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Abstract Male germ cells require multiple epigenetic
reprogramming events during their lifespan to achieve reproduc-
tive capacity. An emerging body of compelling data demon-
strates that environmental exposures can be embodied within
the developingmale germ cell as epigenetic marks. In turn, these
epigenetic marks can impart information at fertilization to affect
the trajectory of offspring health and development. While it is
recognized that in utero epigenetic reprogramming of male germ
cells is a particularly susceptible window to environmental ex-
posures, other such windows exist during germ cell

development. The objective of this review is to discuss epigenet-
ic reprogramming events during male germ cell development
and to provide supporting evidence from animal and human
studies that during specific periods of development, germ cells
are susceptible to environmentally induced epigenetic errors.
Moving forward, the nascent field of sperm epigenetics research
is likely to advance our understanding of paternal environmental
determinants of offspring health and development.
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Introduction

Spermatozoa have been traditionally considered vehicles for the
sole delivery of the paternal genome to oocytes upon fertilization.
In this context, paternal contributions to offspring phenotype are
strictly limited to germline genetic informationwithout the ability
to impart environmental information that is encountered during
the life course. However, a growing body of compelling data
demonstrates that certain environmental exposures can be em-
bodied within the developing male germ cell without altering the
germline genetic information and, in turn, can affect the offspring
phenotype.

Epigenetics is the study of semipermanent, mitotically herita-
ble and, in germ cells, meiotically heritable changes in gene
expression that primarily result from modifications of chromatin
structure, rather than changes in the underlying DNA sequence
[1]. The three major mechanisms of epigenetics are DNA meth-
ylation primarily within CpG dinucleotides [2], a host of modi-
fications to histone tails [3], and non-coding RNAs (e.g.,
microRNAs and long non-coding RNAs) [4]. In concert, these

This article is part of the Topical Collection on Synthetic Chemicals and
Health

* J. Richard Pilsner
rpilsner@umass.edu

Haotian Wu
haotianw@schoolph.umass.edu

Russ Hauser
rhauser@hsph.harvard.edu

Stephen A. Krawetz
steve@compbio.med.wayne.edu

1 Department of Environmental Health Sciences, School of Public
Health and Health Sciences, University of Massachusetts Amherst,
149 Goessmann, 686 North Pleasant Street, Amherst, MA 01003,
USA

2 Department of Environmental Health, Harvard T.H. Chan School of
Public Health, Harvard University, Building I 14th Floor, 665
Huntington Avenue, Boston, MA 02115, USA

3 Department of Epidemiology, Harvard T.H. Chan School of Public
Health, Harvard University, Building I 14th Floor, 665 Huntington
Avenue, Boston, MA 02115, USA

4 Department of Obstetrics and Gynecology, C.S. Mott Center for
Human Growth and Development,Wayne State University School of
Medicine, 275 East. Hancock, Detroit, MI 48201, USA

Curr Envir Health Rpt (2015) 2:356–366
DOI 10.1007/s40572-015-0067-7

http://crossmark.crossref.org/dialog/?doi=10.1007/s40572-015-0067-7&domain=pdf


epigenetic mechanisms control chromatin structure to confer
cell-specific gene expression.

In humans, male germs cells do not attain reproductive capac-
ity until the second decade of life. Despite this long latency
period, male germ cells begin development early in fetal life
and, upon sex determination, embark on a remarkable journey
of cellular differentiation and morphological changes to prepare
for its sole purpose—the propagation of its genome. During de-
velopment, male germ cells progress from primordial germ cells
(PGCs), diploid spermatogonia to haploid spermatozoa that in-
volves stage- and testis-specific gene expression, mitotic and
meiotic divisions, and chromatin remodeling that is unique only
to sperm [5, 6]. To undergo these transformations, stage-specific
epigenetic reprogramming is required in addition to more mod-
est, but still significant, epigenetic changes that gradually prog-
ress germ cell phenotype toward reproductive capacity. As the
epigenome allows considerable cellular plasticity, epigenetic
changes across the many stages of male germ cell development
represent windows of susceptibility by which environmental ex-
posures can sculpt the epigenetic landscape.

In this review, we identify and discuss multiple windows of
susceptibility during mammalian male germ cell developmen-
tal in which dietary and toxicant exposures have been shown
to influence sperm epigenetics as well as offspring phenotype
in animal models and humans.

Windows of Male Germ Cell Development

In Utero Period and Primordial Germ Cells

Primordial germ cells (PGCs) arise from the proximal epiblast
with a population of <50 cells and undergo clonal expansion
as they migrate and colonize the genital ridge, the precursor to
the gonads [7] (Fig. 1). As PGCs are derived from cells of the
epiblast, which have begun on a course of somatic fate, epi-
genetic reprogramming is essential to re-establish totipotency
for sex-specific epigenetic programming of germ cells. The
loss of genome-wide methylation occurs passively during
the rapid proliferation of PGCs. Although the maintenance
DNA methyltransferase 1, DNMT1, is readily expressed in
PGCs, its essential cofactor, Uhrf1, is not, resulting in the loss
of maintenance of methylation during cell divisions [8].
Imprinted-specific differential methylated regions (iDMRs),
which are methylated in a parent-of-origin manner and have
escaped epigenetic reprogramming shortly after fertilization,
follow slower kinetics requiring active demethylation via Tet
proteins in mice [9]. In humans, a second wave of
reprogramming in PGCs occurs several weeks later to erase
imprinted marks via histone remodeling, most notable deple-
tion of H3K27me3 and removal of the histone variant, H2A.Z
[10]. At the end of methylation erasure, global levels of meth-
ylation of male PGCs are estimated at 16.3 % compared to the

70 % methylation in the embryo [11]. The lack of complete
erasure is mostly due to the resistant nature of intra-cisternal A
particles (IAPs), a class of retrovirus-like transposons, and
their proximal genes, to demethylation, which bestows a po-
tential mechanism for epigenetic inheritance [12]. The major-
ity of methylation is re-established in mitotically arrested type
A spermatogonia prior to birth and is fully resolved postnatal-
ly during spermatogenesis [13].

Nutri t ional Manipulat ion Given the extens ive
reprogramming that occurs in PGCs to redefine their epige-
netic landscape in a sex-specific manner, environmental expo-
sures in animal models during this period have been shown to
induce intergenerational and transgenerational effects through
the sperm epigenome. Severe in utero caloric restriction dur-
ing the window of re-acquisition of DNA methylation in
mouse (E16.5) led to differential methylated regions
(DMRs) in F1 sperm mainly at intergenic regions and CpG
islands, which were also reported to associate with regions of
histone retention [14•]. While both F1 and F2 male mice ex-
hibited metabolic-related disorders, DMRs of F1 sperm did
not persist in somatic tissue of F2 males [14•]. Interestingly,
the expression of nearby metabolic genes was altered in F2
males, indicating that although sperm DMRs were lost, other
epigenetic mechanisms, not measured in this study, could per-
sist to influence F2 gene expression [14•]. These results are in
contrast to another study in which in utero caloric restriction
resulted in the transmission of altered DNA methylation of a
lipogenic gene, Lxra, in F1 sperm to F2 somatic tissues [15].
Additionally, streptozotocin-induced gestational diabetes al-
tered the expression of imprinted genes, IGF2 and H19, in
F1 sperm and F2 pancreatic islets [16] and increased Peg3
DNA methylation in F1 sperm [17].

In an intriguing study in male mice, life-long (i.e., in utero
and adult) deficiency in folate, a key component of one-
carbon metabolism that facilitates the transfer of methyl
groups for DNA and histone methylation reactions, resulted
in craniofacial and musculoskeletal birth defects in their off-
spring [18]. Genome-wide analyses of sperm from folate-
deficient animals in adulthood identified 57 DMRs, none of
which was associated with iDMRs, but rather, they were as-
sociated with genes related to cancer, diabetes, and neurolog-
ical diseases. Moreover, global mono- and tri-methylations at
H3K4 and H3K9 were also reduced in folate-deficient F1
sperm [18]. While in the placenta, over 300 genes were dif-
ferentially expressed; however, only two associated with
sperm DMRs, suggesting that other epigenetic modifiers such
as sperm H3 methylation were involved. It must be noted,
however, that since exposure was life-long, it is difficult to
discern the timing of germ cell development (e.g., PGCs or
spermatogenesis) in which folate deficiency induced these
observed epigenetic effects.
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Environmental Toxicants Skinner and colleagues have re-
peatedly demonstrated environmental toxicant-induced
transgenerational effects through the paternal germ line in out-
bred rats. In utero exposure to chemicals exhibiting endocrine-
disrupting characteristics, such as vinclozolin [19–22], DDT
[23]; 2,3,7,8-tetrachlorodibenzo[p]dioxin (TCDD) [24, 25];
the jet propellant, JP8 [24, 26]; pesticide mixture of permeth-
rin and DEET [24, 27]; and plastic mixture of bisphenol-A,
(BPA), bis(2-ethylhexyl)phthalate (DEHP), and dibutyl
phthalate (DBP) [24, 28] all elicited DMRs in F3 sperm with-
out any additional exposures in subsequent generations. Inter-
estingly, the DMRs, which were mostly intergenic, displayed
little overlap between exposures [23, 24], indicating the lack
of specificity of environmentally inducedDMRs inmale germ
cells. Moreover, vinclozolin exposure at a similar dose and

timing produced no overlapping DMRs in sperm of F3 rats
[21] and mice [20], demonstrating again that the sperm epige-
nome may be programmed by environmental toxicants in a
stochastic fashion.

In cont ras t to the fa i th fu l inher i tance of the
transgenerational effects reported above, other studies have
reported that in utero exposure to pesticides, vinclozolin and
methoxychlor, modified methylation of iDMRs in F1 sperm,
but a trend toward recovery was observed starting in the F2
sperm and continued through the F3 [29, 30]. Similarly, in
utero exposure to the endocrine disruptors, vinclozolin,
BPA, or DEHP, in mice resulted in DNAmethylation changes
in F1 prospermatogonia, but these changes did not persist into
the F2 germline [31••]. Most recently, in utero exposure to
vinclozolin was found to alter the expression of microRNAs

Fig. 1 Windows of susceptibility during male germ cell development.
(1) Primordial germ cells (PGCs) arise from proximal epiblast (E7.5 in
mouse and G4 in humans) and undergo clonal expansion as they migrate
and colonize the genital ridge. Epigenetic remodeling of histone and
DNA methylation marks of PGCs are essential to achieve totipotency
for sex-specific epigenetic programming. In mice, comprehensive loss
of methylation in PGCs occurs (around E13.5) passively via Uhrf1
silencing and actively via Tet proteins to remove imprinted marks; while
in humans, the first wave occurs around G7 with the second wave, via
loss of H3K27me3, to erase imprinted marks at G11. Afterward, de novo
methylation occurs via Dnmt3a, Dnmt3b, and the non-catalytic Dnmt3l.
Histone modifications after PGC specification include hypoacetylation of
H3 and H4; hypermethylation of H3K4, H3K9, and H3K27; and replace-
ment of the histone variant, H2A.Z. (2) After birth, rapid expansion of
spermatogonia occurs in mice; however, after an initial clonal expansion,
germ cells remain most dormant with intermittent expansion, most nota-
ble a few years before puberty upon awakening of the HPG axis. This
prepubertal clonal expansion may be susceptible to environmental expo-
sures as indicated by epidemiologic evidence. (3) Initiated at the onset of
puberty by the activation of HPG axis, spermatogenesis occurs in the
seminiferous epithelium and is supported by mitotically inactive Sertoli
cells. Final DNA methylation patterns, including imprinted domains, are

acquired possibly via CTCF–BORIS switch during spermatocytogenesis.
Also, histone variants begin to be incorporated. (4) During the first stage
of spermiogenesis, extensive chromatin remodeling occurs via the
histone-protamine exchange, with acetylation of histone, insertion and
removal of transition proteins, and then insertion of protamines 1 and 2.
Approximately 90 and 99 % of histones are replaced with protamines in
humans and mice, respectively. (5) During epididymal maturation, the
last stage of spermiogenesis, germ cells become motile and exosomes
shuttle proteins and ncRNA to mature spermatozoa. (6) Shortly after
fertilization, the two parental genomes are demethylated in an asymmet-
rical manner: the paternal genome is actively depleted of DNA methyla-
tion, while the maternal genome (shown in read), which harbors substan-
tially less DNAmethylation than sperm, undergoes a passive loss of DNA
methylation that is characterized by a dilution effect as a result of the lack
of maintenance of DNA methylation over multiple cleavage divisions.
Demethylation is not complete as imprinted genes intra-cisternal A par-
ticles (IAPs) and heterochromatin regions around centromeres largely
escape this demethylation event. Sperm protamines are replaced with
oocyte histones with hours of fertilization. Windows of susceptibility
during male germ cell development figure; (2015), by J. Richard Pilsner.
Made available under Creative Commons Attribution 4.0 License
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(miRNAs), miR-23b, miR-21, and let-7, in F1–F3 PGCs;
however, no prominent changes in DNA methylation were
observed in either F1 PGCs or mature sperm [32•].

It is currently unclear from the above studies whether the
observed environmentally induced DMRs in sperm are direct
effectors of offspring programming or they are themselves
biological intermediates for other epigenetic modifiers [14•,
18], such as unmeasured histone modifications and/or altered
non-coding RNA expression. Alternatively, these DMRs may
act as non-causal markers of exposures, such that environmen-
tal exposures may operate through other pathways to induce
adverse offspring health. As a consequence of the difficulty of
conducting life course studies in humans, there is currently no
data that we are aware of on the associations between in utero
exposures and adult sperm epigenetic endpoints.

Infancy and Prepubertal Periods

The timing of postnatal testicular development varies consid-
erably among mammalian species with a marked distinction
between rodents and higher primates [33] (Fig. 1). In labora-
tory rodents, testicular development begins a few days after
birth in which mitotically arrested prospermatogonia resume
clonal expansion resulting in an estimated 30-fold increase in
spermatogonia prior to puberty [34]. In contrast, humans have
a long latency period between birth and puberty, whereby after
the first few months of postnatal life, referred to as mini-pu-
berty, steroidogenic activity and testicular development are
thought to remain quiescent until the onset of puberty [35].

This notion of inactive testicular development in childhood
was largely driven by palpation and Prader’s orchidometer
measures that detected no change in testicular volume until
the onset of puberty [36]. However, employing more sensitive
methods, such as stereological measures from testes obtained
after autopsy, data indicate that testes, despite displaying no
outwardly changes in size, are actively developing organs
during infancy [37, 38]. For example, during the first 10 years
of life, stereological measures revealed that testicular volume
tripled with increases in seminiferous tubule length and the
number of spermatogonia and Sertoli cells [37]. Another study
reported that germ cell proliferation is not linear with age but
may occur inwaves, such that, during periods from3 to 8 years
and at 10 years to the onset of puberty, experienced marked
proliferative activity [38]. This proliferation has been pro-
posed to be related to transient awakening of the hypothala-
mus–pituitary–gonadal (HPG) axis during childhood [39] and
to a more pronounced awakening around 2 years before pu-
berty onset, also known as the slow growth period [40–42].
Thus, the HPG axis during infancy, and especially prior to
puberty, may be activated to Bprime^ spermatogonia prolifer-
ation prior to full activation at puberty.

This Bpriming^ of spermatogonia proliferation provides a
biological explanation for the epidemiologic data associating

prepubertal environmental exposures with male germ line ef-
fects [43]. In Seveso, Italy, acute high TCDD exposure from a
chemical plant accident during infancy/prepuberty was asso-
ciated with reduced sperm concentration and motility, while
the opposite was observed with exposure around puberty [44].
Moreover, a reduction in estradiol and an increase in FSH
were observed in both groups; however, no changes in hor-
mone levels or sperm quality were observed among TCDD-
exposed adults [44]. In support of the observed time-
dependent effects of TCDD, using population data in
Överkalix, Sweden, studies reported that the grandchild expe-
rienced shorter survival and greater risk of diabetes mortality
if the paternal grandfather experienced at least one Bgood^
harvest during the ages of 9 to 12 and longer survival and
decreased risk of diabetes if the paternal grandfather experi-
enced at least one Bpoor^ harvest during the same age period
[45–47]. More recently, male, but not female, offspring of
men who were smoking before the age of 11 were found to
have an increased BMI at age 7 and increased waist circum-
ference and fat mass by age [46], which persisted through the
latest follow-up at age 17 [48]. Offspring of mothers who
reported smoking before the age of 11 showed no increase
in BMI up to age 17 [48]. Together, these studies, while they
lack sperm epigenetic data, provide compelling data indicat-
ing that the prepubertal period, a time in which the HPG axis
begins to awaken to drive spermatogonia proliferation, is a
sensitive period in which environmental exposures may target
the epigenetic programming of germ cells. Epidemiologic
studies are needed to confirm these observational studies by
demonstrating that environmental exposures during the pre-
pubertal period are associated with sperm epigenetics across
generations.

Spermatogenesis in Adulthood

To date, the majority of experimental research in animals has
focused on environmental exposures during in utero epigenet-
ic reprogramming of PGCs with little regard to other suscep-
tible periods occurring in the adult. Spermatogenesis, the final
process of germ cell development that entails the progression
from diploid spermatogonia to haploid spermatozoa, requires
dynamic epigenetic reprogramming for the production of via-
ble sperm for fertilization (Fig. 1). In humans, spermatogene-
sis is estimated to take around 74 days (around 35 days in
mice) to produce mature spermatozoa from undifferentiated
spermatogonia, and it can be divided into two sequential pro-
cesses: spermatocytogenesis, which includes spermatogonial
proliferation and differentiation through mitosis to produce
spermatocytes and meiosis I and II to produce round sperma-
tids, and spermiogenesis, in which differentiation and matura-
tion of spermatids occur without further cellular division
(Fig. 1). In the end, 32 spermatozoa are produced from one
type B spermatogonium in humans, which is in great contrast
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to rodents where premeiotic cell divisions are intense, such
that one spermatogonium has the potential to produce 4096
spermatids [33]. This dramatic difference in clonal expansion
of male germ cells among man and rodents may beget caution
in the interpretation of rodent data. For example, if an epige-
netic error such as DNA methylation occurs in the first few
cell divisions in humans, this error, if not corrected, would
propagate to affect only a few spermatozoa in a large pool,
compared to the same scenario in mice where this error is
likely to be more pronounced.

Acquisition and loss of methylation have also been report-
ed during spermatocytogenesis [13, 49]. In adult mice, passive
demethylation, likely occurring during spermatogonial cell
divisions, was found to be enriched in interspersed repeat
sequences, while methylation acquisition was observed in
the pachytene stage of primary spermatocytes and was
enriched in non-repeat sequences located within or flanking
gene bodies as well as in paternal iDMRs [13]. The mecha-
nism of this targeted resetting of DNA methylation during
spermatocytogenesis may be linked with the expression of
BORIS [49], a testis-specific protein paralogous to the insula-
tor protein of imprinted marks, CTCF. Interestingly, BORIS
and CTCF were expressed in a mutually exclusive manner
during spermatogenesis in mice and humans [49]. The pro-
posed model suggests that BORIS is upregulated in primary
spermatocytes and associates with demethylases that erase
methylation marks, and once CTCF is reactivated (and
BORIS removed), targeted de novo methylation of paternal
imprints and other regions is initiated in postmeiotic cells [50],
which contradicts previous findings [13], likely due to meth-
odological differences in methylation detection. Furthermore,
age-dependent intra-individual alterations in sperm DNA
methylation have been reported, indicating that sperm meth-
ylation can be modified throughout the adulthood [51]. Taken
together, these data signify that spermatocytogenesis is an
important developmental period that shapes DNAmethylation
profiles of mature spermatozoa.

After acquisition of final DNA methylation profiles, sper-
matids enter spermiogenesis, a multistep developmental win-
dow of global reorganization of chromatin [52]. Starting dur-
ing meiosis, the canonical histones, H1, H2A, H2B, and H3,
are replaced by testis-specific variants, which decrease the
stability of nucleosomes [53, 54]. Next, hyperacetylation of
histone tails occurs, most notably at H4K5 and H4K8, which
Brelaxes^ nucleosomes to further enhance histone destabiliza-
tion [52]. Brdt, a testis-specific protein harboring two
bromodomains capable of specifically recognizing acetylated
histones, is then recruited to H4K5 and H4K8 acetylation to
facilitate histone removal [55, 56]. Transition nuclear proteins,
TNP1 and TNP2, then displace histones and are themselves
replaced with the protamine proteins, protamine 1 and prot-
amine 2 (PRM1 and PRM2), which are typically found in
equal proportions [57]. Protamine packaging of DNA restricts

transcriptional activity and therefore has been proposed as a
non-traditional form of epigenetic regulation unique to sperm
cells [6]. It also is critical to enhance motility and safeguard
the paternal genome from the harsh environment soon to be
encountered in the epididymis and female reproductive tract
[58].

This histone–protamine exchange; however, is not com-
plete, such that an estimated 10 and 1% of histones in humans
and mice, respectively, are retained in mature sperm [59, 60].
Histone retention is also not randomly distributed throughout
the genome, suggesting that they may play a form of
postfertilization epigenetic regulation. Several studies using
human and mouse sperm report that histone retention is
enriched in regulatory regions of developmental and
imprinted genes [59, 61–63]. However, two recent studies
contradict these findings showing that nucleosomes were gen-
erally not located in promoter regions including developmen-
tal promoters but rather in gene-poor regions [64, 65]. Addi-
tional work is needed to resolve these opposing findings be-
fore a definitive role for sperm nucleosomes, as well as their
histone modifications, is assigned to embryo development.

Upon exiting the testes, spermatozoa are morphologically
transformed but are immotile and lack fertilization potential.
Sperm maturation occurs through sequential modifications
within distinct microenvironments during the 1–2-week tran-
sit through of the epididymis, which is estimated to be 6–7 m
long in humans [66, 67]. Additionally, epididymal-specific
exosomes (Bepididymosomes^) are reported to act as carriers
of somatic proteins and RNAs to sperm [68, 69•, 70]. Inter-
estingly, epididymal secretions are regulated by androgens
[71, 72], indicating that environmental factors that disrupt
endocrine signaling may impact sperm procurement of
exosomal proteins and RNAs [73]. Thus, while epididymal
sperm maturation is directed at the acquisition of fertilization
potential, exosomal shuttling may also provide the final op-
portunity for sperm to Bepigenetically match^ their current
environment prior to fertilization. To our knowledge, no study
has examined the direct effect of environmental exposures in
the epididymis on the sperm epigenome; however, recently
developed model systems may provide future insights [69•].

Nutritional Manipulations Along with in utero environmen-
tal exposures, emerging data indicate that the epigenome dur-
ing the dramatic transformation of male germ cells that occurs
in spermatogenesis is also susceptible to environmentally in-
duced epigenetic programming. Nutritional manipulation,
such as low-protein diet [74] and prediabetic conditions
[75], in adult rodents induces metabolic disorders in offspring
through changes in sperm epigenetics of founder male mice.
For example, a low-protein diet in adult mice resulted in the
downregulation of transcriptional factors and chromatin regu-
lators as well as a decrease in H3K27me3 of specific loci in
sperm; however, genome-wide DNA methylation was largely
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unresponsive to the diet [74]. This latter finding is in contrast
to other studies, such that streptozotocin-induced prediabetes
conferred widespread alterations to sperm DNA methylation
patterns [75]. The susceptibility of chromatin to nutritional
manipulation during spermatogenesis is most recently
highlighted in work in Drosophila, where high-sugar diet in
adult males altered methylation of H3K9/K27me3 within
chromatin-bound regions of mature sperm that conferred met-
abolic programming of offspring [76]. Similarly, high-fat diets
in adult mice resulted in altered miRNA content [77••] and
increased the acetylation of H3K9 in late round spermatids to
early elongating spermatids, possibly mediated by a corre-
sponding decreased expression of SIRT6, a stress-response
deacetylase [78]. The effect of high-fat diet on global DNA
methylation of sperm, however, is inconsistent [77••, 79]

Toxicant Exposure Exposure of adult mice to particulate air
pollution obtained from Hamilton, Ontario, increased global
methylation of spermatogonia, which persisted through sper-
matogenesis and remained elevated in mature sperm [80]. In-
terestingly, these effects were observed after 10 weeks, but not
after 3 weeks, of exposure, and persisted for 6 weeks after
exposure removal, indicating that the epigenetic modifications
occurred in early stages of spermatogenesis (e.g., premeiotic
germ cells) [80]. Using a gene candidate approach,
chromium(III) chloride exposure to adult mice for 2 weeks
decreased sperm DNA methylation of the 45S ribosomal
RNA gene [81, 82].

In regard to iDMRs, adult exposure to methoxychlor, an
endocrine-disrupting compound, decreased sperm DNA
methylation of the paternal iDMR of Meg3 and increased
methylation of the maternal iDMRs of Mest, Snrpn, and
Peg3 [30]. Similarly, acrylamide exposure for 2 weeks in adult
rats decreased sperm DNA methylation of IGF2 iDMR after
35 days, but not after 19 days, indicating that imprinted re-
gions of spermatogonia and primary spermatocytes are sus-
ceptible to environmental exposures [83]. These studies dem-
onstrate that the loss and gain of methylation in iDMRs during
spermatocytogenesis as previously described [13, 49] can be
modified by environmental exposures.

In humans, eight cross-sectional studies in adults to date
have documented that chemical exposures, mostly cigarette
smoking, are linked with alterations to the sperm epigenome
(Table 1). Sperm from adult male smokers exhibited altered
miRNA expression [84], higher LINE-1 methylation [85], el-
evated histone-to-protamine ratios [86, 87], and increased
global acetylation of H4K8 and H4K12 [88], compared to
sperm from non-smokers, suggesting that chronic smoking
exposure may lead to a host of epigenetic changes in the
sperm, although imprinted genes H19 and IGF2 were un-
changed [89]. In regard to endocrine-disrupting compounds,
exposure to perfluoroalkyl substances among a general popu-
lation study in Europe did not find consistent associations
between exposures and global as well as repetitive sequence
DNA methylation [90]. Miao et al. (2013) found that urinary
BPA exposures were inversely associated with LINE-1 meth-
ylation in occupationally exposed workers as well as in non-

Table 1 Summary of the epidemiologic studies of environmental influences on sperm epigenetics in adulthood

Life period Design Exposure Main results Reference

Adulthood Cross-sectional Smoking 25 unique miRNAs showed different expression levels between smokers
and non-smokers

[84]

Adulthood Cross-sectional Smoking Before swim up, acetylations of H4K8 and H4K12 sperm cells were
statistically significantly increased in smokers compared to non-smokers
while no significant changes were observed in the global 5-mC% or
acetylation of H3K9, H3K14, H4K5, and H4K16. The sperm cells isolated
after swim up revealed no differences in acetylation of any histone
or global 5-mC%

[88]

Adulthood Cross-sectional Smoking Heavy smokers showed significantly higher percentage of sperm cells with
elevated histone-to-protamine ratios compared to never smokers

[86]

Adulthood Cross-sectional BPA BPA exposure is significantly correlated with lower-sperm LINE-1
methylation among Chinese factory workers, including those exposed
to BPA levels equal or lower than reported in the US general population

[91•]

Adulthood Cross-sectional Smoking Smokers showed more abnormal histone to protamine transition
compared to non-smokers

[87]

Adulthood Cross-sectional Smoking Smoking is associated with elevated methylation of LINE-1, but not
Alu and Sata.

[85]

Adulthood Cross-sectional Smoking H19 and IGF2 methylations were not different between smokers
and non-smokers

[89]

Adulthood Cross-sectional Perfluoroalkyl
substances

No consistent associations between exposure to perfluroalkyl substances
(perfluorooctane sulfonate, perfluorooctanoic acid, perfluorohexane
sulfonic acid, perfluorononanoic acid) and global or repetitive sequence
(LINE-1, Alu, Satα) DNA methylation

[90]
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exposed workers with low exposures. Interestingly, no signif-
icant associations were found between urinary BPA and
LINE-1 methylation of leukocyte DNA [91•]. This observed
decrease in LINE-1 methylation in sperm may have strong
public health implications as the occupationally non-exposed
workers in the study had lower BPA levels than what has been
reported for the US general population [92].

Sperm Epigenetics and Offspring Development

After fertilization, parental-specific epigenetic marks of gametes
undergo reprogramming to establish totipotency in the develop-
ing embryo. The kinetics of demethylation differs between pa-
rental genomes, whereas the paternal genome is actively and the
female genome is passively demethylated [93] (Fig. 1). While it
has been widely recognized that parental-specific iDMRs and
certain classes of repetitive sequences, such as IAPs, escape this
reprogramming event [94], sperm DNA methylation in other
genomic loci may also be resistant to reprogramming and also
contribute to this non-Mendelian form of inheritance, as demon-
strated in the numerous studies discussed in the previous sec-
tions. Technical advances in next-generation bisulfite sequencing
of small quantities of cells have recently allowed for the resolu-
tion of genome-wide methylation maps of mouse gametes and
through post-implantation embryogenesis to better understand
gamete-specific heritable DMRs. In addition to known iDMRs,
one study identified over 1600 CpG island germline DMRs
between oocytes and sperm and over half of these were found
to be at least partially resistant to demethylation of which 34
were sperm-methylated germline DMRs [95]. Moreover,
Meissner and colleagues identified over 4894 sperm-derived
DMRs that were enriched in intergenic regions and retained
intermediate methylation values during demethylation [96]. Sim-
ilarly, 34 sperm-derived DMRs identified within CpG islands
were also partially resistant to demethylation [95]. However, in
both of these studies, these DMRs appear to be targets for de
novo methylation after implantation [95, 96]. The relevance of
these sperm-derived DMRs in regard to environmental expo-
sures and epigenetic inheritance remains unclear.

Furthermore, the epigenetic inheritance via sperm is not con-
fined to DNA methylation, as other epigenetic factors such as
histone retention and non-coding RNA (ncRNA) are likely to
act, in concert, to elicit paternal epigenetic inheritance. Since
sperm protamines are quickly replaced, within 1 h, by oocyte-
derived histones in the zygote [97, 98], the location and modifi-
cations of retained histones in the sperm genome likely provide a
structural framework to govern reprogramming events within the
paternal genome. Similarly, sperm-derived RNAs, including
ncRNAs, are proposed to influence embryo development and
transgenerational inheritance by providing a window into the
environmental history of sperm [99]. For example, paternal
stress in adult mice altered sperm miRNA content as well as
offspring stress responsivity [100]. Recent data also indicate that

sperm-derived factors may not be the only paternal component
for proper embryo development, such that ablation of the semi-
nal plasma by surgical excision in mice impaired conception
and, among surviving offspring, altered growth trajectory and
metabolic parameters [101]. Recently, human seminal exosomes
were found to harbor unique profiles of small ncRNAs, includ-
ingmiRNAs, YRNAs, and tRNAs [102•]. These results indicate
that the seminal plasma is not only a transport medium for sperm
but contains important non-genetic constituents, such as hor-
mones and exosomes, that act to regulate the female tract envi-
ronment to support embryo development [103].

Conclusions

There are numerous epigenetic reprogramming events
throughout the life course of the male germ cell, and each
may represent a unique window of susceptibility to environ-
mental exposures. Data demonstrate that such inputs from the
environment are embodied within the epigenome of sperm
and, in turn, are acquired during embryo development. Future
animal research needs to expand on these findings by charac-
terizing the full spectrum of sperm epigenetic changes induced
by environmental exposures at each window of germ cell de-
velopment. Additionally, prospective cohort studies are nec-
essary to determine the response of sperm epigenetics in rela-
tion to early life environmental exposures. Understanding
sperm epigenetics is critical to advance our understanding of
paternal environmental determinants of offspring health and
development. Such research may result in a paradigm shift in
the way reproductive success is viewed, such that the burden
of environmental health may not be restricted to expectant
mothers but rather is shared with male partners. In this man-
ner, males may need to monitor their environmental health
months prior to conception in order to optimize their sperm
epigenome for fertilization.
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