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Abstract

CD1 molecules are glycoproteins that present lipids and glycolipids for recognition by T cells. CD1-dependent immune
activation has been implicated in a wide range of immune responses, however, our understanding of the role of this
pathway in human disease remains limited because of species differences between humans and other mammals: whereas
humans express five different CD1 gene products (CD1a, CD1b, CD1c, CD1d, and CD1e), muroid rodents express only one
CD1 isoform (CD1d). Here we report that immune deficient mice engrafted with human fetal thymus, liver, and CD34+

hematopoietic stem cells develop a functional human CD1 compartment. CD1a, b, c, and d isoforms were highly expressed
by human thymocytes, and CD1a+ cells with a dendritic morphology were present in the thymic medulla. CD1+ cells were
also detected in spleen, liver, and lungs. APCs from spleen and liver were capable of presenting bacterial glycolipids to
human CD1-restricted T cells. ELISpot analyses of splenocytes demonstrated the presence of CD1-reactive IFN-c producing
cells. CD1d tetramer staining directly identified human iNKT cells in spleen and liver samples from engrafted mice, and
injection of the glycolipid antigen a-GalCer resulted in rapid elevation of human IFN-c and IL-4 levels in the blood indicating
that the human iNKT cells are biologically active in vivo. Together, these results demonstrate that the human CD1 system is
present and functionally competent in this humanized mouse model. Thus, this system provides a new opportunity to study
the role of CD1-related immune activation in infections to human-specific pathogens.
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Introduction

CD1 molecules are a family of b2-microglobulin-associated

transmembrane glycoproteins that have a structure resembling

class I molecules of the major histocompatibility complex (MHC)

[1]. There are five different CD1 isoforms, called CD1a, b, c, d

and e, each of which is encoded by a distinct gene [2]. Of these,

CD1a-d have been shown to present antigens at the cell surface for

recognition by T cells, while CD1e is expressed intracellularly and

contributes to antigen loading and processing [3]. In contrast to

MHC-encoded antigen presenting molecules, CD1 molecules are

specialized for binding lipid-containing antigens. Antigen binding

to CD1 molecules is thought to occur mainly in intracellular

compartments, and since CD1a and CD1b clearly follow different

intracellular trafficking routes than CD1c and CD1d, it is thought

that different CD1 isoforms may access distinct types of antigens.

Additionally, CD1 isoforms are differentially expressed on antigen

presenting cell (APC) types, with CD1d expressed broadly by

myeloid APCs and B cells, and CD1a, CD1b, and CD1c showing

more restricted patterns of expression [1]. As a result of these

differences, different CD1 isoforms may carry out divergent

antigen presenting functions.

T cells that are restricted by CD1a, CD1b, or CD1c have been

implicated in human immune responses to mycobacterial

infections (M. tuberculosis and M. leprae) [4,5,6,7,8], and have been

shown to recognize specific mycobacterial antigens including the

lipid mycolic acid [9], glycolipids such as lipoarabinomannan,

glucose monomycolate, and mannosyl-b-1-phosphomycoketides
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[10,11,12,13], as well as lipopeptides such as the didehydrox-

ymycobactins [14]. CD1-restricted T cells that recognized

phosphatidylethanolamine derived from pollen appeared to be

present in increased frequencies in allergic individuals [15],

suggesting that the CD1 system may also contribute to allergic

responses. Additionally, the CD1 system may play a role in human

autoimmune diseases, since CD1b-restricted T cells recognizing

self glycolipids such as gangliosides and sulfatide were isolated

from multiple sclerosis patients [16], and autoreactive CD1c-

restricted T cells from lupus patients were found to promote IgG

secretion by B cells [17]. Thus, these data suggest that CD1a-,

CD1b-, and CD1c-restricted T cells are involved in a variety of

human diseases. However, progress in understanding the role of

these T cells in immune responses in vivo has been limited by the

lack of a good animal model.

CD1 genes have been detected in all mammalian species

analyzed to date, and orthologues have even been identified in

birds [18,19]. However, not all of the CD1 isoforms are expressed

in all species, and in some cases CD1 genes have been duplicated,

resulting in several variants of the same isoform. Thus, while

humans possess one of each of the five CD1 isoforms, this is not

the rule. For example, mice and rats have lost the CD1A, B, C,

and E genes and have duplicated the CD1D gene, while guinea

pigs express multiple variants of CD1B and C, and rabbits and

sheep have lost CD1C [18]. Because of these species differences,

small animal models that mimic the pattern of CD1 expression

found in humans have been lacking, and most in vivo analyses have

focused on CD1d, which is the isoform that is present in mice.

The CD1d isoform is responsible for selecting a specialized T

lymphocyte population called invariant Natural Killer T (iNKT)

cells [1]. Murine and human iNKT cells utilize homologous

TCRs, show a striking ability to recognize the same microbial

glycolipid antigens, and have similar functional properties,

including the ability to rapidly produce both Th1 and Th2

cytokines. Analyses of the in vivo functions of NKT cells using

murine model systems have demonstrated that this subset has a

potent ability to modulate immune function, and can markedly

impact the outcome of anti-microbial, anti-viral, and anti-tumor

responses, as well as ameliorating or preventing the progression of

autoimmune diseases. These observations have generated consid-

erable enthusiasm for the possibility that glycolipid antigens that

stimulate iNKT cells could be used as therapeutic agents to treat

human diseases [20,21].

However, there are also important differences between humans

and mice in regards to the iNKT cell compartment. One of the

major differences is that human iNKT cells appear to be present at

approximately 100-fold lower frequencies than murine iNKT cells

[22,23], and therefore it is not clear that human iNKT cells will

have as potent immunological impacts as those observed in

laboratory mice. Another important factor is that murine and

human CD1d molecules show differences in intracellular traffick-

ing, which may result in antigen presentation differences [3]. This

may be reflected in the differences between murine and human

iNKT cells in their requirements for activation by endogenous

antigens. Whereas the activation of murine iNKT cells by

endogenous ligands requires CD1d molecules to traffic through

the endosomal system [24,25], we have found that human iNKT

cells appear to be equivalently activated by wild-type CD1d

molecules that undergo endosomal trafficking and mutant CD1d

molecules that do not [26]. Moreover, current data suggest that

humans lack a glycolipid called isoglobotrihexosylceramide (iGb3)

that is thought to endogenously activate murine NKT cells

[27,28]. On the other hand, many human NKT cells recognize an

endogenous mammalian lipid called lyso-phosphatidylcholine

(LPC) [29], but it is not yet clear whether murine iNKT cells

recognize this antigen. Thus, although mice clearly provide an

extremely valuable in vivo model of iNKT cell function, the

successful development of glycolipids as therapeutic agents that

activate iNKT cells to modulate human immune responses in

specific ways may require a system that permits in vivo analysis of

the human CD1d pathway.

Results

Human hematopoietic cell engraftment
To generate ‘humanized’ mice we followed an approach that

has been described previously [30], in which 6–8 week old NOD/

Prkdcscid/cc
null (NSG) mice are sub-lethally irradiated, then

fragments of autologous human fetal liver and fetal thymus are

implanted next to each other under the kidney capsule, and

concurrently, CD34+ hematopoietic stem cells purified from the

fetal liver are injected intravenously (Figure 1A). The human

CD34+ cells colonize the murine bone marrow and undergo

hematopoiesis, giving rise to a variety of human leukocyte

populations that occupy peripheral lymphoid sites such as the

spleen, liver, and lymph nodes. The fragments of human fetal

thymic tissue, which are about 1 mm3 when they are implanted,

expand in size and develop into a vascularized organoid that

shows a lobular organization typical of thymus (Figure 1B). In

contrast, the human fetal liver fragment becomes undetectable by

8–10 weeks post-engraftment.

We have found that the frequency of human hematopoietic cells

(i.e. human CD45+) in the blood of the mice increases steadily for

about the first 10–12 weeks after engraftment, and thereafter the

levels remain comparatively constant [31]. Although there is

mouse-to-mouse variation in the degree of human chimerism,

blood samples from our humanized mice typically contained 20–

70% (mean 53%) human CD45+ cells by 12–14 weeks post-

engraftment (Figure 1C). Analysis of human cells isolated from

spleen or livers of mice 12 or more weeks post-engraftment

consistently demonstrated the presence of T cells (CD3+), B cells

(CD19+), macrophages or monocytic cells (CD14+), and CD11c+

cells that were negative for CD14 (Figure 1D). Thus, we were able

to obtain successful reconstitution of multiple lineages of human

hematopoietic cells within NSG mice.

Analysis of the human thymic organoid
Murine CD1d-restricted NKT cells have been found to be

positively selected by CD1d molecules that are expressed on other

thymocytes (i.e. developing T cells), and to be negatively selected

by thymic dendritic cells [32,33]. Therefore, we examined the

thymic organoids of engrafted (‘‘hu-NSG’’) mice for evidence that

the development of human CD1-restricted T cells might be

supported. Histological analysis of thymic organoid sections

stained with hematoxylin and eosin showed densely packed

cortical zones surrounding somewhat less densely packed medul-

lary areas (Figure 1B). Towards the center of the medullary areas,

eosinophilic concentric circle-like structures were visible that

closely resemble the Hassall’s corpuscles found in human thymus

(Figure 1B). Flow cytometric analysis of cells isolated from the

human thymic organoid revealed clear expression of human

CD1a, CD1b, CD1c, and CD1d on most CD3+ cells (Figure 2A).

The CD1+ T cells were mainly double positive for the co-receptors

CD4 and CD8 (Figure 2A), as is characteristic of cortical

thymocytes. Immunohistochemical analysis of the thymic organoid

for human CD1a expression revealed positive staining on small

round lymphocytic cells packing the outer cortical areas, while

most of the small round lymphocytic cells in the inner medullary
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areas appeared negative for CD1a (Figure 2B). However, there

were some larger cells present in the medullary areas that showed

intense staining for CD1a, and these tended to be localized near

the edges of the Hassall’s corpuscles (Figure 2B). These results

suggest that that there are two distinct types of CD1+ cells within

the engrafted human thymic organoid: developing thymocytes

localizing mainly to the cortical areas, and larger cells in the

medullary areas that may be dendritic cells (DCs). Based on this

analysis, we would expect that human CD1-restricted T cells can

be both positively and negatively selected in the engrafted thymic

organoid.

Peripheral expression of human CD1 molecules
We next evaluated the expression of human CD1 molecules in

peripheral tissues of engrafted mice. Human CD1a, CD1b, and

CD1c molecules are most prominently expressed on myeloid DC

lineages, although a fraction of B lymphocytes are typically

positive for CD1c. Spleen cells from hu-NSG mice were analyzed

by flow cytometry for co-expression of CD1 molecules and lineage

markers characteristic of myeloid antigen presenting cells and B

cells. Human cells within the myeloid gate that were positive for

CD11c (a marker of DCs) showed only very little positive staining

for CD1a or CD1b, but a substantial fraction were typically

positive for CD1c (Figure 3A). CD1c expression was observed on

both CD14+ (i.e. monocytes and macrophages) and CD142

myeloid cells (e.g. DCs). Additionally, a substantial fraction of the

CD19+ lymphocytes typically stained positively for CD1c

(Figure 3A). CD1c expression on B cells appeared limited to those

that co-expressed CD20, a phenotype that is characteristic of

mature B cells.

Human CD1d molecules are constitutively expressed at low cell

surface levels by monocytes, macrophages, myeloid DCs, and B

lymphocytes [34]. Consistent with this, human CD14+ cells in the

engrafted mice appeared uniformly positive for CD1d, and a small

fraction of the CD142 myeloid cells (possibly myeloid DCs) also

expressed high levels of CD1d (Figure 3B). Moreover, B cells in the

engrafted mice appeared nearly uniformly positive for CD1d, with

very low cell surface expression levels (Figure 3B). These patterns

of CD1a, b, c, and d expression closely resemble what we have

observed in similar flow cytometric analyses of mononuclear cells

freshly isolated from human blood (data not shown).

To further assess the presence of CD1+ APCs in peripheral

tissues of engrafted mice, we performed immunohistochemical

staining for CD1a on sections of spleen, liver, lung, and skin. Some

of the hu-NSG spleen sections analyzed showed isolated cells that

stained positively for CD1a, and similarly rare positive staining for

CD1a was observed in adult human spleen sections (Figure 3C).

Multiple cells staining positively for CD1a could be observed in

liver sections from the hu-NSG mice and in sections of adult

human liver, suggesting that CD1a+ APCs might be more

abundant in this tissue (Figure 3C). We also observed CD1a+

cells in lung sections analyzed from the hu-NSG mice, although

they appeared less abundant than those in adult human lung

sections (Figure 3C). We were not able to identify CD1a+ cells in

skin sections from the hu-NSG mice (data not shown), although

CD1a+ Langerhans cells are typically prominently expressed in

human skin. Together, these results indicate that CD1+ APCs are

present at major sites of immunological activity of engrafted mice,

including spleen, liver, and lung, although they may be largely

lacking in the skin.

Presentation of glycolipid antigens
To investigate CD1-mediated antigen presentation by APCs

from hu-NSG mice, we isolated cells from spleen or liver and

tested their ability to stimulate antigen-dependent cytokine

secretion by previously established and characterized human

CD1-restricted T cell lines. To test for antigen presentation by

CD1a, we used transfected JRT.3 cells expressing a TCR (CD8-2)

that has been found to specifically recognize didehydroxymyco-

bactin (DDM) presented by CD1a [14]. We observed marked

human IFN-c production when CD8-2 transfected JRT.3 cells

were incubated with spleen cells from an engrafted mouse,

however, the cytokine response was not increased by addition of

the DDM antigen (Figure 4A, left panel). In contrast, liver

mononuclear cells stimulated only modest IFN-c production from

the transfected JRT.3 cells in the absence of DDM, and addition

of the antigen resulted in enhanced cytokine secretion (Figure 4A,

right panel). Thus, APCs from the liver of hu-NSG mice appeared

to be able to perform CD1a-mediated antigen presenting

functions, but it was not clear whether splenic APCs shared this

ability.

A CD1b-restricted human T cell line called LDN5, which

specifically recognizes the mycobacterial lipid glucose monomy-

colate (GMM) [11], was used to evaluate CD1b-mediated antigen

presenting function. Co-incubation of LDN5 cells with splenocytes

or liver cells from hu-NSG mice resulted in some IFN-c
production in the absence of added antigen, but there were clear

dose-dependent increases in IFN-c secretion in response to GMM

(Figure 4B). Notably, the form of GMM used for these studies

contains a long (80 carbon) acyl chain, and has been shown to

require internalization into endocytic compartments for loading

into CD1b molecules before it can be presented at the cell surface

[35]. Thus, these results suggest both spleen and liver contained

cells capable of internalizing and presenting a glycolipid antigen

via CD1b.

CD1c-mediated antigen presentation was tested using the CD8-

1 human T cell line, which recognizes a microbial lipid called

mannosylphosphomycoketide (MPM) and also responds to

structurally related mammalian lipids called mannosylphosphodo-

lichols [7]. Similar to the results for CD1a-mediated antigen

presentation, we found that co-incubation of the CD8-1 cells with

hu-NSG splenocytes resulted in marked IFN-c secretion, and there

was little evidence of enhanced responses in the presence of added

MPM (Figure 4C, left panel). However, when CD8-1 cells were

incubated with liver mononuclear cells from hu-NSG mice there

was only modest cytokine production in the absence of added

antigen, and clear dose-dependent increases were observed in

response to added MPM (Figure 4C, right panel). From these

results, it seems that APCs in hu-NSG liver can present added

glycolipid antigens via CD1c. However, it is not clear whether the

Figure 1. Immune reconstitution of engrafted mice. A) Schematic representation of the protocol used to engraft mice with human cells and
tissues. B) A photograph taken from the abdominal side shows an engrafted human thymic organoid growing on the lateral superior surface of a
murine left kidney. Histological analysis of the thymic tissue shows a lobular organization with cortical and medullary areas. The medullary area
shown at 206magnification on the right includes several bodies that closely resemble the Hassall’s corpuscles found in human thymus. C) Blood
samples from engrafted mice were taken at the indicated times and analyzed by flow cytometry to determine the percentage of the total blood
leukocytes expressing human CD45. D) Flow cytometric analysis of cells isolated from spleen (top panels) and liver (bottom panels) of engrafted
mice. The samples were first gated on the human CD45+ subset, and then gated by forward and side scatter to focus on lymphocytic cells (left panels)
or myeloid cells (right panels).
doi:10.1371/journal.pone.0021701.g001
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comparatively abundant CD1c+ cells we detected in our flow

cytometric analyses of hu-NSG spleen samples (see Figure 3A) are

also able to present an exogenous glycolipid.

Finally, we used a human invariant NKT cell clone to

investigate CD1d-mediated antigen presentation. Human iNKT

cells respond to the synthetic glycolipid a-GalCer as a strong TCR

agonist [36], but they typically also show detectable cytokine

production in response to CD1d+ APCs in the absence of added

antigens, which is thought to be due to recognition of endogenous

CD1d ligands such as lyso-phosphatidylcholine [29]. Similar to the

autoreactive responses of human iNKT cells to human CD1d+

APCs that we have observed previously, there was clearly

detectable cytokine production when human iNKT cell clones

were co-incubated with either spleen or liver cells from hu-NSG

mice in the absence of added antigens (Figure 4D). The addition of

a-GalCer stimulated increased cytokine production from co-

cultures of hu-NSG spleen or liver cells with human iNKT cell

clones (Figure 4D), indicating it was presented by CD1d+ APCs.

Notably, the cytokine production was blocked by addition of an

antibody that is specific for human CD1d and blocks iNKT cell

responses to this antigen presenting molecule, but does not block

their responses to murine CD1d (Figures S1 and S2). Together

these results suggest that the main route of a-GalCer presentation

was through human CD1d molecules. However, it important to

note that murine CD1d is not ablated in these mice, and therefore

it is possible that CD1d-restricted responses could also be

mediated by murine APCs in this system. We also observed

enhanced cytokine secretion from the addition of GalGalCer to

the co-cultures of human iNKT cells with hu-NSG liver

mononuclear cells (Figure S3). GalGalCer is a form of a-GalCer

that requires intracellular processing in order to be recognized by

iNKT cells [37], and thus this finding indicates that hu-NSG APCs

are able to internalize an exogenous glycolipid and trim off excess

sugars before presenting it via CD1d.

Detection and analysis of CD1-restricted T cells
Previous analyses have indicated that a significant fraction of

human CD1a-, CD1b-, and CD1c-restricted T cells resemble

iNKT cells in that they are able to become activated in a CD1-

dependent manner in the absence of foreign antigens

[38,39,40,41,42]. To test for the presence of such T cells in hu-

NSG mice, we performed IFN-c ELISpot analyses using CD1-

transfected K562 myelo-monocytic cells as APCs. Hu-NSG

splenocytes were incubated in ELISpot wells with CD1a-,

CD1b-, CD1c-, or CD1d-transfected K562 cells, or with

untransfected (CD1-negative) K562 cells. K562 cells were used

for these analyses because they are negative for MHC class I and

II molecules, and therefore these APCs would be unlikely to

stimulate an allo-response by MHC-restricted T cells [42]. The

untransfected K562 cells stimulated IFN-c spot numbers that were

close to background levels (i.e. splenocytes without any added

APCs). In contrast, the CD1a-, CD1b-, and CD1d-transfected

K562 cells consistently stimulated greater numbers of spots

(Figure 5A). In some cases, the CD1c-transfected K562 cells also

stimulated elevated numbers of spots, but this was not sufficiently

consistent to attain statistical significance (Figure 5A). Peripheral

blood mononuclear cells isolated from healthy adult human

donors showed a similar pattern of ELISpot results in response to

the CD1-transfected K562 cells (Figure 5B). Moreover, we

observed similar responses to the CD1-transfected K562 cells by

liver mononuclear cells from engrafted mice (data not shown).

Thus, the hu-NSG mice appear to possess IFN-c producing

lymphocytes that respond to CD1 molecules loaded with cellular

ligands.

In our analyses of CD1-mediated antigen presentation by

splenocytes from hu-NSG mice, we did not observe significantly

increased IFN-c secretion by splenocytes that were treated with a-

GalCer compared to untreated splenocytes (Figure S4), raising the

question of whether iNKT cells are present in the engrafted mice.

Therefore, to specifically investigate the frequency of CD1d-

restricted iNKT cells, we used CD1d tetramers loaded with a-

GalCer. By flow cytometric analysis we observed T cells that

stained specifically with a-GalCer loaded CD1d tetramer, whereas

there was little or no staining using a vehicle treated control

tetramer (Figure 6A). The frequency of CD1d tetramer+ T cells

varied substantially among the hu-NSG mice tested, but the mean

and the range appeared similar to that observed in PBMC samples

of healthy human donors (Figure 6B). Notably, whereas commonly

used laboratory strains of mice have substantially elevated

frequencies of iNKT cells in the liver compared to the spleen

[43], the hu-NSG mice typically showed similar frequencies of

tetramer positive cells in the spleen and liver (Figure 6C). This lack

of iNKT cell enrichment in the liver is similar to what has been

observed in previous analyses of primary human liver samples

[44,45,46].

To investigate the TCR usage of CD1d-restricted NKT cells

from hu-NSG mice, we sorted T cells stained by the a-GalCer

loaded CD1d tetramer and expanded them in vitro. CD1d

tetramer-positive and -negative T cells were sorted separately,

and expanded by exposure to PHA and irradiated allogeneic

human feeder cells in the presence of recombinant IL-2. Flow

cytometric analysis of the expanded cells indicated that the CD1d

tetramer-positive cells used Va24 and Vb11 TCR chains, whereas

the tetramer-negative T cell line sorted in parallel showed little or

no staining for these TCR chains (Figure 7A). The CD1d

tetramer-positive cells secreted cytokines in response to CD1d-

transfected APCs that were pulsed with a-GalCer, but did not

respond to the untransfected parental cell line, and the cytokine

secretion was blocked by an anti-CD1d antibody (Figure 7B).

DNA sequence analysis confirmed that the TCRa chain of the

CD1d tetramer-positive cells was Va24, and demonstrated that it

was rearranged to Ja18 using the same canonical rearrangement

found in human iNKT cells (Figure 7C, top). Analysis of the

TCRb chain identified a single dominant sequence consisting of

Vb11 rearranged to Jb2.7, with a unique sequence at the V-J

junctional region that is suggestive of N-region diversification

(Figure 7C, bottom). Thus, the hu-NSG mice possess human

CD1d-restricted T cells that utilize the canonical TCRa chain

paired with Vb11, and that recognize a-GalCer presented by

CD1d.

Activation of NKT cells in vivo
Injection of a-GalCer into common strains of laboratory mice

results in rapidly detectable immunological activation that is

Figure 2. Expression of human CD1 molecules in the engrafted thymic organoid. A) Flow cytometric analysis of human CD3+ cells from the
thymic organoid. Top row: staining with antibodies specific for the indicated CD1 molecules is shown by the filled histograms, open histograms show
staining by isotype-matched negative control antibodies. Bottom row: contour plots showing CD4 and CD8 staining of the CD1-positive populations.
B) Immunohistological analysis of the engrafted thymic organoid at 406 magnification, using an antibody against human CD1a, with DAB
chromogenic development (brown color) and hematoxylin counterstaining of nuclei (blue color).
doi:10.1371/journal.pone.0021701.g002
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characterized by elevated levels of IFN-c and IL-4 in the serum

that correlate with the frequency of iNKT cells [43]. To test the

effects of in vivo administration of a-GalCer in this model, hu-NSG

mice were injected intraperitoneally with 3 mg of a-GalCer or an

equivalent amount of vehicle alone. Blood samples were taken

from the mice at 2–4 or 24–48 hours post-injection, and the

plasma was analyzed for human IFN-c and IL-4 by ELISA. The

median IFN-c concentration of samples from the vehicle treated

mice was 95 pg/ml, with about a third of the samples having IFN-

c values that were near or below the limit of detection for the

ELISA (Figure 8A, left plot). In contrast, only one sample from the

2–4 hour post a-GalCer injection time point was below the limit of

detection of the ELISA, and the median IFN-c concentration was

240 pg/ml (Figure 8A, left plot). Although the amount of IFN-c
from the a-GalCer treated mice was only 2–3 fold greater than

that of the vehicle treated mice, a Mann-Whitney test indicated

that the difference is statistically significant (p,0.009). The median

IFN-c detected from the 24–48 hours post a-GalCer injection

samples was 155 pg/ml, and statistical analyses indicated that this

was not significantly elevated compared to the vehicle treated mice

(Figure 8A, left plot). By comparison, when we incubated samples

of 0.5 million human PBMCs in vitro in 0.2 mL of culture medium

containing either a-GalCer or vehicle, we detected a median IFN-

c concentration of 50 pg/ml for the vehicle treated and 255 pg/

ml for the a-GalCer treated samples (Figure 8A, right plot).

Interestingly, whereas we were not able to detect any increased IL-

4 in the culture supernatants from human PBMCs incubated in

vitro with a-GalCer compared to vehicle (Figure 8B, right plot), we

observed a significant increase in the amount of IL-4 detected

from blood samples of hu-NSG mice taken at 2–4 hours post a-

GalCer injection compared to those of vehicle treated mice

(Figure 8B, left plot). These results demonstrate that treatment

with a-GalCer induces a rapid biological response in vivo in the hu-

NSG mice, with systemic cytokine levels apparently becoming

elevated in the first few hours after treatment and then receding to

baseline levels within 24–48 hours. Analysis of plasma samples

from a-GalCer or vehicle treated mice that were taken at 48-hours

post-injection showed no difference in levels of the liver

transaminases AST and ALT (Figure 8C), suggesting that the

liver injury that has been observed in laboratory mice following a-

GalCer treatment is much less significant in this model [47].

Discussion

Great progress has been made using murine model systems to

understand the development and function of CD1d-restricted

iNKT cells, however, it remains unclear whether human iNKT

cells are identical to their murine counterparts. Additionally, little

is known about the development and in vivo function of T cells that

are restricted by other CD1 molecules. The analyses presented

here demonstrate that immunodeficient mice that are transplanted

with human tissues (hematopoietic stem cells, fetal thymus, and

fetal liver) develop a functional human CD1 antigen presenting

system in the periphery and acquire human iNKT cells with a

canonical TCR rearrangement. Additionally, our findings suggest

that the development of other human CD1-restricted T cells is

supported. Thus, these mice provide a very promising model

system for further investigating specific aspects of the development

and functions of human CD1-restricted T cells in vivo.

In this model system NSG mice are engrafted with human

tissues when they are six to eight weeks old. At this age the murine

thymus appears to have atrophied and disappeared (presumably

because the mice do not produce their own T cells). In any case,

we are not able to detect a murine thymus even after engraftment

of the human hematopoietic stem cells (data not shown).

Therefore, it is not clear whether any of the developing human

T cells in this model are selected on murine antigen presenting

molecules. However, it is clear that the transplanted human fetal

thymic tissue increases in size and persists as a long-lasting thymic

organoid. We show here for the first time that there is prominent

expression of CD1a, CD1b, CD1c, and CD1d molecules by

human T cells in this thymic organoid. In our histological analyses,

we observed that there were two distinct CD1a+ cell types in the

thymic organoid: abundant small, round lymphocytic cells that

appear to be cortical thymocytes, and less abundant, larger cells in

the medullary area that may be DCs. An interesting possibility is

that these two populations are involved in different aspects of

thymic selection of CD1-restricted T cells. Whereas MHC-

restricted T cells are positively selected by MHC molecules

expressed on thymic epithelial cells in the thymic cortex, murine

CD1d-restricted NKT cells have been shown to be positively

selected in the thymic cortex by CD4 and CD8 double positive

thymocytes [32]. Thus, we would expect that the CD1+ cortical

thymocytes present in the human thymic organoid might mediate

positive selection of CD1a-, CD1b-, CD1c-, or CD1d-restricted

human T cells. Moreover, since negative selection of murine NKT

cells appears to be mediated by DCs of hematopoietic origin [33],

we would hypothesize that the CD1a+ DC-like cells we observed in

the medullary regions of the human thymic organoid might play a

role in negative selection.

We also found expression of CD1 molecules by human cells in

peripheral tissues of engrafted mice. CD1c and CD1d were clearly

detectable on myeloid cell types that were present in the spleen (see

Figure 3) and in the liver (data not shown), and these CD1

molecules were also expressed by B lymphocytes (Figure 3).

Splenocytes expressing CD1a or CD1b appeared infrequent by

flow cytometric analysis, but by histological analysis we were able

to detect rare cells that stained positively for CD1a in the spleen, as

well as somewhat more abundant CD1a+ cells in liver and lung

sections. Functional analyses demonstrated that liver mononuclear

cells from engrafted mice were able present specific glycolipid

antigens to CD1a-, CD1b-, CD1c-, or CD1d-restricted human T

cells. Spleen cells were able to present glycolipid antigens to

CD1b- and CD1d-restricted T cells, but the CD1a- and CD1c-

restricted T cells we tested showed a high response to the

splenocytes alone (without added antigen) and it was difficult to see

enhanced activation in response to added antigen. Thus, the

splenic APCs may stimulate responses by some CD1-resticted T

cells that are not dependent on the addition of foreign antigens. It

is not clear whether this is due to presentation of endogenous

antigens by the relevant CD1 molecules, or whether this is due to

some sort of cross-reactivity by the human T cell lines tested here

for murine antigen presenting molecules. We favor the first

explanation, since the antigen-independent responses were not

Figure 3. Expression of human CD1 molecules in peripheral tissues. A and B) Flow cytometric analysis of splenocytes for CD1a, CD1b,CD1c,
and CD1d. The samples were first gated on the human CD45+ subset, and then gated by forward and side scatter to focus on myeloid or lymphoid
cells. C) Histological analysis of CD1a expression in spleen, liver, and lung sections from engrafted mice (bottom row) or human tissue samples (top
row). CD1a expression is visualized by DAB staining (brown colored cells). The sections were counterstained with hematoxylin, producing blue
staining of cell nuclei. All images are shown at 406magnification.
doi:10.1371/journal.pone.0021701.g003
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apparent using the liver APCs (which would also be expected to

contain cells expressing murine antigen presenting molecules),

however, further studies will be required to determine whether

xeno-presentation is a factor.

Our ELISpot analyses revealed that there are cells in the spleens

of engrafted mice that produce IFN-c in a CD1-dependent

manner without requiring addition of foreign glycolipids, suggest-

ing the presence of CD1-restricted T cells that respond to

endogenous antigens. This is similar to previous observations of

CD1-restricted cells from human tissue samples that are not

dependent on the addition of foreign antigens [38,39,40,41,42].

Flow cytometric analyses using human CD1d tetramers revealed a

T cell population that was specifically stained by a-GalCer loaded

tetramer, and analysis of a cell line derived from the tetramer-

stained population demonstrated the use of a canonically

rearranged TCR. Whereas murine iNKT cells comprise about

Figure 4. Analysis of CD1-mediated antigen presentation. Mononuclear cells from spleen or liver were used to stimulate cytokine secretion by
human CD1-restricted T cell lines in the presence of specific cognate antigens. Black squares show cytokine secretion detected from incubation of
human T cells with spleen or liver cells from engrafted mice in the presence of the glycolipid antigen concentrations indicated on the x-axis; grey
squares show cytokine secretion detected from T cells incubated with APCs in the absence of glycolipid antigen; and white squares show the results
from T cells incubated alone. The squares represent the mean cytokines values from 2–4 replicate analyses with error bars showing standard
deviations. A) CD1a-mediated antigen presentation was tested using a cell line called CD8-2 and the antigen didehydroxymycobactin (DDM). B)
CD1b-mediated antigen presentation was tested using a cell line called LDN5 and the antigen glucose monomycolate (GMM). C) CD1c-mediated
antigen presentation was tested using a cell line called CD8-1 and the antigen mannosylphosphomycoketide (MPM). D) CD1d-mediated antigen
presentation was tested using an iNKT cell line called J24L.17 and the antigen a-galacosylceramide (a-GalCer). Results are representative of 2–3
independent experiments.
doi:10.1371/journal.pone.0021701.g004

Figure 5. Analysis of CD1-restricted T cell responses. A) Splenocytes from engrafted mice were combined with human K562 antigen
presenting cells transfected with the indicated CD1 molecules, or with the untransfected K562 parental cell line (‘‘UT’’), and the frequencies of IFN-c
producing cells were estimated by ELISpot analysis. Each symbol represents the mean number of spots from 3 or 4 replicate analyses of the
splenocytes from one engrafted mouse. The data were statistically analyzed using a one-tailed Wilcoxon paired t-test, yielding the p values shown
below the x-axis labels for each CD1 transfectant compared to the untransfected parental cell line. B) Results from a similar analysis using peripheral
blood mononuclear cells (PBMC) purified from healthy adult human donors.
doi:10.1371/journal.pone.0021701.g005
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Figure 6. Detection of iNKT cells. A) Flow cytometric analysis of splenocytes from an engrafted mouse using fluorescently labeled human CD1d
tetramer (y-axis) and an antibody against human CD3 (x-axis). The left plot shows staining using vehicle treated CD1d tetramer, and the right plot
shows a-GalCer loaded CD1d tetramer. B) Percentages of CD1d tetramer-positive cells detected from splenocytes of 10 engrafted mice, compared to
PBMCs from 15 healthy adult human donors. The medians for each data group are as follows: spleen cells from hu-NSG mice,
tetramer+vehicle = 0.0039%, tetramer+a-GalCer = 0.048%; human PBMCs, CD1d tetramer+vehicle = 0.0041%, CD1d tetramer+a-GalCer = 0.0745%. C)
Analysis of the splenocytes and liver mononuclear cells from 4 engrafted mice for human cells stained by CD3 and a-GalCer loaded CD1d tetramer.
doi:10.1371/journal.pone.0021701.g006
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1–5% of splenic T cells and 10–30% in the liver, the iNKT cell

subset generally comprised about 0.1% of the total human T cells

in the spleens of the engrafted mice, and the frequency did not

appear to be enriched in the liver. The iNKT cell frequencies we

observed in the hu-NSG mice and their lack of enrichment in the

liver are consistent with iNKT cell frequencies observed in

previous analyses of human tissues [22,44,45,46], and this

therefore appears to constitute an important difference between

humans and commonly used strains of laboratory mice. Given the

differences in iNKT cell frequency between the hu-NSG mice and

laboratory strains, it is perhaps not surprising that injection of a-

GalCer resulted in only modest increases in IFN-c and IL-4 levels

in the blood of engrafted mice, and did not appear to produce

elevated levels of transaminase enzymes that are indicative of

damage to the liver. Nevertheless, our data indicate that there is a

rapid cytokine response to a-GalCer in vivo in the engrafted mice,

which suggests that these mice will be a valuable tool for

investigating the impact of glycolipid antigens in a human immune

context.

The CD1 system has a number of key advantages from the

perspective of developing new methods of therapeutic immune

modulation: the antigens utilized by the CD1 system are highly

conserved molecules that may reduce the chances of pathogen

escape through mutation, also there is very little allelic

polymorphism in the human CD1 system, and finally, CD1-

restricted T cells seem to temporally bridge the innate and

Figure 7. Analysis of hu-NSG NKT cells. CD1d tetramer-positive and -negative T cells were flow cytometrically sorted from an engrafted mouse
and expanded in vitro. A) Flow cytometric analysis of the expanded cells (tetramer-positive top row, tetramer-negative bottom row). Filled
histograms show staining with fluorescently labeled anti-CD3, a-GalCer loaded human CD1d tetramer, anti-Va24, and anti-Vb11 antibodies,
respectively. Open histograms show staining with vehicle treated CD1d tetramer or isotype-matched negative control antibodies. B) Cytokine
secretion by the tetramer-positive and -negative cell lines in response to CD1d-transfected or untransfected (UT) APCs in the presence of a-GalCer.
Open bars indicate assays that were performed in the presence of an anti-CD1d blocking antibody, and filled bars show assays performed in the
presence of an isotype matched negative control antibody. C) Predicted amino acid sequences of the junctional regions of the TCRa and b chains
from hu-NSG tetramer-positive T cells compared to those of NKT cell clones previously derived from the human tissues shown in parentheses. Dashes
indicate identity with the consensus sequences shown at the bottom.
doi:10.1371/journal.pone.0021701.g007
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adaptive immune systems during immune activation and therefore

they may occupy a very powerful functional niche. Although

humanized mouse models are not without concerns, for example,

batch to batch variations, heterogeneity of engraftment within

batches, and the possibility of artifacts due to the chimeric nature

of the immune system, our results suggest that the hu-NSG mouse

model described here will be an extremely useful tool for studying

the thymic development and peripheral function of human CD1-

restricted T cells in vivo. Moreover these mice provide a highly

novel opportunity to study the role of the CD1 system in vivo

during immune responses to human specific pathogens such as

Epstein-Barr virus, HIV, and Dengue.

Materials and Methods

Generation of humanized mice
Research involving mice was performed in accordance with a

protocol that was approved by the University of Wisconsin’s

Animal Care and Use Committee, and in accordance with a

protocol approved by the University of Wisconsin’s Institutional

Review Board. NOD.Cg-Prkdcscid IL2rgtm1Wjl/SzJ mice (abbreviat-

ed as NOD/SCID/cc
null or ‘‘NSG’’ mice) were obtained from

Jackson Laboratory (stock #005557). At 6–8 weeks old, mice were

conditioned with sub-lethal (2.5 Gy) whole-body irradiation, and

within 4 hours were surgically implanted under the kidney capsule

with fragments (approximately 1 mm3) of human fetal thymus and

liver (14–22 weeks gestation). Immediately following this surgery,

the mice were given an intravenous injection (46105/mouse) of

CD34+ cells isolated from autologous fetal liver tissue that was

processed and stored in X-vivo 15 serum free culture medium

(Cambrex Biosciences Walkersville, MD). The CD34+ cells were

prepared by gently disrupting the liver tissue by cutting it into

small pieces and repeatedly pipetting up and down, then filtering

the resulting cell suspension through a 70 mm mesh, and purifying

the mononuclear cells by Ficoll-Paque density gradient separation

(GE Healthsciences). CD34+ cells were then isolated by magnetic

sorting (Miltenyi Biotec, Auburn, CA). The purity of the injected

CD34+ cells was determined by flow cytometric analysis to be at

least 80–90%, with less than 0.5% contamination of CD3+ cells.

The drinking water for the mice was supplemented with 0.17–

0.25 mg/ml Enrofloxacin (Bayer Healthcare, KS) for 10 days post

surgery to prevent infections.

Flow cytometric analysis
Antibodies used to detect specific human markers were as

follows: pan CD45 (clone HI30); CD4 (clone RPA-T4 or OKT4);

CD8a (clone RPA-T8); CD14 (clone M5E2); CD19 (clone

HIB19); CD11c (clone S-HCL-3); CD123 (clone 9F5); pan HLA

class I (clone W6/32); pan HLA class II (clone LN3); CD1a (clone

OKT6); CD1b (clone BCD1b3.1); CD1c (clone BDCA-1); CD1d

(clone CD1d42); CD3 (clone SPVT-3b); Va24 (clone C15B12);

Vb11 (clone C21D2). Negative control antibodies were clone P3

(IgG1) and clone UPC10 (IgG2a). For flow cytometric analysis,

tissues (i.e. bone marrow, spleen, liver, blood, thymic organoid)

were collected from mice 12–20 weeks after implantation of

human cells. Human tissue samples used as controls (i.e. blood and

spleen) were collected in accordance with a protocol approved by

the University of Wisconsin Minimal Risk IRB. Single cell

suspensions were prepared from solid tissues by gentle homoge-

nization followed by filtration through a 0.45 mm strainer. Samples

were subject to ACK lysis to remove red blood cells, or

mononuclear cells were purified by density gradient centrifuga-

tion. The samples were blocked with human and murine serum,

and then incubated on ice for 30 minutes with 10 mg/ml specific

antibodies in FACS buffer (1 mg/ml PBS/BSA) containing

10 mg/ml 49, 69-diamidino-2-phenylindole (DAPI) or propidium

iodide (PI). The samples were washed with FACS buffer, then

resuspended and analyzed on a Becton Dickenson LSRII or a

FACSCalibur flow cytometer. Data were analyzed using Flowjo

software (Tree Star, Inc., Ashland, OR).

Histologic analysis
Tissues were fixed in 10% buffered formalin and embedded in

paraffin. Tissue sections from liver, spleen, lung, lymph node and

thymic organoid were de-paraffinized and rehydrated with water

for hematoxylin and eosin (H&E) staining or immunohistochem-

istry. Antigen retrieval was performed using rodent decloaker

(Biocare Medical), followed by incubation with a mouse

monoclonal against human CD1a (clone CD1a007, Biocare

Medical). Antibody labeling was detected and visualized by the

Mouse-on-Mouse Horseradish peroxidase (HRP)-Polymer Kit

with diamionbenzidine (DAB) development (Biocare Medical).

Antigen presentation analyses
Spleen and liver tissues were collected from mice 12–20 weeks

after implantation of human cells, and single cell suspensions were

prepared. The samples were tested for stimulation of human CD1-

restricted cell lines in the presence or absence of purified or

synthetic lipid antigens. Assays were carried out in 96-well round

bottom plates in 200 ml culture medium (RPMI 1640, 10% Bovine

Calf Serum, 2 mM L-glutamine, and 100 mg/ml each of penicillin

and streptomycin), using 56104/well hu-NSG cells and an equal

number of human T cells. After 16 hours incubation at 37uC in a

5% CO2 incubator, culture supernatants were collected and tested

for cytokine concentration using commercially available ELISA

reagents. Human T cell lines used were as follows: CD8-2, a

CD1a-restricted T cell line [48]; LDN5, a CD1b-restricted T cell

line [11]; CD8-1, a CD1c-restricted T cell line [48]; and J24L.17,

J3N.5, or Jc2.4, human CD1d-restricted NKT cell clones, [36,49].

Human T cell lines were cultured in T cell medium (RPMI 1640

medium, 2 mM L-glutamine, 100 mg/ml each of penicillin and

streptomycin, 10% FBS, 5% bovine calf serum, 5% human AB

serum from Gemini Bio-Products, and 400 U/ml recombinant

human IL-2 from Chiron), with periodic re-stimulation by

irradiated allogeneic feeder cells and PHA.

Lipid antigens
For stimulation of the CD1a-restricted CD8-2 line, a fraction

enriched for the lipopeptide didehydroxymycobactin (DDM) was

Figure 8. Activation of NKT cells in vivo. A) The plot on the left shows results from engrafted mice that were injected intraperitoneally with 3 mg
a-GalCer or with an equivalent amount of vehicle alone. Blood samples were collected at 2–4 and 24–48 hours after injection and analyzed for human
IFN-c by ELISA. Each symbol represents the mean of 3 replicates. The P value shown on the plot was calculated using a one-tailed unpaired t test. The
plot on the right shows results from human PBMC samples that were incubated in vitro with a-GalCer or vehicle alone. Supernatants were collected
after 48 hours and analyzed for IFN-c by ELISA. The P value shown on the right plot was calculated using a one-tailed paired t test. B) Results from the
same experiments analyzed for human IL-4 by ELISA. C) Heparinized plasma samples taken at 48-hours post injection were analyzed for enzyme
activity of the liver transaminases AST and ALT, which serve as biomarkers of liver injury. The plot shows the enzyme activities detected from samples
from mice that were treated with vehicle (open squares) or with a-GalCer (filled squares). There are no significant differences between the groups.
doi:10.1371/journal.pone.0021701.g008
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purified from M. tuberculosis [14]. For stimulation of the CD1b-

restricted LDN5 line, a long chain form of glucose monomycolate

(GMM C80) was purified from M. phlei [11]. For stimulation of the

CD1c-restricted CD8-1 line, a synthetic preparation of mannosyl-

b1-phosphomycoketide (MPM C32) was used [50]. For in vitro

analyses of CD1d-restricted NKT cells, a-GalCer was prepared as

described [51]. CD1a-, CD1b-, and CD1c-restricted T cell lipid

antigens were stored in organic solvents at 220uC, and prior to

use were transferred to glass vials and dried down under nitrogen

gas, then resuspended in culture medium and sonicated in a

heated water bath. a-GalCer was dissolved in DMSO at 100 mg/

ml, and this solution was sonicated then diluted into culture

medium prior to use. For in vivo injection, a-GalCer was

synthesized by coupling 2,3,4,6-tetra-(O-trimethylsilyl)-D-galacto-

syl iodide with a sphingosine acceptor containing azide function-

ality, and the resulting compound was modified by azide-

reduction, N-acylation and deprotection of benzyl-protected

hydroxyl groups. The a-GalCer was dissolved in a vehicle solution

containing 0.5% Tween 20, 5.7% sucrose, and 0.75% histidine.

ELISpot analyses of CD1-restricted T cell frequency
Mononuclear cells were prepared from hu-NSG spleen or liver,

or from human peripheral blood. Human blood was collected with

written consent from volunteer donors, in accordance with a

protocol approved by the University of Wisconsin’s Minimal Risk

Institutional Review Board. The samples were incubated with

untransfected human K562 myelomonocytic cells [52] or with

K562 cells that were transfected with human CD1a, CD1b, CD1c,

or CD1d, at a 1:1 ratio (200,000 cells per well total) in serum-free

medium (CELLect medium, MP Biomedicals, Inc.) in 96-well

PVDF membrane plates (Whatman) coated with anti-human IFN-

c mAb (clone NIB42 from Biolegend). The cells were incubated

for 48 hr at 37uC and 5% CO2. Secreted IFN-c was detected

using biotinylated anti-human IFN-c mAb (clone M701B from

Thermo Scientific), and revealed by development with streptavi-

din-alkaline phosphatase and BCIP/NBT chromogenic substrate.

Spots were quantitated using AID 5.0 software.

Generation of CD1d-restricted T cell line
Hu-NSG spleen was sterilely harvested and mononuclear cells

were purified by density gradient centrifugation. The cells were

then stained with sterile fluorescently labeled antibodies against

human CD3 and CD19, and with human CD1d tetramer loaded

with a-GalCer. Between 50 and 75 tetramer-positive human T

cells were flow cytometrically sorted into a well of a 96-well tissue

culture plate and cultured with irradiated allogeneic human

PBMCs in RPMI 1640 supplemented with 2 mM L-glutamine,

100 mg/ml penicillin and streptomycin, 10% fetal bovine serum

(Hyclone), 5% bovine calf serum (Hyclone), 3% human AB serum

(Atlanta Biologicals), PHA (Sigma) and 400 U/ml recombinant

human IL-2 (Chiron).

TCR sequence analysis
Total RNA was prepared from approximately 1–56106 CD1d-

restricted T cells using Trizol (Invitrogen), and 1 mg was used for

preparation of cDNA using commercially available reagents

(Roche). DNA sequences spanning the junctional regions of the

TCRa and b chains were amplified by PCR using forward primers

that sit down in the Va24 or Vb11 gene segments (59-

AAGATACTGGGAGAGGTCCTGTTTC-39 or 59-CCAGGA-

ATGGAACTACACCTCATC-39, respectively), and reverse

primers that sit down in the TCRa or b constant domains (59-

GAATAATGCTGTTGTTGAAGGCG-39 or 59-TTGACAGC-

GGAAGTGGTTGC-39, respectively). The resulting PCR prod-

ucts were purified by spin column or agarose gel extraction

(QIAquick from QIAGEN), and were sequenced using the same

primers that were used for amplification.

Supporting Information

Figure S1 Cytokine production from previously established

human iNKT cell clones (Jc25., Jc2.8, JJ2.7) in response to spleen

cells from an engrafted mouse treated with a-GalCer is blocked by

addition of the CD1d42 anti-human CD1d monoclonal antibody,

but not by an isotype-matched negative control antibody.

(TIF)

Figure S2 The CD1d42 antibody blocks iNKT cell responses to

human but not murine CD1d. Untransfected P815 cells (no

CD1d), P815 cells transfected with murine CD1d, and P815 cells

transfected with human CD1d were treated with a-GalCer and

incubated with a human iNKT cell clone (Jc2.5) in the presence of

the anti-CD1d antibody CD1d42 (black bars) or an isotype control

mAb (grey bars).

(TIF)

Figure S3 CD1d-mediated antigen presentation by liver cells

from engrafted mice was tested using the human iNKT cell clone

J24L.17 and a glycolipid called GalGalCer, which requires

glycosidic cleavage of the terminal galactose sugar in order to be

recognized by iNKT cells.

(TIF)

Figure S4 Splenocytes from an engrafted mouse show no

significant responses to antigens used for evaluation of CD1-

mediated antigen presentation to human T cell lines.

(TIF)
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