDSCs are one and the same. However,
mature peripheral blood LDN appear to be different
to G-MDSCs. Furthermore, within tumours them-
selves the relationship between G-MDSCs and TAN
is entirely unknown.47

Discussion

Areas of agreement

Neutrophils are no longer seen as a simple first
responder cell; they have complex multifaceted roles
in all stages of malignancy with both pro- and antitu-
mour roles. In cancer, neutrophils are a heterogeneous
population and display plasticity. Several neutrophil

subpopulations have been identified and are currently
defined by a combination of features; density, matur-
ity, surface markers, morphology and anatomical site.

Summary of what is known (Fig. 2)

Our summary figure (Fig. 2) aims to define neutro-
phils by the distinct functional subpopulations that
aid or abate the process of tumourigenesis, reflecting
a biological continuum/spectrum rather than focus-
ing on N1/N2 laboratory extremes. Akin to the
‘macrophage wheel’ used by Qian and Pollard.12

Areas of controversy

A recent review article by the Eruslanov group
highlights the ongoing areas of controversy regard-
ing the role of neutrophils in cancer.42 These mainly
relate to (i) the limitations of translating murine
tumour models to human pathology and (ii) the
lack/quality of human data.

The most common form of murine model is
transplantable tumours, i.e. immortal cell lines that
have undergone years of selective pressure and are
chosen based on their ability to grow quickly when
injected into the mouse. These tumours by defin-
ition have a very different natural history to the
gradual evolution of a natural tumour and therefore
really only represent the later stages of malignancy.
There are no shared neutrophil cellular markers
between mouse and man. We do not know if imma-
ture LDN, G-MDSCs and N2 are the same cell
population or not. N1/N2 polarization has not
been shown in human TAN, and it seems more
likely that in fact there will be a continuum of
behaviour rather than these two extremes. Are N2
neutrophils just immature cells recruited as a conse-
quence of cancer and not a contributing cause?

There is a lack of human tissue available from
the later stages of cancer, as patients do not rou-
tinely have surgery. Furthermore, whilst peripheral
blood may be more easily available from these
patients (than solid tumour samples), the behaviour
of blood neutrophils may be completely different to
that of TANs. When tumour samples are obtained,
it must be noted that neutrophil function can be
changed by the process of disaggregation used to
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extract the neutrophils. Finally, in human studies, a
lot has been attributed to ex vivo T cell responses
which may not reflect true physiology. For example,
as previously described there are concerns about
artefact that may be created by the methodologies
used for ex vivo T cell proliferation studies.

Overall, there needs to be an unpicking of the
various neutrophil subpopulations, and a better
understanding of their evolving roles as cancers
progress, at both primary and metastatic sites.

Growing points: neutrophils as therapeutic

targets and as possible playmakers in the

biological response to both established and

newer targeted cancer therapy

In terms of established therapies, neutrophils have
been shown to be important players in the

beneficial immune response to antibody-based
cancer therapy,48 photodynamic cancer therapy49

and Bacillus Calmette–Guerin immunotherapy.50

However, a growing area of research is consider-
ing neutrophils as a therapeutic target themselves.
Whilst the short-lived nature of neutrophils and
their essential role in host defence against infec-
tion will need to be considered, nevertheless, tar-
geted therapies relating to neutrophil recruitment,
function and polarization (targeting the pathways
mentioned in this review) may be an attractive
add-on therapy to conventional treatments (i.e.
chemotherapy/radiotherapy) and newer immuno-
therapies. For example, in terms of neutrophil
recruitment, there is an interest in targeting the
CXCR2 pathway.51 Relating to neutrophil polar-
ization, there have been trials of TGF-β inhibitors
as a cancer therapy.52 With regard to direct

Fig. 2 Mechanisms through which neutrophil subpopulations aid or abate tumourigenesis. The proportion of pro- and antitumour

neutrophils at any one time is influx, with a degree of plasticity and a spectrum of activity. However, for cancers to progress this

balance must begin to favour immature pro-tumour neutrophils.
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neutrophil–tumour interaction, there has been
interest in the use of NE inhibitors.53

Finally, an expanding area of interest is under-
standing how neutrophils respond to newer targeted
cancer therapies. Inhibitors of the receptor tyrosine
kinase c-MET have been shown to inhibit neutrophil
recruitment to tumours, with some concerned this
may be detrimental,15 but others hopeful of bene-
fit.54 As previously mentioned, neutrophils have
been shown to express PD-L1, and therefore immune
checkpoint inhibitors may have a role in reducing
neutrophil suppression of T cell responses.

Areas timely for developing research:

metabolic programming of neutrophils in

the tumour microenvironment

It has been shown that during tumour progression,
TAN distribution is more within the tumour, and
TANs develop pro-tumourigenic properties.55 It is
known that the tumour microenvironment has altered
oxygen and metabolite availability. Oxygen-sensing
pathways and metabolic flux regulate neutrophil
function and survival responses.56,57 There is litera-
ture regarding metabolic reprogramming of tumour-
associated macrophages.58 Of note, MDSCs, which
have infiltrated tumours, increase fatty acid uptake,
and inhibition of fatty acid oxidation blocks their
immunosuppressive function.44 Whilst there is exten-
sive literature regarding the role of MDSCs in hyp-
oxia, whether metabolite availability or hypoxia in the
tumour microenvironment plays a role in the func-
tional polarization of neutrophils is yet to be explored.
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