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We study epidemic processes using a metapopulation approach on the line featuring random transport rates
between arbitrarily distant sites. An average transport network is found using a recently developed variant of
the effective medium approximation (EMA) that is capable of dealing with these long-range connections. Using
a Feynman-Kac argument in the effective medium, we derive an estimate on the size of the infected domain,
and reproduce the known result of its exponential growth in time. We hereby demonstrate the applicability of
long-range EMA to dynamical processes on networks more intricate than simple diffusion.
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I. INTRODUCTION

Network science has emerged in recent years as a funda-
mental theoretical framework for the modeling and under-
standing of large complex systems with many interdependent
subunits [1]. Virtually any relation or interaction among any
set of agents can be represented as a graph. Previous works
have considered either the structural properties of the network
itself [2,3] or certain dynamics placed on the network, e.g.,
coupled oscillators [4,5] or diffusive transport [6–11]. The
latter is the focus of this paper, in particular we will consider
the transport of infectious pathogens.

Understanding the spread of emergent infectious diseases
in the geographic space is of fundamental importance in an
increasingly connected world. In ancient times, the spreading
of epidemics, such as the black death, could be understood in
terms of diffusive processes [1]. In those cases the disease is
spread by the agents/hosts that can only travel with bounded
velocities between neighboring locations. This gives rise to
a wave-front of infected individuals, which travels at a finite
speed. The recent great increase of the connectivity among
densely populated areas and the correspondent urbanization,
has increased the risk that infectious diseases will spread. The
complexity of human mobility at all scales, being that urban
and inter-urban or world-wide, is reflected in the possibility
for the infection to cross arbitrary distances in close to no
time. As a consequence, the number of infected sites grows
exponentially fast, as opposed to linearly. Similar phenom-
ena are also discussed in a different biological context, see
Ref. [12] and references therein.

Network theory’s success stems not only from its ver-
satility, but even more from the fact that many dynami-
cal processes can be characterized and understood from the
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underlying connectivity properties of the graph [13–18]. Of-
ten, exact knowledge of the network connectivity eludes the
theorist, because they are either quickly changing—as is the
case in temporal networks [19]—or are hard to assess. In this
case a practical approach is to model our ignorance with a
random network.

Many techniques have been developed to deal with dy-
namical processes on random networks, among them the
heterogeneous mean field [20] and the annealed adjacency
matrix approximation [21]. The main rationale of statisti-
cal physics applies: many dynamical details of random net-
works are determined by a few parameters of the whole
ensemble [2].

To properly understand transport processes it is important
to embed the network into the geographic space, i.e., one
has to consider spatial networks [22,23]. The simplest spatial
networks are of course lattices. In the context of percolation
theory, the so-called effective medium approximation has
been developed to describe the diffusion on disordered—i.e.,
random—lattices [24,25]. The idea is to replace the initially
random transport rates between the nodes with fixed deter-
ministic ones. This deterministic average network is called the
effective medium, it is characterized by an effective diffusion
coefficient. EMA is not a blind average of the transport rates,
rather it is determined in a self-consistent manner. Would
a link in the effective medium be replaced by its random
original, the transport flux along this particular link would
not change on average. Hence EMA is particularly suited for
systems with independent links. In this paper, we employ
EMA for infection spreading in the global human traffic
network.

The spatial embedding of the network is especially im-
portant in global human traffic, as two topologically adjacent
nodes (e.g., airports) may be geographically very far apart.
Crucially, empirical observations show that human mobility
lacks a definite scale [10,26] and features long-range connec-
tions which have been a major limitation for EMA. Recently
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[27], we have developed an EMA variant that overcomes this
restriction and provides an analytical technique to deal with
random spatial networks—a model of tremendous complexity.
The goal of this paper is to demonstrate that and how EMA
can be used in reaction-diffusion systems on random spatial
networks with long-range connections. Contemporary fields
where our proposed theory may become relevant are epidemic
spreading in the global mobility network [28–32] or dispersal
phenomena in biological contexts [12].

For the remaining of the paper we are concerned with
epidemic processes in a metapopulation, where the subpop-
ulations are placed on an (ideally) infinite line with random
long-range transport rates between them. The metapopulation
approach has been successfully used to describe spatially
embedded subpopulations, such as cities and urban areas,
interacting with each other [33]. Here, we assume diffusive
coupling between the subpopulations. The individuals travel
in the metapopulation and forget about their original subpop-
ulation at each time step. Thus the model is Markovian on
the metapopulation level. Each individual performs a random
walk over the subpopulations with jumping probabilities that
are given according to a travel rate matrix.

This gives rise to a network description of the connections
between the subpopulations. We leverage the Feynman-Kac
formula to derive a bound for the diameter of the infected
region in a deterministic model. Then we proceed to show that
this estimate is as well realized in random models, where it
can be computed from the effective medium approximation.

The rest of the paper is organized as follows: We start with
Sec. II where we review how to obtain the infection diameter
in a deterministic short-range metapopulation model. We pro-
ceed to review the necessary amendments for deterministic
long-range models in Sec. III and finally consider random
long-range models in Sec. IV. This is also where we explain
the effective medium approximation. Numerical confirmation
of our theory is presented in Sec. V. Discussion and conclud-
ing remarks are found in Sec. VI.

II. BALLISTIC SPREADING IN DETERMINISTIC
SHORT-RANGE SYSTEMS

As an introductory example, we consider the susceptible-
infected-susceptible (SIS) metapopulation model on a line.
Each lattice site in the metapopulation is occupied by a
subpopulation, each with the same population size. The
density of infected individuals at site x and time t is de-
noted by ρx (t ), where x ∈ Z and t � 0. The column vec-
tor of all ρx is denoted without the subscript, i.e., ρ =
(. . . , ρx−1, ρx, ρx+1, . . .)T . Individuals travel to an adjacent
subpopulation with a constant transport rate W , i.e., Wρx

infected will travel from x to x + 1 and to x − 1, per unit
time. We assume that these travel rates are symmetric, so that
the total number of individuals in each subpopulation does not
change in time. The change in density of infected individuals
can be expressed in terms of the following continuous-time
reaction-diffusion equations:

ρ̇x (t ) = [�ρ(t )]x + ρx (t )f [ρx (t )]. (1)

The matrix � is the transport operator that describes jumps
between adjacent lattice sites [28]. In the current example it is

equal to the graph Laplacian of the line:

�x,y := Wδx,y−1 + Wδx,y+1 − 2Wδx,y. (2)

Initially we infect a fraction c0 of the site on the origin,
i.e., ρx (t = 0) = c0δx,0. Locally in each subpopulation, the
infection dynamics take place. It is described by the reaction
term

ρxf [ρx (t )] := βρx (1 − ρx ) − μρx. (3)

The second term describes the recovery of infected individuals
with rate μ, I

μ→ S, when the infected become susceptible
again. As the total number of individuals per subpopulation is
conserved, the density of susceptible individuals is given by
1 − ρx (t ). This reveals the first term in Eq. (3) as the infection

of a susceptible individual with rate β, S + I
β→ 2I . Note that

the local reaction rate is bounded from above by

f [ρx (t )] � β − μ. (4)

The ratio R0 = β/μ is the basic reproductive number and
denotes the average number of secondary infections caused by
a primary case in a fully susceptible population. The infection
can be sustained locally in the long-time limit only when
R0 > 1, or equivalently when β > μ, which we will assume
throughout the text. In this case a single infected agent in an
otherwise susceptible population will lead to a steady state
with a non-zero infection density given by (β − μ)/β [34]. A
sketch is given in Fig. 1 where we show the interplay between
reaction and diffusion in the metapopulation model.

One way to investigate the spreading process is to apply the
Feynman-Kac representation to solve Eq. (1). This approach
was used, e.g., in Ref. [35]. Here, one considers a random
walk X(t ), with X(t = 0) = 0 whose pdf Px (t ) is determined
by Eq. (1) without the reaction term:

Ṗx (t ) = [�P (t )]x. (5)

Then the solution of Eq. (1) is given by the following implicit
equation:

ρx (t ) =
〈
ρx+X(t )(0) exp

[∫ t

0
dt ′ f [ρx+X(t ′ )(t

′)]
]〉

, (6)

where the average is taken with respect to the random-walk
realizations {X(t )}. The Feynman-Kac equation relates the
characteristic function of certain integrals of random pro-
cesses with a partial differential equation and vice versa. The
rationale is the same like in the construction of path integrals
in quantum mechanics. Although it is hard to solve Eq. (6)
explicitly, it is easy to find an upper bound. This is done
by replacing the exponent via Eq. (4), by plugging in the
initial condition ρx (0) = c0δx,0 and by recognizing 〈δX(t ),x〉 =
Px (t ):

ρx (t ) � c0e
(β−μ)tPx (t ) ∼ c0√

4πWt
e(β−μ)t− x2

4Wt . (7)

For the second part of the expression we used the fact that
P (t ) approaches a Gaussian for large times. An alternative
way to derive the inequality is to linearize Eq. (1).

The inequality Eq. (7) is useful, when one considers the
c̄-level set of the infected fraction, i.e., all sites x, such that
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FIG. 1. Left panel: scheme of the one-dimensional metapopulation model. The dynamics is regulated by two different time scales, the one
of diffusion, corresponding to the supopulation layer, and the reaction, governed by the SIS infection dynamics at the individual layer. Right
panel: illustration of a sample metapopulation network consisting of N = 20 subpopulations with symmetric transition rates Wx,y . The graph
is constructed from a one-dimensional ring topology with all connections permitted, thus allowing the mapping with a two-dimensional space
such as the earth geographical space. The edge color and size scales accordingly with the values of each transition rate.

ρx (t ) � c̄. Chaining the inequalities, one obtains

c̄ � c0√
4πWt

e(β−μ)t− x2

4Wt , (8)

which can be solved for x and yields a (time-dependent)
radius of the infected region:

x � 2
√

(β − μ)Wt + o(t ). (9)

The diameter of the infected region is twice of the above
radius and is asymptotically bounded:

D(t ) � 4
√

(β − μ)Wt. (10)

This shows that for large times the infection spreads no
faster than ballistically [36,37], with a velocity that grows
monotonically with the transport rate W , which is indeed the
case [38]. For a diffusion-limited infection this means that
there is an upper bound for the front propagation speed. This is
a consequence of the Gaussianity of Px (t ) (see the discussion
in [35]) which in turn is related to the lack of long-range
connections.

With fixed reaction dynamics, the above reasoning can be
extended in two directions: (i) the introduction of transport
beyond the nearest-neighbour population, and/or (ii) make the
transport rates a random quantity. This will be done in the next
two sections.

III. EXPONENTIAL SPREADING IN DETERMINISTIC
LONG-RANGE SYSTEMS

To model the fast multi-scale human mobility, one might
consider the introduction of more than nearest neighbor con-
nections in the transport operator. Instead of Eq. (2) one might
consider

�x,y = (1 − δx,y )Wx,y + δx,y

∑
z 	=x

Wx,z, (11)

where the transition rates Wx,y are symmetric, i.e., Wx,y =
Wy,x , and decay with the distance, so that the sum in the
diagonal terms of � converges.

Consider first the example, when the transport rates decay
like a power law with distance:

Wx,y = K

|x − y|1+α
, (12)

with α ∈ (0, 2) and where K plays the role of an anomalous
diffusion constant.

All reasoning from Sec. II can be repeated up to Eq. (7).
However, the random walk generated by the transport operator
of Eq. (11) with rates given by Eq. (12), is very different from
before. Due to the possibility of long-range jumps that lack a
finite variance, it will not converge to a Brownian motion, but
instead to an α-stable distribution which is characterized by
power-law tails instead of a Gaussian decay [39]:

Px (t ) ∼ αKt

|x|1+α
. (13)

These scale-free random walks are known as Lévy flights, and
α ∈ (0, 2) is the Lévy exponent. A derivation of the previous
equation is reproduced in the Appendix. Using this power law
in Eq. (7) and solving for |x| allows us to estimate the diameter
of the infected region:

D(t ) � 2
(
αK

c0

c̄
t
) 1

1+α

e
β−μ

1+α
t , (14)

which, contrary to the ballistic growth Eq. (10) found for
bounded jumps, grows exponentially fast.

One might argue that the assumed power law decay in
the transition rates is rather specific and far off the measured
travel rates. To overcome the this problem, we model our
ignorance about the actual travel rates with chance.
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IV. EXPONENTIAL SPREADING IN RANDOM
LONG-RANGE SYSTEMS

We now consider the reaction diffusion Eq. (1) with a
transport operator Eq. (11) that features random rates Wx,y .
It is assumed that the rates are random variables indepen-
dently placed on each link (x, y). They are symmetric Wx,y =
Wy,x and decay with the distance between the nodes |x − y|
such that the diagonal terms in Eq. (11) are well defined.
Hence, there is a family {p(x,y)(w)} of probability density
functions, that describe the distribution of Wx,y and that in
total describes the ensemble of random networks.

The Feynman-Kac equation could still be used, but it
would involve the random walk in a random network gener-
ated by the random operator �. Since this is a rather hopeless
venture, we will first employ EMA to compute an average
transport operator �̃. For details we refer to Ref. [27]. We
call the average network described by �̃ the effective medium.
The deterministic rates W̃x,y of the EMA operator have to be
chosen such, that (i) any link that is present in some network
of the ensemble will be present in the effective medium,
albeit with possibly different strength; and such that (ii) the
distance scaling in p(x,y)(w) is preserved. These conditions
are necessary for the effective medium to be well defined.
The transport rates are determined by the following set of
self-consistency equations:

0 = E

[
R̃x,y (Wx,y − W̃x,y )

1 + R̃x,y (Wx,y − W̃x,y )

]
. (15)

Here, the average is taken over the distribution of one fixed
transport rate Wx,y . R̃x,y is the so-called resistance distance
[40] computed from the (pseudo-)inverse of �̃:

R̃x,y := �̃−1
x,y + �̃−1

y,x − �̃−1
x,x − �̃−1

y,y . (16)

The expression in Eq. (15) describes the average change in
the stationary transport flux upon replacement of the effective
medium link along (x, y) with its random original Wx,y . EMA
requires this change to vanish on average. For this reason it is
very successful in reproducing the diffusive properties of the
random network ensemble. It is important to note that the ac-
tual choice of the effective medium graph is mostly arbitrary,
as long as the two conditions given above are respected.

Equation (15) constitutes a set of equations for each class
of links that share the same distribution. It simplifies con-
siderably, if one assumes scaling behavior between distance
and rates. We will focus here on the simplest case, when the
transport rates are given by some independent and identically
distributed (i.i.d.) random number divided by a power of the
distance

Wx,y = Zx,y

|x − y|1+α
, (17)

where α ∈ (0, 2) and Zx,y is a family of i.i.d. random vari-
ables. In Ref. [27] it was shown that the actual distribution
of the rescaled transition rates Zx,y does not influence the
qualitative behavior of the effective medium as the effective
medium transition rates are given by

W̃x,y = E[Zx,y]

|x − y|1+α
. (18)

As long as the mean transition rate is finite, the effective
medium is exactly the deterministic long-range system of
Sec. III with K = E[Zx,y]. Recently, it was proven under cer-
tain regularity conditions that this is the correct self-averaging
limit of the random walk in the random network [41]. We can
draw the same conclusions for the random model as we did for
the deterministic one, namely that the diameter of the infected
regions grows exponentially, just like in Eq. (14).

Although, this behavior is known in the literature
[35,42,43], EMA opens a new way to analytically compute
the speed of the infection spreading or even other quantities of
desire. Importantly, the method presented here is not limited
to the simple topology and the simple choice of transport rates
that we used in Eq. (17). In our example, the effective medium
transport rates are simple averages of the original rates and the
EMA result becomes equal to the annealed adjacency matrix
approximation of Ref. [21]. This is however a consequence of
the high connectivity and the power-law in Eq. (17) and doeas
not have to hold in general. For more general topologies or
other scaling relations, a different effective medium has to be
chosen. This is already seen in the traditional EMA examples,
e.g., a random short-range model (the so-called random bar-
rier model, see e.g., [44]), where only next-neighbor transport
is allowed. The equation system Eq. (15) reduces to a single
equation for the effective medium diffusivity K:

0 = E

[
K − Wx,x+1

Wx,x+1 + (d − 1)K

]
. (19)

For a barrier model in one dimension d = 1, one finds K =
E[1/Wx,x+1]−1. The effective medium diffusivity is given
by the reciprocal of the harmonic mean, instead of by the
arithmetic mean of the transport rates.

Since EMA reproduces the diffusive behavior of random
systems pretty well [27], it is a good candidate to produce a
disorder-averaged random walk that can be used in Eq. (6).
Using EMA, one can make predictions about the reaction-
diffusion system with a random transport operator, as we
demonstrate numerically in the next section.

V. NUMERICAL RESULTS

To validate our theory, we consider a ring of subpopula-
tions with transport rates defined by Eq. (17). As mentioned
above, the actual distribution of Zx,y does not matter, hence
we sampled them uniformly from the interval [0,1]. Therefore,
K = E[Z] = 0.5 in our simulations. It is important to note
that the metric of a ring in one dimension is used:

|x − y| = min(|x − y|, N − |x − y|). (20)

This determines the upper triangle of �; the lower triangle is
given by the symmetry condition of �. Its diagonal elements
are the negative sum of all other elements in the respective col-
umn. With this random transport operator, Eq. (1) is integrated
using a fifth order Runge-Kutta method. For each realization
of � we obtain a collection of ρx (t |�). Then we computed the
average ρx (t ) = E[ρx (t |�)] over 50 realizations of �. Given
the infection threshold c̄ = 0.1 we compute the infection
diameter via

D(t ) := diam{x|ρx (t ) � c̄}. (21)
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FIG. 2. Diameter of the infected population obtained from nu-
merical integration of the reaction-diffusion equations and the EMA
prediction given by the upper bound of Eq. (14). The epidemic is
generated by a subpopulation SI reaction with β = 0.2 in N = 4000
subpopulations with Lévy exponent α = 1.5.

Initially, we consider a simple susceptible-infected (SI)
reaction scheme (μ = 0) with β = 0.2 and α = 1.5 in N =
4000 supopulations with initial concentration of infected at
the origin c0 = 10−2. A comparison of D(t ) with the upper
bound in Eq. (14) is given in Fig. 2. The numerical data
respects the bound nicely.

Since the numerical diameter D(t ) shows a nice exponen-
tial growth pattern like in Eq. (14), we can extract some of the
parameters from the exponential fit

D(t ) = AtBeCt . (22)

Comparison with Eq. (14) would give measured values for α,
β − μ and the diffusivity K = E[Zx,y]. This may however be
a hard task, because the non-linear term tB is not easy to detect
in the exponential fit. The diameter’s growth rate,

C := β − μ

1 + α
, (23)

however, is easy to obtain, as it can also be measured from
the slope of the tail of ln D(t ). In our simulations of the
SI metapopulation model we obtain C = 0.076, which gives
αfit = 1.622. This is a reasonably close value to the Lévy
exponent α = 1.5 used for generating the graph realizations
in the first place. D(t ) is only presented before the saturation
sets in, and before the whole ring is infected.

We now consider the SIS model in N = 8000 subpop-
ulations with β = 0.2 and μ = 0.1, which gives a basic
reproductive number of R0 = 2. The correct time frame to
assess D(t ) is visible in a prevalence plot; see Fig. 3. In this
figure the curves ρx (t ) for each x are plotted against time;
the stationary value ρx (∞) = 1 − μ/β as well as the time
when ρx (t ) > c̄ can be read from such a plot. For N = 8000
subpopulations the time gap between the outbreaks of the first
and last subpopulation infected is 124 time steps, and the
absolute global infection time is 193 time steps. As expected,
the results are similar to the SI case. For the estimation of
the Lévy exponent at this reproductive number we find C =
0.041, which results in αfit = 1.454, i.e., in only 3% error of
the theoretical value.

Varying the reproductive number and measuring the
growth rate C or the Lévy exponent α, respectively, leads to

FIG. 3. Prevalence curves (violet) for the SIS reaction with β =
0.2 and μ = 0.1 of the N = 8000 fully connected subpopulations
with rates’ Lévy exponent α = 1.5. The asymptotic value of the SIS
steady state, the disease prevalence ρx (∞) = (β − μ)/β, is marked
by the black dashed line while the concentration threshold c̄ that
defines the infection outbreak in each subpopulation is marked by
the dash-dot blue line.

good coincidence between theory and numerics; see Fig. 4 (a).
When the theoretical Lévy exponent α is varied and the
growth rate is measured, the agreement appears much worse;
see Fig. 4 (b).

This mismatch is easily explained as pure finite-size ef-
fects as we show in Fig. 5. There, we plotted the difference
|Cthe − Cfit| between the measured growth rate Cfit and its

FIG. 4. The extrapolated value of the Lévy exponent α with the
corresponding error (blue bars) evaluated from the error propagation
of the numerical fit error in C, shown in the inset, as a function
of the basic reproductive number R0 = β/μ at fixed α = 1.5 (a).
Theoretical growth rate Cthe and the respective simulation fit value
Cfit for the SIS reaction with μ = 0.1 in N = 8000 subpopulations
as a function of the Lévy exponent α ∈ (1, 2] at fixed β = 0.2 (b).
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FIG. 5. Absolute value of the difference �C := |Cthe − Cfit| be-
tween the theoretical Cthe = (β − μ)/(1 + α) and the simulation
fit value Cfit for the SIS reaction with β = 0.2 and μ = 0.1 as a
function of the subpopulations number N . Different lines are for
different Lévy exponents from dark to light in the range α ∈ (1, 2).
Inset: close-up in doubly logarithmic scale for α ∈ (1, 1.5). For
larger values of α, the error fluctuates around 0.005 which is the
numerically attainable accuracy.

theoretical prediction from Eq. (23) in a double logarithmic
fashion against the system size N . The figure shows that the
error decays at least like a power law and will vanish in the
thermodynamic limit N → ∞. Due to the extreme long-range
connections, ρx (t ) saturates very quickly. This leads to very
short time frame in which D(t ) grows exponentially that
makes a correct estimation of C difficult. The effect becomes
worse as α decreases, which also explains the slightly worse
agreement for small α in Fig. 4(a). For this reason we concen-
trated our numerical studies to the range α ∈ (1, 2).

We found in Fig. 4(b) that Cfit > Cthe in that data range,
which should not be possible as Eq. (14) represents an upper

bound. An overview of the agreement with the theoretical
bound for the probed range in α is shown in Fig. 6. We find
that for some of these large values of α the numerical data
overestimate the EMA bound. This, however, only happens in
an intermediate time regime and not in the long time limit,
in which we derived Eq. (14). In fact, we find that the upper
bound is respected in the long-time limit for all values of α.
The predictions given by EMA are rigorously valid in the
thermodynamic limit N → ∞, when the infection propagates
indefinitely and saturation is never reached.

VI. DISCUSSION

The goal of this paper was to present a new analytical
tool for reaction-diffusion problems in random long-range
networks. We wanted to advocate the use of effective medium
theory that provides a deterministic representative for an orig-
inally random network. Together with the standard Feynman-
Kac argument we provide an upper bound for the infection
spread in a simple SIS model that is well respected in the long
time limit of our numerical simulations. We also demonstrated
that certain parameters, like the Lévy exponent α, can be
extracted from data, thus verifying that a made assumption
on the random network’s ensemble is correct. This way we
demonstrated that EMA is still relevant even beyond the short-
range connection paradigm.

With the human travel network in mind, we presented a
simple metapopulation model with random long-range con-
nections. We reproduced the exponential growth of the in-
fection diameter, that is known in the literature [35,42,43].
Our EMA prediction of the growth rate depends on both the
infection and recovery rates β and μ as well as on the topology
encoded in the Lévy exponent α of the statistical decay of
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FIG. 6. Diameter of the infected population obtained from the simulation (light-blue scatter) of the SIS reaction in N = 8000 subpopula-
tions with β = 0.2 and μ = 0.1. The theoretical prediction (dark-red line) is given by EMA for various Lévy exponent α ∈ (1, 2].
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the link strength, see Eq. (17). Other characteristics of the
transition rates (like their mean) only play a minor role in
the dynamics. Notice, that long-range links with a “weak”
power law—i.e., α > 2 in Eq. (17)—would eventually lead
to a ballistic growth of the infection front. These results are
also discussed in Ref. [12].

The main restrictions of EMA are currently the necessity
of independent and symmetric transport rates Wx,y = Wy,x .
Future modifications of EMA are necessary to deal with
asymmetric rates, and can thus take variable subpopulation
sizes into account. Furthermore, when it is possible to deal
with correlated links, more realistic models than a simple grid
of the subpopulation’s locations can be included.

In its current form, EMA could already be used to tackle
more involved models than the one considered here. For
example, an extension of our argument to d dimensions
is possible without major change and would only lead to
a different growth rate of C = (β − μ)/(d + α). Internal
dynamics on the nodes (like commuting agents) could be
considered by replacing the subpopulations by small networks
themselves. The EMA method is not restricted to the simple
model considered here. In particular, one can overcome the
strong finite-size effects, that we encountered in our work
by considering a finite-size effective medium instead of an
infinite one, as we did here for simplicity.

EMA is known to nicely reproduce the transport behavior
of a random system provided it is far away from the per-
colation threshold. The networks we treated here are very
well connected due to the presence of the long-range links.
Therefore, they are generically far from percolation threshold,
which partly explains the success of our approach. Note that
the case discussed in Ref. [45] violates both assumptions of
absence of correlations and deviation from percolation transi-
tion and leads to a very different behavior termed paradoxical
diffusion.

Future work and applications of EMA to reaction-diffusion
systems include the generalization to arbitrary heterogeneous
connectivity networks, such as real-world networks of human
mobility. We believe that EMA will develop to a great practi-
cal tool for the analysis of dynamics on networks.
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APPENDIX: ASYMPTOTIC BEHAVIOR OF ˜Px

In this Appendix we show how to obtain Eq. (13) from
Eq. (12). The computation follows closely Ref. [27]. We start

by plugging the transport rates into Eq. (5) and using their
symmetry to reorder the summation:

˙̃P x = K

∞∑
ξ=1

P̃x+ξ (t ) + P̃x−ξ (t ) − 2P̃x (t )

ξ 1+α
. (A1)

The equation is solved using Fourier transform, i.e., we mul-
tiply eikx on both sides and sum overall x. Defining P̃ (k; t ) =∑

x∈Z eikxP̃x (t ), we obtain

˙̃P (k; t ) =K
∑
x∈Z

∞∑
ξ=1

eikx P̃x+ξ (t ) + P̃x−ξ (t ) − 2P̃x (t )

ξ 1+α

=K

∞∑
ξ=1

1

ξ 1+α
[e−ikξ + eikξ − 2]P̃ (k; t ),

or more compactly ˙̃P (k; t ) = S(k)P̃ (k; t ), where

S(k) = K[Li1+α (e−ik ) + Li1+α (eik ) − 2Li1+α (1)].

Here Liν (z) = ∑∞
n=1 zn/nν is the polylogarithm function and

S(k) is the Fourier symbol of the transport operator defined as

P̃x (t ) = 1

2π

∫
dk e−ikxeS(k)t . (A2)

Using the polylogarithm’s expansion around k = 0 (obtained
by Mathematica) one finds the following small wave-vector
expression for S(k):

S(k) ∼ 2�(−α) cos
(πα

2

)
K|k|α. (A3)

Note that the sign of S(k) is negative for all α ∈ (0, 2). As
we now have ˙̃P (k; t ) = S(k)P̃ (k; t ), the solution is given
by P̃ (k; t ) = exp[S(k)t] ∼ exp(−a|k|α ), where we used the
initial condition P̃x (t = 0) = δx,0, which gives P̃ (k; t = 0) =
1 and identified

a = 2�(−α) cos
(πα

2

)
Kt. (A4)

The expansion also shows that P̃x (t ) is asymptotically equal
to a symmetric stable distribution whose Fourier transform is
exactly given by our stretched exponential. The PDF of such
a random variable decays like a power law for large |x|, [39]:

F−1
{
e−a|k|α ; x

} ∼ �(α + 1)
sin(απ/2)

π

a

|x|1+α
. (A5)

Here F−1 denotes the inverse Fourier transform.
Using this equation and the definition of a Eq. (A4),
with �(α + 1) = α�(α), 2 sin(y) cos(y) = sin(2y) and
�(y)�(−y) = π/ sin(πy), we recover Eq. (13) from the main
text.

[1] A.-L. Barabási, Network Science (Cambridge University Press,
Cambridge, 2016).

[2] R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002).
[3] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U.

Hwang, Phys. Rep. 424, 175 (2006).

[4] A. Pikovsky, M. Rosenblum, J. Kurths, and J. Kurths, Synchro-
nization: A Universal Concept in Nonlinear Sciences, Vol. 12
(Cambridge University Press, Cambridge, 2003).

[5] A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou,
Phys. Rep. 469, 93 (2008).

032313-7

https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.physrep.2008.09.002
https://doi.org/10.1016/j.physrep.2008.09.002
https://doi.org/10.1016/j.physrep.2008.09.002
https://doi.org/10.1016/j.physrep.2008.09.002


FLAVIO IANNELLI, IGOR M. SOKOLOV, AND FELIX THIEL PHYSICAL REVIEW E 98, 032313 (2018)

[6] J. D. Noh and H. Rieger, Phys. Rev. Lett. 92, 118701
(2004).

[7] N. Masuda, M. A. Porter, and R. Lambiotte, Phys. Rep. 716, 1
(2017).

[8] R. Klages, G. Radons, and I. M. Sokolov, Anomalous Trans-
port: Foundations and Applications (John Wiley & Sons, New
York, 2008).

[9] S. Havlin and D. Ben-Avraham, Adv. Phys. 36, 695 (1987).
[10] D. Brockmann, L. Hufnagel, and T. Geisel, Nature 439, 462

(2006).
[11] D. Brockmann, Eur. Phys. J. Special Topics 157, 173 (2008).
[12] O. Hallatschek and D. S. Fisher, Proc. Natl. Acad. Sci. U.S.A.

111, E4911 (2014).
[13] R. Pastor-Satorras and A. Vespignani, Phys. Rev. Lett. 86, 3200

(2001).
[14] M. Boguñá, R. Pastor-Satorras, and A. Vespignani, Phys. Rev.

Lett. 90, 028701 (2003).
[15] V. Colizza and A. Vespignani, Phys. Rev. Lett. 99, 148701

(2007).
[16] S. N. Dorogovtsev, A. V. Goltsev, and J. F. Mendes, Rev. Mod.

Phys. 80, 1275 (2008).
[17] R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin, Phys. Rev.

Lett. 85, 4626 (2000).
[18] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S.

Havlin, Nature 464, 1025 (2010).
[19] P. Holme and J. Saramäki, Phys. Rep. 519, 97 (2012).
[20] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and A.

Vespignani, Rev. Mod. Phys. 87, 925 (2015).
[21] B. Guerra and J. Gómez-Gardeñes, Phys. Rev. E 82, 035101

(2010).
[22] M. Barthélemy, Phys. Rep. 499, 1 (2011).
[23] P. Balister, C. Song, O. Riordan, B. Bollobas, and A.-L.

Barabasi, arXiv:1806.10114.
[24] T. C. Choy, Effective Medium Theory—Principles and Applica-

tions, International Series of Monographs on Physics (Oxford
University Press, New York, 1999).

[25] S. Kirkpatrick, Rev. Mod. Phys. 45, 574 (1973).

[26] M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabasi, Nature 453,
779 (2008).

[27] F. Thiel and I. M. Sokolov, Phys. Rev. E 94, 012135 (2016).
[28] L. A. Rvachev and I. M. Longini Jr., Math. Biosci. 75, 3 (1985).
[29] V. Colizza, A. Barrat, M. Barthélemy, and A. Vespignani, Proc.

Natl. Acad. Sci. U.S.A. 103, 2015 (2006).
[30] D. Brockmann and D. Helbing, Science 342, 1337 (2013).
[31] F. Iannelli, A. Koher, D. Brockmann, P. Hövel, and I. M.

Sokolov, Phys. Rev. E 95, 012313 (2017).
[32] J. Gómez-Gardeñez, D. Soriano-Paños, and A. Arenas, Nature

Phys. 14, 391 (2018).
[33] W. Van den Broeck, C. Gioannini, B. Gonçalves, M. Quag-

giotto, V. Colizza, and A. Vespignani, BMC Infect. Dis. 11, 37
(2011).

[34] A. Barrat, M. Barthelemy, and A. Vespignani, Dynamical Pro-
cesses on Complex Networks (Cambridge University Press,
Cambridge, 2008).

[35] R. Mancinelli, D. Vergni, and A. Vulpiani, Physica D: Nonlin.
Phenom. 185, 175 (2003).

[36] R. A. Fisher, Ann. Hum. Genet. 7, 355 (1937).
[37] V. Tikhomirov, in Selected Works of A. N. Kolmogorov

(Springer, Berlin, 1991), pp. 242–270.
[38] V. Belik, T. Geisel, and D. Brockmann, Phys. Rev. X 1, 011001

(2011).
[39] W. Feller, An Introduction to Probability Theory and Its Ap-

plications. Volume II, 2nd ed. (John Wiley & Sons, New York,
1971).

[40] R. B. Bapat, Graphs and Matrices, 2nd ed., Universitext
(Springer, London, 2014).

[41] X. Chen, T. Kumagai, and J. Wang, arXiv:1805.04344.
[42] D. del-Castillo-Negrete, B. A. Carreras, and V. E. Lynch, Phys.

Rev. Lett. 91, 018302 (2003).
[43] D. Brockmann and L. Hufnagel, Phys. Rev. Lett. 98, 178301

(2007).
[44] J.-P. Bouchaud and A. Georges, Phys. Rep. 195, 127 (1990).
[45] I. M. Sokolov, J. Mai, and A. Blumen, Phys. Rev. Lett. 79, 857

(1997).

032313-8

https://doi.org/10.1103/PhysRevLett.92.118701
https://doi.org/10.1103/PhysRevLett.92.118701
https://doi.org/10.1103/PhysRevLett.92.118701
https://doi.org/10.1103/PhysRevLett.92.118701
https://doi.org/10.1016/j.physrep.2017.07.007
https://doi.org/10.1016/j.physrep.2017.07.007
https://doi.org/10.1016/j.physrep.2017.07.007
https://doi.org/10.1016/j.physrep.2017.07.007
https://doi.org/10.1080/00018738700101072
https://doi.org/10.1080/00018738700101072
https://doi.org/10.1080/00018738700101072
https://doi.org/10.1080/00018738700101072
https://doi.org/10.1038/nature04292
https://doi.org/10.1038/nature04292
https://doi.org/10.1038/nature04292
https://doi.org/10.1038/nature04292
https://doi.org/10.1140/epjst/e2008-00640-0
https://doi.org/10.1140/epjst/e2008-00640-0
https://doi.org/10.1140/epjst/e2008-00640-0
https://doi.org/10.1140/epjst/e2008-00640-0
https://doi.org/10.1073/pnas.1404663111
https://doi.org/10.1073/pnas.1404663111
https://doi.org/10.1073/pnas.1404663111
https://doi.org/10.1073/pnas.1404663111
https://doi.org/10.1103/PhysRevLett.86.3200
https://doi.org/10.1103/PhysRevLett.86.3200
https://doi.org/10.1103/PhysRevLett.86.3200
https://doi.org/10.1103/PhysRevLett.86.3200
https://doi.org/10.1103/PhysRevLett.90.028701
https://doi.org/10.1103/PhysRevLett.90.028701
https://doi.org/10.1103/PhysRevLett.90.028701
https://doi.org/10.1103/PhysRevLett.90.028701
https://doi.org/10.1103/PhysRevLett.99.148701
https://doi.org/10.1103/PhysRevLett.99.148701
https://doi.org/10.1103/PhysRevLett.99.148701
https://doi.org/10.1103/PhysRevLett.99.148701
https://doi.org/10.1103/RevModPhys.80.1275
https://doi.org/10.1103/RevModPhys.80.1275
https://doi.org/10.1103/RevModPhys.80.1275
https://doi.org/10.1103/RevModPhys.80.1275
https://doi.org/10.1103/PhysRevLett.85.4626
https://doi.org/10.1103/PhysRevLett.85.4626
https://doi.org/10.1103/PhysRevLett.85.4626
https://doi.org/10.1103/PhysRevLett.85.4626
https://doi.org/10.1038/nature08932
https://doi.org/10.1038/nature08932
https://doi.org/10.1038/nature08932
https://doi.org/10.1038/nature08932
https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1103/RevModPhys.87.925
https://doi.org/10.1103/RevModPhys.87.925
https://doi.org/10.1103/RevModPhys.87.925
https://doi.org/10.1103/RevModPhys.87.925
https://doi.org/10.1103/PhysRevE.82.035101
https://doi.org/10.1103/PhysRevE.82.035101
https://doi.org/10.1103/PhysRevE.82.035101
https://doi.org/10.1103/PhysRevE.82.035101
https://doi.org/10.1016/j.physrep.2010.11.002
https://doi.org/10.1016/j.physrep.2010.11.002
https://doi.org/10.1016/j.physrep.2010.11.002
https://doi.org/10.1016/j.physrep.2010.11.002
http://arxiv.org/abs/arXiv:1806.10114
https://doi.org/10.1103/RevModPhys.45.574
https://doi.org/10.1103/RevModPhys.45.574
https://doi.org/10.1103/RevModPhys.45.574
https://doi.org/10.1103/RevModPhys.45.574
https://doi.org/10.1038/nature06958
https://doi.org/10.1038/nature06958
https://doi.org/10.1038/nature06958
https://doi.org/10.1038/nature06958
https://doi.org/10.1103/PhysRevE.94.012135
https://doi.org/10.1103/PhysRevE.94.012135
https://doi.org/10.1103/PhysRevE.94.012135
https://doi.org/10.1103/PhysRevE.94.012135
https://doi.org/10.1016/0025-5564(85)90064-1
https://doi.org/10.1016/0025-5564(85)90064-1
https://doi.org/10.1016/0025-5564(85)90064-1
https://doi.org/10.1016/0025-5564(85)90064-1
https://doi.org/10.1073/pnas.0510525103
https://doi.org/10.1073/pnas.0510525103
https://doi.org/10.1073/pnas.0510525103
https://doi.org/10.1073/pnas.0510525103
https://doi.org/10.1126/science.1245200
https://doi.org/10.1126/science.1245200
https://doi.org/10.1126/science.1245200
https://doi.org/10.1126/science.1245200
https://doi.org/10.1103/PhysRevE.95.012313
https://doi.org/10.1103/PhysRevE.95.012313
https://doi.org/10.1103/PhysRevE.95.012313
https://doi.org/10.1103/PhysRevE.95.012313
https://doi.org/10.1038/s41567-017-0022-7
https://doi.org/10.1038/s41567-017-0022-7
https://doi.org/10.1038/s41567-017-0022-7
https://doi.org/10.1038/s41567-017-0022-7
https://doi.org/10.1186/1471-2334-11-37
https://doi.org/10.1186/1471-2334-11-37
https://doi.org/10.1186/1471-2334-11-37
https://doi.org/10.1186/1471-2334-11-37
https://doi.org/10.1016/S0167-2789(03)00235-5
https://doi.org/10.1016/S0167-2789(03)00235-5
https://doi.org/10.1016/S0167-2789(03)00235-5
https://doi.org/10.1016/S0167-2789(03)00235-5
https://doi.org/10.1103/PhysRevX.1.011001
https://doi.org/10.1103/PhysRevX.1.011001
https://doi.org/10.1103/PhysRevX.1.011001
https://doi.org/10.1103/PhysRevX.1.011001
http://arxiv.org/abs/arXiv:1805.04344
https://doi.org/10.1103/PhysRevLett.91.018302
https://doi.org/10.1103/PhysRevLett.91.018302
https://doi.org/10.1103/PhysRevLett.91.018302
https://doi.org/10.1103/PhysRevLett.91.018302
https://doi.org/10.1103/PhysRevLett.98.178301
https://doi.org/10.1103/PhysRevLett.98.178301
https://doi.org/10.1103/PhysRevLett.98.178301
https://doi.org/10.1103/PhysRevLett.98.178301
https://doi.org/10.1016/0370-1573(90)90099-N
https://doi.org/10.1016/0370-1573(90)90099-N
https://doi.org/10.1016/0370-1573(90)90099-N
https://doi.org/10.1016/0370-1573(90)90099-N
https://doi.org/10.1103/PhysRevLett.79.857
https://doi.org/10.1103/PhysRevLett.79.857
https://doi.org/10.1103/PhysRevLett.79.857
https://doi.org/10.1103/PhysRevLett.79.857



