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A human cell-based liver model capable of long-term expansion and mature hepatic function is a fundamental require-
ment for pre-clinical drug development. We previously established self-renewing and functionally mature human pluri-
potent stem cell-derived liver organoids as an alternate to primary human hepatocytes. In this study, we tested long-term 
prolonged culture of organoids to increase their maturity. Organoid growing at the edge of Matrigel started to deterio-
rate two weeks after culturing, and the expression levels of the functional mature hepatocyte marker ALB were de-
creased at four weeks of culture. Replating the organoids weekly at a 1：2 ratio in fresh Matrigel, resulted in healthier 
morphology with a thicker layer compared to organoids maintained on the same Matrigel and significantly increased 
ALB expression until three weeks, although, it decreased sharply at four weeks. The levels of the fetal hepatocyte 
marker AFP were considerably increased in long-term cultures of organoids. Therefore, we performed serial passaging 
of organoids, whereby they were mechanically split weekly at a 1：3∼1：5 ratio in fresh Matrigel. The organoids 
expanded so far over passage 55, or 1 year, without growth retardation and maintained a normal karyotype after 
long-term cryopreservation. Differentiation potentials were maintained or increased after long-term passaging, while 
AFP expression considerably decreased after passaging. Therefore, these data demonstrate that organoids can be ex-
ponentially expanded by serial passaging, while maintaining long-term functional maturation potential. Thus, hepatic 
organoids can be a practical and renewable cell source for human cell-based and personalized 3D liver models. 
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Introduction 

  The liver is the main metabolic and detoxifying organ 
of the body. Liver diseases occur due to multifactorial 
causes including viral infection, excessive alcohol con-
sumption, metabolic malfunction associated with obesity, 
hereditary genetic disorder, and drug-induced liver injury, 
which leads to approximately two million deaths per year 
globally (1). Therefore, to understand the etiology of dis-
eases and develop therapies, various liver models have 
been established (2, 3). Specifically, human cell-based liv-
er models are required, because of interspecies differences 
with animal models despite their merits as in vivo plat-
forms (4). Primary human hepatocytes (PHHs) have been 
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considered the gold standard model for hepatotoxicity pre-
diction and drug evaluation owing to their mature functio-
nality. However, useful human liver cell sources are still 
urgently needed due to the low availability and difficulty 
in long-term functional maintenance of PHHs in culture.
  Recently, stem cell technologies have been proposed as 
novel methods for obtaining human hepatic cells; such 
technologies include the following: 1) acquisition of ex-
pandable hepatic cells from somatic cells by genetic (5) 
and small molecules-mediated- (6) reprogramming ap-
proaches, 2) hepatic differentiation from pluripotent stem 
cells (PSCs) (7-9), and 3) three-dimensional (3D) organoid 
generation (10-13). Organoids are 3D stem cell-de-
rived-miniature tissues recapitulating the structure and 
functions of native organs (14). Liver organoids have been 
developed using various approaches (15) whereby hepatic 
cells derived from liver tissue (16, 17) or PSCs (18-20) 
were cultured in a 3D extracellular matrix such as 
Matrigel. We also generated PSC-derived expandable 3D 
human hepatic organoids (21).
  Organoid generation is a spatiotemporal niche-reprodu-
cing process that follows developmental stages (22). Orga-
noids derived from stepwise differentiation of PSCs usu-
ally represent immature structural phenotypes and func-
tions (23). Further maturation was enhanced in human in-
testinal organoids (24) and in liver organoids (18) after in 
vivo transplantation. Alternatively, long-term in vitro pro-
longed culture of organoids resulted in functional matura-
tion with diverse cell compositions in PSC-derived human 
brain organoids (25). Therefore, we performed long-term 
culture of hepatic organoids and optimized long-term ex-
pansion and differentiation methods. 
Materials and Methods

Hepatic organoids generation
  Human induced pluripotent stem cells (hiPSCs) gen-
erated from human foreskin fibroblasts (CRL-2097, the 
American Type Culture Collection), using a CytoTuneⓇ-iPS 
2.0 Sendai Reprogramming Kit (Thermo Fisher; A16517), 
were routinely maintained on a γ-irradiated mouse em-
bryonic fibroblast feeder in iPSCs culture medium (21) at 
37℃, 5% CO2. To assess hepatic differentiation, hiPSCs 
were seeded onto MatrigelTM (Corning; 354234)-coated 
dishes supplemented with PSC medium and cultured for 
2∼3 days until cells reached 90% confluence. The me-
dium was exchanged with RPMI 1640 (Thermo Fisher; 
11875093) based 1×B-27 supplement, minus insulin 
(Thermo Fisher; A1895601) and 100 ng/mL recombinant 
human activin A (PeproTech; 120-14e). Cells were further 

incubated for six days to differentiate into definitive endo-
derm (DE). Cells were differentiated into hepatic endo-
derm (HE) by treatment with RPMI 1640 based 1×B27 
supplement (Thermo Fisher; 17504044), 10 ng/mL basic 
fibroblast growth factor (bFGF) (PeproTech; 100-18B), 
and 20 ng/mL recombinant human bone morphogenetic 
protein (BMP)4 (PeproTech; 120-05ET) under 5% hypo-
xia for four days. For hepatic maturation, the medium was 
replaced with Hepatocyte Culture Medium (Lonza; CC- 
3198) without epidermal growth factor (EGF), mixed with 
Endothelial Cell Growth Medium-2 (Lonza; CC-3162) in 
a 1：1 ratio, supplemented with 2.5% fetal bovine serum 
(RMBIO; FBS-BBT-5XM), 100 nM dexamethasone 
(Sigma-Aldrich; D4902), 20 ng/mL recombinant human 
Oncostatin M (R&D system; 295-OM-050), and 10 ng/mL 
recombinant human hepatocyte growth factor (HGF) 
(PeproTech; 100-39) for four days under 5% hypoxia, and 
subsequently under normoxic conditions for a further 
eight days or more. Arpproximately 25 days after seeding, 
cyst-shaped 3D organoids were spontaneously generated 
from 2D monolayers of mature hepatocytes. The organo-
ids, including a few free-floating organoids, were collected 
and embedded in Matrigel supplemented with Hepatic 
Medium (HM). These conditions were previously opti-
mized for maintaining functional hepatic organoids 
(Supplementary Table S1) (21).

Immunostaining
  The organoids were washed with phosphate-buffered 
saline (PBS), fixed with 4% paraformaldehyde in PBS for 
15 minutes, and permeabilized with 0.25% Triton X-100 
in PBS for 15 minutes at room temperature (RT). The or-
ganoids were incubated with 4% bovine serum albumin 
in PBS for one hour at RT for blocking and then stained 
with primary antibodies (Supplementary Table S2) di-
luted in blocking buffer at 4℃ overnight. The samples 
were washed three times with 0.05% Tween-20 (Sigma- 
Aldrich; P9416) in PBS and then stained with Alexa FluorⓇ 
conjugated secondary antibodies for 40 minutes at RT. 
The nuclei were stained with DAPI reagent (Sigma- 
Aldrich; D5942). Florescence images were obtained with 
an Olympus microscope.

Real-time polymerase chain reaction (PCR)
  Total RNA was purified using by Trizol reagent 
(Thermo Fisher; 15596018) according to the manufacturer’s 
instructions. Reverse transcription was performed with a 
TOPScriptTM RT DryMIX (Ezynomics; RT200). Quantita-
tive real-time PCR was performed using Fast SYBRⓇ 
Green Master Mix (Applied Biosystems; 4385614) with 
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gene-specific primers (Supplementary Table S3) in a 7500 
Fast Real-Time PCR System (Applied Biosystems). β- 
ACTIN was used as an internal control.

Long term expansion of hepatic organoids with 
passaging
  Organoids were routinely cultured under HM medium, 
which was replenished every 2∼3 days depending on the 
culture density. The organoids were mechanically split ev-
ery seven days; the Matrigel was removed with cold PBS 
and the organoids were cut into 200∼250 μm sections 
using a sterile surgical blade under a dissecting micro-
scope and resuspended in fresh Matrigel at a 1：3∼1：5 
ratio. After solidification of Matrigel for at least 5 mi-
nutes, HM medium was gently added.

Hepatic organoids freezing and thawing
  To prepare for cryopreservation, the small sections of 
the split organoids were mixed with mFreSRTM (Stem Cell 
Technology; 05855), and freezing/thawing was carefully 
performed by standard procedures. After thawing, HM 
medium containing 10 μM Y-27632 (Tocris; 1254), a 
ROCK inhibitor, was used for three days. To determine 
the viability of the organoids, cells were dissociated into 
single cells using TrypLE Express (Thermo Fisher 
Scientific; 12605010) at 37℃ for 5∼10 minutes and 
stained with trypan blue. Live and dead cells were counted 
by Countess II Automated Cell Counter (Thermo fisher; 
AMQAX1000).

Karyotyping
  The organoids were dissociated into single cells and cul-
tured in Matrigel-coated T25 flasks containing DMEM/ 
F-12 supplemented with 50 ng/mL EGF and 10 ng/mL 
bFGF for 3∼4 days. A chromosomal GTG banding kar-
yotype analysis was performed at 550 resolution by 
GenDix, Inc. (Seoul, Korea).

Hepatic differentiation of the organoids
  For further hepatic differentiation, the organoids main-
tained on HM were cultured in expansion medium (EM) 
(21) supplemented with 20 ng/mL recombinant BMP7 
(PeproTech; 120-03) for 2∼3 days until the organoids 
were enlarged. The medium was replaced with differ-
entiation medium (DM) (21) and the organoids were in-
cubated for an additional six days. The medium was re-
placed every two days. 

Results and Discussion

Generation of hiPSCs-derived hepatic organoids
  As we previously descried (21), 3D hepatic organoids 
were generated from hiPSCs through the stepwise hepatic 
differentiation process (Fig. 1A). hiPSCs of 90% con-
fluence on Matrigel-coated dishes at 2∼3 days after seed-
ing were differentiated into definitive endoderm (DE) by 
treatment with Activin A for six days. The monolayer of 
cells with a cobblestone/petal-like prototypical morphol-
ogy of DE were differentiated into hepatic endoderm (HE) 
by treatment with bFGF and BMP4 under hypoxia for 
four days (Fig. 1A and 1B). For hepatic maturation, cells 
in HE stage were differentiated into immature hepatocytes 
(IH) and mature hepatocytes (MH) by treatment with dex-
amethasone, Oncostatin M, and HGF under hypoxia for 
four days and subsequently, under normoxic condition for 
eight days or more (Fig. 1A). Approximately 25 days after 
seeding, cyst-shaped 3D organoids were spontaneously 
generated from 2D monolayers of mature hepatocytes 
(Fig. 1B); the organoids (including a few free-floating or-
ganoids) were collected and embedded in Matrigel supple-
mented with HM. These conditions for maintaining func-
tional hepatic organoids were previously optimized 
(Supplementary Table S1) (21). The organoids increased 
in size during culture with HM (Fig. 1C) and expressed 
the epithelial and hepatic markers, E-cadherin and 
Albumin (ALB), respectively (Fig. 1D).

Long-term culture of hepatic organoids without 
passaging
  Matrigel-embedded organoids were maintained for four 
weeks and the medium was changed every alternate day 
(Fig. 2A, upper), since prolonged culture of organoids 
could enhance their maturity (25). The occurrence of dam-
aged organoids markedly increased, and the Matrigel loos-
ened and degraded over time with the appearance of dark 
granules after two weeks in culture (Fig. 2B, upper). 
Therefore, we replated the organoids weekly at a 1：2 ra-
tio in fresh Matrigel (Fig. 2A, lower). Organoids in fresh 
Matrigel reached over 1.5 mm in size at four weeks and 
appeared healthier with a thick layer (Fig. 2B, lower) com-
pared to those in Matrigel that had not been renewed (Fig. 
2B, upper). The gene expression level of the functional ma-
ture hepatocyte marker ALB was sufficiently higher in the 
group grown on regularly renewed Matrigel, until three 
weeks, compared to that in the group grown on the same 
Matrigel. However, after four weeks, gene expression lev-
els decreased drastically in both groups (Fig. 2C). 
Additionally, after five to six weeks, as the organoid size 
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Fig. 1. Generation of hiPSCs-derived hepatic organoids. (A) Schematic diagram of the generation protocol from hiPSCs to hepatic organoid. 
(B) Representative bright field image of hiPSCs, definitive endoderm, hepatic endoderm, and hepatic organoids. (C) Bright field image of 
organoids immediately after Matrigel embedding (D0) and in the same field during culture (D1 to D3). (D) Representative immuno-
fluorescence images of the hepatic organoids stained with E-cadherin and ALB.

reached 2 mm, dark granules inside the organoids in-
creased and organoids with dense morphology were ap-
peared (Supplementary Fig. S1). Furthermore, the gene 
expression levels of the hepatic marker CK18 decreased 
after two to four weeks in both groups by half of that in 
1-week control. The levels of the biliary/progenitor cell 
marker CK19 and the fetal hepatocyte marker AFP were 
considerably increased after long-term culture of the orga-
noids (Fig. 2C). Therefore, we performed serial passaging 
of the organoids to resolve the size limit challenge and im-

prove the functional maturity.

Long-term expansion of hepatic organoids by serial 
passaging
  For long-term expansion of functional hepatic organo-
ids, the organoids were mechanically split into 200∼250  
μm sections by a sterile surgical blade under a dissecting 
microscope and resuspended them in fresh Matrigel at a 
1：3∼1：5 ratio (Fig. 3A). Assessment of the morphology 
of small pieces of the organoids that were recovered, 
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Fig. 2. Long-term culture of hepatic organoids without passaging. (A) Scheme of long-term culture of the organoids. Matrigel-embedded 
organoids were maintained for four weeks without Matrigel renewal (upper). Organoids were divided at a 1：2 ratio and replated on fresh 
Matrigel weekly (lower). (B) Morphology of the organoids in the same field from week 1 to 4 without Matrigel renewal (upper) and with 
Matrigel renewal (lower). (C) mRNA expression levels of ALB, CK18, CK19, and AFP in organoids without Matrigel renewal and with 
Matrigel renewal weekly. Data are the mean±SEM (n=3) and analyzed by Student’s t-test, *p＜0.05 and ***p＜0.001.

showed growth to over 0.6 mm in size after one week (Fig. 
3A). Therefore, we passaged the organoids every seven 
days, which continued to expand far over passage 55, or 
1 year, without growth retardation (Fig. 3B). Theoretically, 
approximately 6.5×1022 hepatic cells can be obtained from 
one hiPSC for 1 year. Moreover, organoids are susceptible 
to long-term cryopreservation, whereas freezing and thaw-
ing of 2D-cultured PHHs were challenging. The viability 

of organoids was 73±2.56% after thawing and they regrew 
well (Fig. 3C). Additionally, organoids were stably main-
tained a normal karyotype until at passage 40 and 50 (Fig. 
3D). Finally, the gene expression levels of the functional 
mature hepatocyte marker ALB were maintained over long 
periods, and the levels of fetal hepatocyte marker AFP 
were remarkably decreased by passaging (Fig. 3E). 
Therefore, these data demonstrated that organoids can be 
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Fig. 3. Long-term expansion of hepatic organoids by serial passaging. (A) Schematic diagram of long-term culture of organoids by passaging 
(upper). Representative bright field image of hepatic organoids after passaging at day 0, 1, 3 and 7 in the same field (lower). (B) 
Representative morphology of each passage of hepatic organoids at day 7. (C) Representative morphology of organoids a day after thawing 
(upper). Cell viability was determined by cell counting with Trypan blue staining before freezing and 12 hours after thawing (lower). Data 
are the mean±SEM (n=12). (D) Karyotype analysis of the organoids at passage 40 and 50. (E) mRNA expression levels of ALB and AFP
at every 10 passages. Data are the mean±SEM (n=3) and analyzed by Student’s t-test, *p＜0.05 and ***p＜0.001.

exponentially expanded by serial passaging over long time 
periods, which decreases hepatic immaturity and also cry-
opreserved for long-term storage.

Differentiation potential of the long-term expanded 
hepatic organoids
  A previous study found that organoids undergo hepatic 

maturation by further differentiation under Differentiation 
Medium (DM) (Fig. 4A) (21). The levels of gene ex-
pression of mature hepatic markers ALB, RBP4, and 
CYP3A4 were substantially increased in DM-cultured or-
ganoids at passage 10 (Fig. 4B). Consequently, we com-
pared the differentiation potential of long-term expanded 
hepatic organoids after every 10 passages in DM, which 
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Fig. 4. Differentiation potential of the long-term expanded hepatic organoids. (A) Schematic diagram of organoid differentiation for further 
hepatic maturation. Hepatic medium (HM); Expansion medium (EM); and Differentiation medium (DM). (B) mRNA expression levels of 
ALB, RBP4, and CYP3A4 in HM- or DM-cultured organoids at passage 10. (C) Representative morphology and (D) mRNA expression levels 
of ALB, RBP4, and CYP3A4 of differentiated hepatic organoids at each indicated passage. Data are the mean±SEM (n=3) and analyzed 
by Student’s t-test. *p＜0.05; **p＜0.01; and ***p＜0.001.

revealed small and dense morphologies (Fig. 4C). Moreover, 
expression of ALB was maintained and that of RBP4 and 
CYP3A4 continuously increased (Fig. 4D). Therefore, 
these results implied that late passage organoids also have 
full differentiation potential until at least passage 50, and 
differentiation can be induced at any time point in vitro.
  In this study, we described the methods for exponential 
and long-term expansion of our novel and functional hu-
man hepatic organoids by serial passaging. The pro-
liferation and differentiation capacities of the organoids 
were maintained for long-term use. There was no evidence 
to cease proliferation and lose differentiation potential un-
til passage 55. Therefore, this method can be used to ad-
dress the challenge of a shortage of human hepatocytes. 

Hepatic organoids can be a practical and renewable source 
of liver cells for human cell-based and personalized in vi-
tro 3D liver models.
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