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INTRODUCTION

Yoga is an ancient spiritual practice which originated from India. In recent decades, there has been
increasing interest in yoga, mainly because of its applications in health andwellness. Among various
techniques of yoga, the practice of meditation has been found to cause several psychophysiological
effects. Most meditation techniques are practiced in a stable and comfortable posture but there are
also meditation techniques that involve movement. Cyclic meditation (CM)—a technique derived
from one of the Upanishads—is a moving meditation technique practiced by combining physical
postures (asanas) with relaxation procedures. The practice of CM starts with a prayer followed by
isometric muscle contraction, supine rest, standing at ease, centering by balancing the body weight
on the different parts of the feet, bending to the right and then left sides (ardhakaticakrasana),
forward bending (padahastasana), backward bending (ardhacakrasana), and supine rest. During
the practice, emphasis is given on relaxation and awareness (Nagendra and Nagarathna, 1997).
Scientific studies on the effects of practicing CM have reported myriad physiological and mental
health benefits (Subramanya and Telles, 2009b).

PSYCHOPHYSIOLOGY OF CYCLIC MEDITATION

A study reported an increase in high frequency component of heart rate variability (HRV) following
the practice of CM (Sarang and Telles, 2006b). Another study reported a shift in the sympatho-vagal
balance toward parasympathetic dominance during sleep following a day-time practice of CM,
while such a change was not observed in the supine rest group (Patra and Telles, 2010). Similar
positive findings have also been reported on oxygen consumption and breathing rate by several
research groups (Telles et al., 2000; Sarang and Telles, 2006a). One compelling hypothesis about
how CM operates is that slow and rhythmic breathing pattern employed during the practice of
yoga can activate the vagus nerve. Gerritsen and Band (2018) proposed a two-route model for
respiratory vagal nerve stimulation during contemplative practices. One is a top–down route in
which low respiration rate and inhalation/exhalation ratio can directly stimulate the vagus nerve
and another is efferent vagus nerve activation by upward signals triggered by a state of relaxation
and low-threat perception caused by CM. This loop of afferent and efferent vagal nerve stimulation
further increases the vagal tone that results in associated beneficial effects.

Besides these findings, CM has also been reported to improve cognitive functions. Cyclic
meditation caused an increase in EEG P300 amplitudes in Pz, Cz, and Fz sites and reduction in
peak latency (Sarang and Telles, 2006c), besides an increase in Pa wave and Nb wave peak latency
and Nb wave peak amplitude of mid-latency auditory evoked potentials (Subramanya and Telles,
2009a). Other studies have associated CM with improved selective attention, concentration, visual
scanning abilities, and repetitive motor responses (Sarang and Telles, 2007) and enhanced memory
and reduced anxiety (Subramanya and Telles, 2009c).
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The above studies were conducted on healthy male
participants (age 18–48 years, with more than 3 months of
CM practice).

One possible explanation for cognitive enhancements is the
activation of the ANS through its projections from the vagus
nerve (Benarroch, 1993). Another plausible explanation is that
expert yoga practitioners have more widespread functional
connectivity within motor, cognitive, and emotional circuits of
the brain (Gard et al., 2015). Considering the aforementioned
positive effects, we may extrapolate that CM may positively
impact the gut-brain axis as stress, anxiety, cognitive functions,
and emotional health play critical roles in regulation of the
gut-brain axis.

GUT BRAIN AXIS AND CYCLIC

MEDITATION

Our brain and gut are intimately connected through the
gut-brain axis (GBA). It’s a bidirectional link between
the CNS and the enteric nervous system (ENS). Enteric
nervous system consists of sensory and motor neurons, and
interneurons in the wall of the gastrointestinal system. The
GBA mediates a complex crosstalk between the gut and
the brain sending information to the gut and vice versa.
The interaction happens between the endocrine system
[hypothalamic-pituitary-adrenal (HPA) axis], the autonomic
nervous system (ANS), and the immune system involving
cytokines and chemokines. Through this GBA, stress signals
from the brain can impact digestion and other physiological
functions. Gut microbiota might play major roles in reception,
transmission, and modulation of these signals, possibly
through the microbiome-gut-brain-axis (MGBA) (Martin et al.,
2018).

Gut-brain axis regulates and integrates gut functions and
connect emotional and cognitive centers in the brain with
the peripheral intestinal functions. Moreover, it regulates
enteric reflex, intestinal permeability, immune activation, and
entero-endocrine signaling. Communications in the GBA are
mediated by several neuro-immuno-endocrine mediators. This
bidirectional communication network involves the central
nervous system (CNS), the ANS, and the HPA axis. Therefore,
both hormonal and neural modes of communication influence
intestinal functional effector cells including smooth muscle cells,
interstitial cells of Cajal and enterochromaffin cells, immune cells,
epithelial cells, and enteric neurons. These same cells are also
under the influence of the gutmicrobiota (Carabottia et al., 2015).

In the last decade, the gut-brain axis has been an important
topic of research. Neuroscientists, microbiologists, and nutrition
scientists have been exploring how our guts and nervous systems
are intimately interconnected, triggering a new paradigm shift in
medicine. It is now a scientific consensus that the gutmicrobiome
influences our emotional well-being. This radical thinking has
wrought a veritable revolution in medical sciences resulting in
the birth of a new discipline called “Psychobiotics” (Skonieczna-
Zydecka et al., 2018).

Psychobiotics is an emerging discipline that studies how
live microorganisms—bacteria, yeasts, fungi, and viruses—
when ingested in adequate amounts confer certain benefits
to psychiatric or other nervous disorder patients. These
microbes produce neuroactive substances that influence GBA
and act like antidepressants. In humans, gut microbiota–
brain interactions were first recognized when administration of
oral antibiotics rescued patients with hepatic encephalopathy
(Foster and McVey, 2013). Microbiota changes have been
implicated in anxiety and depression (Naseribafrouei et al.,
2014) and autism (Song et al., 2004). Clinical and experimental
evidences suggested that the gut microbiota impacts the GBA by
directly influencing the CNS functions through metabolic and
neuroendocrine pathways.

Gut bacteria helps in development of the CNS and the
endocrine system (Stilling et al., 2014) and their absence results
in differential expression of neurotransmitters (Stilling et al.,
2014), altered gut sensorymotor functions (Iwai et al., 1973),
and increased cecal size. Neuromuscular abnormalities, in turn,
lead to reduced synthesis and transport of neurotransmitters
and muscular contractile proteins (Hooper et al., 2001). Re-
establishment of gut microbiota were found to restore the normal
physiological functions. Irritable bowel syndrome (IBS) possibly
results from an abnormal microbiota causing inflammation
resulting in epithelial permeability causing visceral pain and
dysregulated ENS (Collins and Bercik, 2009). Helicobacter
pylori, implicated in gastric ulcer, influences the GBA inducing
neurogenic inflammatory processes (Budzyński and Kłopocka,
2014).

Psychological stressors influence the types and biomass of gut
microbiota via the ANS (Galley et al., 2014)mediated by secretion
of diverse signaling molecules by various effector cells leading
to altered gut microbiota. Dysbiotic microbiota can then make
humans predispose to inflammation and infections (Hughes and
Sperandio, 2008). Moreover, the brain modulates myriad gut
functions that includes mucosal immune response; secretion of
acids, bicarbonates, and mucus; and gastric motility (Macfarlane
and Dillon, 2007).

Stress has been reported to affect the intestinal mucus
(Rubio and Huang, 1992), gastric and intestinal postprandial
motility (Gué et al., 1989), and ceco-colonic spike-burst activity
(Gué et al., 1991). The brain, mediated by altered intestinal
permeability, can affect the composition of microbiota. Acute
stress results in overproduction of interferon-γ (Demaude et al.,
2006) while mild stress cause colonic barrier dysfunction leading
to depression as well as vulnerability to colitis (Söderholm
et al., 2002). Depression is associated with alterations in colonic
motility and intestinal microbial profile (Park et al., 2013).

Stress induced secretion of an antimicrobial peptide, α-
defensin, from Paneth cells may cause disruption of gut
microbiota (Alonso et al., 2008) which can cause overactivity of
harmful bacteria. During surgery, norepinephrine is released that
possibly activates Pseudomonas aeruginosa leading to gut sepsis
(Alverdy et al., 2000), induces proliferation of enteric pathogens
and increased virulence of Campylobacter jejuni (Cogan et al.,
2007), and stimulates the growth of pathogenic Escherichia coli
strains (Freestone et al., 2003).
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These findings strongly suggest that stress response, anxiety,
and depression may alter neurotransmitter release which
affects the gut microbiota profile. Stress may also disrupt
epithelial homeostasis by blocking the protective effects of
vagus nerve barrier (Bonaz et al., 2016). Decrease in vagal
tone has been implicated in IBD and IBS (Pellissier et al.,
2014) and gut microbiome alterations may impact GI motility,
integrity, and secretion as well as brain functions by affecting
neurotransmission, behavior, and neurogenesis. These influences
are, therefore, bidirectional. Cyclic meditation may ameliorate
stress induced gut microbiota dysbiosis as CM had been
reported to enhance cognitive functions and vagal tone in
several studies (Sarang and Telles, 2006a,b,c, 2007; Subramanya
and Telles, 2009b). Moreover, Vegan individuals with a
long practice of meditation have healthier gut microbiota
compared to non-meditators with omnivorous diet. Abundance
of bacterial groups such as Roseburia, Subdoligranulum, and
norank_f_Lachnospiraceae are positively related to the number of
meditation years (Jia et al., 2020).

Meditation and GBA interrelation is yet to be systematically

explored. However, for both humans and animals; certain
exercises; and other forms of physical activities have been
reported to influence both gut and brain health. Significant
inverse relationship exists between physical activity and
depression (Parfitt and Eston, 2005) and physical activity and
anxiety (Parfitt and Eston, 2005). In rats and mice, it was
found that short term exercise protected them against anxiety
(Ramos et al., 1997). Animals with intense physical activity
showed enhanced acquisition of a task and memory retention
(Van der Borght et al., 2006). Exercise may modulate gut
microbiota profile which subsequently might influence brain
activity (Dalton et al., 2019). Influence of exercise on human
gut has been documented in several studies (Mailing et al.,
2019). Gut microbiota of professional players had higher relative
abundance of certain gut bacterial taxa; athletes showed lower
abundance of Lactobacillus and Bacteroides (Clarke et al., 2014).
Women who performed at least 3 h of exercise per week showed
increased levels of Roseburia hominis, Akkermansia muciniphila,
Faecalibacterium prausnitzii; gut bacterial genera known to
be producers of butyrate with beneficial effects on the brain
(Bressa et al., 2017). Exercise improves mental and neurological
health (Stevens et al., 2018) and these beneficial effects could
be mediated by gut microbiota. Daily wheel running increased
population of butyrate producing bacteria, Lachnospiraceae,

reducing anxiety-like behavior in mice and butyrate may activate

microglial cells, the brain’s immune cells (Varela et al., 2015).
Exercise modulates the balance of “good” and “bad” gut

bacteria and enhances the diversity of gut microbiota; the
breakdown of which may lead to GI and mental stress through
the MGBA. Exercise improves the abundance and diversity of
gut microbiota genera belonging to Firmicutes (a large phylum
of beneficial gut bacteria); this, possibly, may be the link between
exercise and gut and brain health (Dalton et al., 2019). Several
groups have suggested yoga as a therapy for IBS; resulting
in improved physical and mental health, possibly through the
MGBA (Silva et al., 2020).

We are, therefore, of the opinion that CM could, possibly,
stimulate GBA and MGBA resulting in positive effects on gut,
brain, immune, and general health.

CONCLUSIONS

As CM can enhance the vagal tone and improve cognitive
functions, we may hypothesize that CM can improve the
gut-brain axis crosstalk by fine-tuning the modulation of the
gut microbiota through the CNS and ANS pathways. There are
inadequate data to understand the definitive effects of CM on
the gut microbiota. However, it is reasonable to propose that the
long-term practice of CM can reinforce healthy gut microbiota
as meditation is positively correlated with preponderance of
beneficial bacteria such as Roseburia, Subdoligranulum, and
norank_f_Lachnospiraceae (Jia et al., 2020). Hence, we may
conclude that practicing CM may help improve the gut-brain
crosstalk through various mechanisms including modulation of
the gut microbiota. However, as of now, the link between CM and
GBA possibly implicating the microbiome is only a reasonable
correlation indirectly deduced from the published literature. The
definitive connections among cyclic mediation, microbiome, and
the gut-brain-axis can only be established by more systematic
studies in this emerging area.
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