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The availability of genome sequence data has greatly enhanced our understanding of the adaptations of
trypanosomatid parasites to their respective host environments. However, these studies remain somewhat
restricted by modest taxon sampling, generally due to focus on the most important pathogens of humans.
To address this problem, at least in part, we are releasing a draft genome sequence for the African
crocodilian trypanosome, Trypanosoma grayi ANR4. This dataset comprises genomic DNA sequences
assembled de novo into contigs, encompassing over 10,000 annotated putative open reading frames and
predicted protein products. Using phylogenomic approaches we demonstrate that T. grayi is more closely
related to Trypanosoma cruzi than it is to the African trypanosomes T. brucei, T. congolense and T. vivax,
despite the fact T. grayi and the African trypanosomes are each transmitted by tsetse flies. The data are
deposited in publicly accessible repositories where we hope they will prove useful to the community in
evolutionary studies of the trypanosomatids.
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Background & summary
Most trypanosomatid parasites of humans, livestock and plants are transmitted between hosts by
invertebrate vectors. They are widespread, and are collectively responsible for substantial economic and
health losses in many of the world’s poorest regions. Within this group are the Leishmania species, the
causative agents of Leishmaniasis, as well as the monophyletic Trypanosoma genus, which includes
Trypanosoma cruzi and Trypanosoma brucei, causative organisms of Chagas disease and African
trypanosomiasis respectively. Despite a probable single origin of vertebrate parasitism within this
monophyletic group1,2, the challenge of escaping clearance by host immune responses has given rise to a
variety of disparate parasitic lifestyles including intracellular parasitism (Leishmania spp. and T. cruzi)
and antigenic variation (T. brucei)3–5.

Since the publication of the T. cruzi, T. brucei and Leishmania major genomes in 20056–8, several other
trypanosomatid genome sequences have been released, including further Leishmania species and other
African tsetse transmitted trypanosomes related to T. brucei9–12. The availability of sequence data for
other T. brucei clade trypanosomes has increased our understanding of the evolution of the primary
immune evasion strategy of this parasite as well as the evolution of cell surface molecules that represent
the host-parasite interface12,13. Similarly, sequencing of disparate T. cruzi isolates has provided major
insights into population structure and dynamics14,15. Though more species now have published genome
sequences, sampling across the trypanosomatid phylogeny is limited and thus there are limited resources
for comparative genomic investigations.

To address this key knowledge gap, here we provide a draft genome sequence of the African
trypanosomatid parasite of crocodiles, Trypanosoma grayi (Data Citation 1 and Data Citation 2). T. grayi
is an extracellular parasite of the bloodstream of crocodiles, and though it is transmitted by tsetse flies it is
closely related to other trypanosome parasites of crocodiles in South America16. The trypanosome is
taken up by tsetse flies in a bloodmeal and resides solely within the mid- and hindgut. Unlike salivarian
trypanosomes, transmission between crocodile hosts occurs via oral contamination with infective
metacyclics in tsetse faeces17,18. This faecal transmission strategy is employed by many other
trypanosomes, including T. cruzi.

BLAST and OrthoMCL analysis of the genome sequence and predicted gene models respectively
suggests that T. grayi possesses neither the T. brucei type VSG surface antigens nor the T. cruzi type
mucin coat. Thus T. grayi may have evolved an alternative family of primary surface antigen genes, or
possess a novel immune evasion strategy geared to survival in the reptilian bloodstream19. Both
phylogenomic reconstruction and best-BLASTp analysis demonstrate that T. grayi is more closely related
to T. cruzi than to T. brucei (Figure 1 and Table 1). This result refines the phylogenetic position of T.
grayi, that in previous studies using 18S ribosomal RNA and glycosomal glyceraldehyde dehydrogense
(gGAPDH) genes was placed in a separate clade from both T. cruzi and T. brucei, often with other reptile
or bird trypanosomes20–22. Additional taxon sampling in this region of the phylogenetic tree will be
important for resolving these relationships further. We anticipate that these data will provide a useful
comparator for evolutionary studies of the adaptations of trypanosomes to different vertebrate hosts, as
well as increasing the available sequence data resources for this globally important group of parasites.

To generate the draft genome, DNA from T. grayi strain ANR4, isolated from the midgut of the tsetse
fly Glossina palpalis gambiensis in The Gambia20 was sequenced by 91 bp paired-end Illumina sequencing
and assembled de novo into contigs (Data Citation 2). We inferred the phylogenetic position of T. grayi
strain ANR4 through construction of a concatenated protein sequence phylogeny using 959 single copy
nuclear encoded genes. We also confirmed that both the 18S ribosomal RNA sequence and gGAPDH
sequence for our T. grayi strain ANR4 were 100% identical to those provided in GenBank (AJ005278 and
AJ620257 respectively) for T. grayi. Furthermore, we have identified and annotated over 10,000 putative
open reading frames and have submitted this information to public databases alongside the draft genome
sequence.

Methods
Sequencing and assembly
T. grayi strain ANR4 was grown in vitro in Cunningham’s medium and genomic DNA was extracted
from agarose plugs using standard phenol/chloroform methods. DNA was sequenced by 91 bp paired-
end Illumina sequencing at the Beijing Genomics institute (www.genomics.cn/en/). Raw reads were
subject to quality filtering using trimmomatic23. This was done to remove low quality bases and read-
pairs as well as contaminating adaptor sequences prior to assembly. Sequences were searched for all
common Illumina adaptors (the default option) and the settings used for read processing by trimmomatic
were ‘LEADING:10 TRAILING:10 SLIDINGWINDOW:5:15 MINLEN:50’. The quality filtered paired-
end reads were then subject to read error correction using the ALLPATHS-LG24 ErrorCorreactReads.pl
program using the default program settings. The corrected reads were then assembled using SGA25 using
default settings and setting the mimimum overlap length to 80. The assembled contigs were scaffolded by
mapping the trimmed and filtered paired-end reads (described above) to the assembled contigs using
BWA-MEM and scaffolding the contigs using the SGA25 scaffolding algorithm using default program
settings. The resultant scaffolds were then subject to fourteen rounds of assembly error correction and
gap filling using Pilon (http://www.broadinstitute.org/software/pilon/) using the ‘–fix all’ option and
setting the expected ploidy to diploid. Following scaffolding and assembly error correction all filtered
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paired-end reads were mapped to the contig set using BWA-MEM26, paired-end reads that did not map
to the assembly were isolated and the above assembly, scaffolding and correction process was repeated
until all no-further reads could be assembled. The final draft assembly contained 2,963 sequences greater
than 100 bp in length with an N50 of 16.7 kb and a total assembly length of 20.9 Mb and average coverage
per assembled contig of ~105X (Figure 2a,b).

ORF finding and annotation
The assembled draft genome of T. grayi was subject to gene model prediction using Augustus27. In brief,
an initial set of gene models were predicted using gene prediction parameters inferred by training
Augustus using the set of genes currently annotated in the T. cruzi genome. These gene model parameters
were used to predict a training set of genes in the draft assembly of T. grayi. The training set of genes were
then used for multiple iterations of prediction and training until prediction converged on a final set of
gene models and no further genes could be detected. The identity of the T. grayi DNA used for
sequencing was confirmed against database sequences for 18S ribosomal RNA and glycosomal GAPDH
genes (AJ005278 and AJ620257 respectively).
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Figure 1. Phylogenetic tree of selected Euglenozoa. Phylogeny is inferred from 119,006 aligned amino acid

positions (1,547,078 amino acids) from 959 nuclear genes. The topology was calculated using Bayesian

inference (BI), bootstrapped maximum likelihood (ML) analysis and bootstrapped neighbor joining (NJ). ML

used the JTT model of amino acid substitution and CAT rates, BI used the WAG model of amino acid

substitution and gamma distributed rates approximated by four discrete gamma categories. Branch lengths

shown are from the ML topology, scale bar indicates number of changes per site. Values shown at internal

nodes represent bootstrap support values for ML and NJ tree as well as posterior probabilities for BI tree. In

all cases support for each bipartition in the topology is 100%. Giardia lamblia, a diplomonad excavate, is

included as an outgroup as the Euglenozoa are also members of the Excavata.
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Gene family analysis
The protein sequence files for a subset of available trypanosomatid genomes were downloaded from
TriTrypDB. These were combined with the newly predicted protein sequences from T. grayi and subject
to orthologue group clustering using OrthoMCL28. The presence of gene families in each species was
analyzed and the overlap in gene family content between each species and that of the newly assembled

Number of predicted genes Species

3,709 Trypanosoma cruzi strain CL Brener

2,109 Trypanosoma cruzi marinkellei

1,113 Trypanosoma cruzi

694 Trypanosoma cruzi Dm28c

194 Trypanosoma vivax Y486

164 Trypanosoma brucei brucei strain 927/4 GUTat10.1

156 Trypanosoma brucei gambiense DAL972

132 Trypanosoma congolense IL3000

44 Angomonas deanei

36 Trypanosoma rangeli

27 Strigomonas culicis

26 Trypanosoma brucei TREU927

22 Leishmania major strain Friedlin

17 Leishmania braziliensis MHOM/BR/75/M2904

17 Leishmania infantum JPCM5

16 Leishmania guyanensis

Table 1. BLASTp similarity scores for T. grayi predicted proteins with a bitscore value of >75 using the

full non-redundant database from NCBI. Number of ‘top hits’ with a bitscore value of >75 for each

trypanosomatid species are reported. Database was interrogated on 28 February 2014, using BLAST

2.2.27+.

Figure 2. Assembly statistics. (a) General assembly statistics describing assembled contig length and

coverage. (b) Graph showing distribution of coverage estimates for each assembled contig estimated using

median and mean coverage depth. (c) Venn diagram showing the distribution of orthologous gene families

in four of the species used for OrthoMCL clustering.
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T. grayi genome was compared. On average the predicted gene model set of T. grayi contained 95% of the
gene families present in T. brucei, T. vivax and T. cruzi (Figure 2c). To put this in context, T. cruzi and
T. vivax contain 84 and 93% of the gene families present in T. brucei respectively (Figure 2c).

Phylogenetics for strain verification
Orthologous sequence groups that contained only single copy genes in each of the species that were
subject to clustering were selected (n= 959). These single copy gene families were aligned using
MergeAlign29 and concatenated to form a super-alignment containing 119,006 aligned amino acid
positions across all species (1,547,078 amino acids). This concatenated alignment was subject to

Figure 3. Alignment of T. grayi contigs against syntenic region of T. cruzi (Chr 36), T. brucei and L. major.

T. grayi assembled contigs were mapped to a contig from Chr 36 of T. cruzi (TcNEL, top) in Artemis (http://

www.sanger.ac.uk/resources/software/artemis/) together with the equivalent syntenic region from L. major.

Transcripts (red, blue) are shown beneath mapped contigs (teal, orange) and orthologous sequences are

shown as lines behind the main graphic. Despite the fragmentary nature of the T. grayi dataset, the data

map well to this highly conserved region of the trypanosomatid genomes. Tb927 is the Trypanosoma brucei

TREU927 genome strain. TcNEL is the Trypanosoma cruzi CL Brenner non-Esmereldo-like genome strain.
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phylogenetic inference using bootstrapped maximum likelihood, Bayesian inference and bootstrapped
neighbor joining methods. Maximum likelihood trees were inferred using FastTree30, utilizing the JTT
model of amino acid substitution and CAT rates. A Bayesian inference tree was inferred using MrBayes
v3.1.231 using the WAG model of amino acid substitution and gamma distributed rates approximated by
four discrete gamma categories. Two runs each of four chains were initiated and allowed to run for
200,000 generations sampling every 500 generations. Convergence was assessed through visual inspection
of log-likelihood traces and through analysis of the standard deviation of split frequencies. The analysis
had reached stationary phase after 15,000 generations and these first 15,000 generations were discarded as
burnin prior to inferring the consensus tree. The neighbor joining tree was inferred using QuickTree32

using the default parameters. The final topology is shown in Fig. 1 and received 100% support at each
bipartition from all methods.

Data Records
Data are available both via GenBank as (accession numbers JMRU01000001 to JMRU01002871) and as
contigs (accession JMRU00000000.1) under BioProject PRJNA244495, BioSample SAMN02726834 (Data
Citation 1). Raw read files are at NCBI SRA under experiment accession SRX620256 and run accession
SRR1448313 (Data Citation 2).

Data are also available at TriTrypDB33 as a hosted genome integrated with other trypanosomatid
datasets, http://tritrypdb.org/tritrypdb/showApplication.do (search for all annotated genes), http://
tritrypdb.org/common/downloads/Current_Release/TgrayiANR4/ (file download) and http://tritrypdb.
org/tritrypdb/getDataset.do?datasets= tgraANR4_primary_genome_RSRC for dataset description.

Technical Validation
The contig statistics of the assembly are reported in Figure 2, and an example region of an assembly
against several related trypanosomatid genomes is shown in Figure 3. Phylogenetic strain validation as
described above confirmed the placement of T. grayi ANR4 with other species of genus Trypanosoma
(Fig. 2) and identity of the sequenced genome here with the previously reported 18S and glycosomal
GAPDH genes (AJ005278 and AJ620257 respectively). The phylogenomic position of T. grayi closer to
T. cruzi than T. brucei is also supported by BLASTp analysis of all predicted open reading frames
(Table 1).

References
1. Simpson, A. G., Stevens, J. R. & Lukes, J. The evolution and diversity of kinetoplastid flagellates. Trends Parasitol. 22,
168–174 (2006).

2. Flegontov, P. et al. Paratrypanosoma is a novel early-branching trypanosomatid. Curr. Biol. 23, 1787–1793 (2013).
3. Nagajyothi, F. et al. Mechanisms of Trypanosoma cruzi persistence in Chagas disease. Cell. Micro. 14, 634–643 (2012).
4. Denkers, E. Y. & Butcher, B. A. Sabotage and exploitation in macrophages parasitized by intracellular protozoans. Trends
Parasitol. 21, 35–41 (2005).

5. Rudenko, G. African trypanosomes: the genome and adaptations for immune evasion. Essays Biochem. 51, 47–62 (2011).
6. Berriman, M. et al. The genome of the African trypanosome Trypanosoma brucei. Science 309, 416–422 (2005).
7. Ivens, A. C. et al. The genome of the kinetoplastid parasite, Leishmania major. Science 309, 436–442 (2005).
8. El-Sayed, N. M. et al. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309, 409–415 (2005).
9. Peacock, C. S. et al. Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat. Genet. 39,
839–847 (2007).

10. Raymond, F. et al. Genome sequencing of the lizard parasite Leishmania tarentolae reveals loss of genes associated to the
intracellular stage of human pathogenic species. Nucleic Acids Res. 40, 1131–1147 (2012).

11. Downing, T. et al. Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population
structure and mechanisms of drug resistance. Genome Res. 21, 2143–2156 (2011).

12. Jackson, A. P. et al. Antigenic diversity is generated by distinct evolutionary mechanisms in African trypanosome species. Proc.
Natl Acad. Sci. USA 109, 3416–3421 (2012).

13. Jackson, A. P. et al. A cell-surface phylome for African trypanosomes. PLoS NTD 7, e2121 (2013).
14. Franzén, O. et al. Shotgun sequencing analysis of Trypanosoma cruzi I Sylvio X10/1 and comparison with T. cruzi VI CL Brener.

PLoS NTD 5, e984 (2011).
15. Ackermann, A. A., Panunzi, L. G., Cosentino, R. O., Sánchez, D. O. & Agüero, F. A genomic scale map of genetic diversity in

Trypanosoma cruzi. BMC Genom. 13, 736 (2012).
16. Fermino, B. R. et al. The phylogeography of trypanosomes from South American alligatorids and African crocodilids is consistent

with the geological history of South American river basins and the transoceanic dispersal of Crocodylus at the Miocene. Parasites
Vectors 6, 313 (2013).

17. Hoare, C. A. Studies on Trypanosoma grayi II. Experimental transmission to the crocodile. Trans. Roy. Soc. Trop. Med. Hyg. 23,
39–56 (1929).

18. Hoare, C. A. Studies on Trypanosoma grayi. III. Life-Cycle in the Tsetse-fly and in the Crocodile. Parasitology 23, 449 (1929).
19. Manna, P. T., Kelly, S. & Field, M. C. Adaptin evolution in kinetoplastids and emergence of the variant surface glycoprotein coat

in African trypanosomatids. Mol. Phylogen. Evol. 67, 123–128 (2013).
20. Stevens, J. R., Noyes, H. A., Dover, G. A. & Gibson, W. C. The ancient and divergent origins of the human pathogenic

trypanosomes, Trypanosoma brucei and T. cruzi. Parasitology 118, 107–116 (1999).
21. Hamilton, P. B., Gibson, W. C. & Stevens, J. R. Patterns of co-evolution between trypanosomes and their hosts deduced from

ribosomal RNA and protein-coding gene phylogenies. Mol. Phylogen. Evol. 44, 15–25 (2007).
22. Hamilton, P. B., Stevens, J. R., Gaunt, M. W., Gidley, J. & Gibson, W. C. Trypanosomes are monophyletic: evidence from genes for

glyceraldehyde phosphate dehydrogenase and small subunit ribosomal RNA. Int. J. Parasitol. 34, 1393–1404 (2004).
23. Lohse, M. et al. RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic Acids Res. 40,

W622–W627 (2012).

www.nature.com/sdata/

SCIENTIFIC DATA | 1:140024 | DOI: 10.1038/sdata.2014.24 6



24. Gnerre, S. et al. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc. Natl Acad. Sci.
USA 108, 1513–1518 (2011).

25. Simpson, J. T. & Durbin, R. Efficient construction of an assembly string graph using the FM-index. Bioinformatics 26,
i367–i373 (2010).

26. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler Transform. Bioinformatics 26, 589–595 (2010).
27. Keller, O., Kollmar, M., Stanke, M. & Waack, S. A novel hybrid gene prediction method employing protein multiple sequence

alignments. Bioinformatics 27, 757–763 (2011).
28. Li, L., Stoeckert, C. J. & Roos, D. S. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13,

2178–2189 (2003).
29. Collingridge, P. W. & Kelly, S. MergeAlign: improving multiple sequence alignment performance by dynamic reconstruction of

consensus multiple sequence alignments. BMC Bioinformatics. 13, 117 (2012).
30. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5,

e9490 (2010).
31. Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19,

1572–1574 (2003).
32. Howe, K., Bateman, A. & Durbin, R. QuickTree: building huge Neighbour-Joining trees of protein sequences. Bioinformatics 18,

1546–1547 (2002).
33. Aslett, M. et al. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 38, D457–D462 (2010).

Data Citations
1. Kelly, S., Ivens, A., Manna, P. T., Gibson, W. & Field, M. C. GenBank PRJNA244495 (2014).
2. Kelly, S., Ivens, A., Manna, P. T., Gibson, W. & Field, M. C. NCBI Sequence Read Archive SRX620256 (2014).

Acknowledgements
We thank Omar Harb (Philadelphia) for integration of data into TriTrypDB and also for generating
Figure 3. This work was supported in part by the Wellcome Trust (program grant 082813 to MCF).
S.K. is a Leverhulme Trust early career Fellow. This Whole Genome Shotgun project has been deposited
at DDBJ/EMBL/GenBank under the accession JMRU00000000. The version described in this paper is
version JMRU01000000. M.C.F. had full access to all the data in the study and takes responsibility for the
integrity of the data and the accuracy of the data analysis.

Author Contributions
S.K., created assemblies, predicted the gene models and built the phylogeny, edited the manuscript, A.I.,
ORF annotations and data processing for NCBI submission, edited the manuscript, P.M., coordinated the
project, isolated DNA, wrote the manuscript, W.G., provided DNA, edited the manuscript, M.C.F.,
conceived/coordinated the project, edited the manuscript.

Additional information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Kelly, S. et al. A draft genome for the African crocodilian trypanosome
Trypanosoma grayi. Sci. Data 1:140024 doi: 10.1038/sdata.2014.24 (2014).

This work is licensed under a Creative Commons Attribution 4.0 International License. The
images or other third party material in this article are included in the article’s Creative

Commons license, unless indicated otherwise in the credit line; if the material is not included under the
Creative Commons license, users will need to obtain permission from the license holder to reproduce the
material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0

Metadata associated with this Data Descriptor is available at http://www.nature.com/sdata/ and is released
under the CC0 waiver to maximize reuse.

www.nature.com/sdata/

SCIENTIFIC DATA | 1:140024 | DOI: 10.1038/sdata.2014.24 7


	A draft genome for the African crocodilian trypanosome Trypanosoma�grayi
	Background &#x00026; summary
	Methods
	Sequencing and assembly
	ORF finding and annotation

	Figure 1 Phylogenetic tree of selected Euglenozoa.
	Gene family analysis

	Table 1 
	Figure 2 Assembly statistics.
	Phylogenetics for strain verification

	Figure 3 Alignment of T.
	Data Records
	Technical Validation
	REFERENCES
	REFERENCES
	We thank Omar Harb (Philadelphia) for integration of data into TriTrypDB and also for generating Figure 3. This work was supported in part by the Wellcome Trust (program grant 082813 to MCF). S.K. is a Leverhulme Trust early career Fellow. This Whole Geno
	ACKNOWLEDGEMENTS
	Design Type(s)genome sequencingobservation�designMeasurement Type(s)genome sequencingTechnology Type(s)next generation sequencingFactor Type(s)&#x02003;Sample Characteristic(s)Trypanosoma�grayiAdditional information
	Additional information


