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Decomposition of electromyograms (EMG) is a key approach to investigating motor unit plasticity. Various signal processing
techniques have been developed for high density surface EMG decomposition, among which the convolution kernel compensation
(CKC) has achieved high decomposition yield with extensive validation. Very recently, a progressive FastICA peel-off (PFP)
framework has also been developed for high density surface EMG decomposition. In this study, the CKC and PFP methods were
independently applied to decompose the same sets of high density surface EMG signals. Across 91 trials of 64-channel surface EMG
signals recorded from the first dorsal interosseous (FDI) muscle of 9 neurologically intact subjects, there were a total of 1477 motor
units identified from the two methods, including 969 common motor units. On average, 10.6 ± 4.3 common motor units were
identified from each trial, which showed a very high matching rate of 97.85 ± 1.85% in their discharge instants. The high degree
of agreement of common motor units from the CKC and the PFP processing provides supportive evidence of the decomposition
accuracy for bothmethods.The differentmotor units obtained from eachmethod also suggest that combination of the twomethods
may have the potential to further increase the decomposition yield.

1. Introduction

The motor unit (which contains a spinal motor neuron, its
axon, and themuscle fibers it innervates) is the final common
pathway for neuromuscular control and provides a basic
structure-function framework for neuromuscular system
examination. Motor unit plasticity refers to motor unit
adaptation or the ability ofmotor unit physical and functional
changes as a result of activity, neurologic injury, age, rehabili-
tation training, and other factors.Motor unit plasticity can be
assessed in different ways including by analyzing electromyo-
gram (EMG) and muscle force output. Among various EMG
signal processing methods, EMG decomposition provides a
unique approach to observing the behavior of spinal motor

neurons and its adaptation or alteration in human subjects
by monitoring motor unit recruitment and firing rates.

EMG decomposition has been routinely performed with
invasive needle electrodes [1–5]. The primary challenges
of surface EMG decomposition arise from large number
of active motor units, similar motor unit action potential
(MUAP) waveforms for different motor units, and heavy
MUAP superposition. With amplification technology devel-
opments, high density surface EMG relying on electrode
arrays (comprised of up to hundreds of closely spaced tiny
probes) has greatly advanced surface EMG decomposition.
Various signal processing techniques using high density
surface electrode arrays have been proposed for the decom-
position purpose [6–9], among which the convolution kernel
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compensation (CKC) has achieved distinguished yield for
high density surface EMG decomposition [10–12]. The CKC
approach has been tested using both simulated and exper-
imental surface EMG signals [13–15], including the “two-
source” validation with simultaneous intramuscular EMG
recordings [13].

Very recently, we have developed a progressive FastICA
peel-off (PFP) framework for high density surface EMG
decomposition and tested this novel framework with both
simulated and experimental surface EMG signals [16]. Given
that both the CKC and PFP methods are designed for high
density surface EMG recordings, they can be applied to
the same set of data. This provides a strategy to assess the
decomposition performance for both methods by comparing
the discharge instants of the common motor units from
independent CKC and PFP decompositions. The objective
of the current study was to use such a strategy to compare
the decomposition yield from the two different methods.
We hypothesized that when processing the same set of high
density surface EMG signals, high agreement can be achieved
when comparing the decomposition results, thus providing
supportive evidence of the decomposition performance for
both CKC and PFP methods.

2. Methods

2.1. Data Model. Different from most of the other blind
source separation technologies in surface EMG, bothPFP and
CKC use a shift-invariant model to describe multichannel
surface EMG signal [10, 16], which allows MUAP shapes of
a specific motor unit that vary in different channels but share
the same discharge instants. Assuming𝑁 active motor units
recorded by𝑀 surface electrodes: x = [𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑀
]
𝑇, the

signal on each channel can be described as

𝑥
𝑖
(𝑡) =

𝑁

∑

𝑗=1

𝐿−1

∑

𝜏=0

𝑎
𝑖𝑗
(𝜏) 𝑠
𝑗
(𝑡 − 𝜏) + 𝑛

𝑖
(𝑡) ;

𝑖 = 1, 2, . . . ,𝑀, 𝑡 = 0, 1, . . . , 𝑇.

(1)

In CKC, (1) can also be viewed as a convolutive lin-
ear time-invariant multiple-input multiple-output (MIMO)
model, where 𝑛

𝑖
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jth motor unit discharges at a specific time 𝑡. 𝑇
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discharge time of the 𝑗th motor unit, whereas 𝛿 represents
Dirac Delta function. The channel response 𝑎
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The model in (1) can be rewritten in matrix form:
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𝑇 is a noise vector.The

unknown matrix A comprises all the MUAPs as detected by
the different surface electrodes (for details, please refer to [10,
16]).

2.2. Introduction of CKC and PFP. The CKC method first
blindly estimates the cross-correlation vector between the
discharge pattern of one motor unit and the EMG measure-
ments. Then the unknown mixing matrix A (i.e., the convo-
lution kernel) is partially compensated by calculating an esti-
mation of the discharge patterns of this motor unit using the
estimated cross-correlation vector and the correlation matrix
of the EMG signal. As the convolution kernel is compensated
gradually a number of motor units can be estimated. More
details on CKC processing can be found in [10].

The PFP framework can be viewed as a process of pro-
gressively expanding the set of spike trains. In the framework,
FastICA is used to estimate motor unit spike trains. A “peel-
off” procedure is employed to estimate the MUAPs of all the
identified motor units and subtract them from the original
signal. Such a procedure mitigates the effect of the already
identified motor units on the FastICA convergence, so more
motor units can emerge when processing the residual signal.
In order to ensure the reliability of the decomposition, a
constrained FastICA is applied to assess the newly extracted
discharge patterns and correct possible erroneous or missed
spikes. These features work together to promote the decom-
position yield. More details on PFP processing can be found
in [16].

2.3. Data Description. The surface EMG signals used for
testing the proposed framework were acquired from the first
dorsal interosseous (FDI) muscle of nine healthy subjects.
The procedures were approved by the local Institutional
Review Board. All the subjects gave their written consent
before the experiment. Subjects were seated upright in a
mobile Biodex chair (Biodex, Shirley, NY). A standard 6
degrees of freedom load cell (ATI Inc., Apex, NC) setup
was used to accurately record the isometric contraction
force of the FDI muscle during index finger abduction.
Standard procedures were followed to minimize spurious
force contributions from unrecorded muscles as described
in [17]. Surface EMG signals were recorded using a flexible
two-dimensional 64-channel (8 × 8, individual recording
probe 1.2mm in diameter, center-to-center distance of 4mm)
surface electrode array (TMS International BV, Netherlands).
The maximum voluntary contraction (MVC) was first mea-
sured; after that, each subject was asked to generate an
isometric contraction force of the FDI muscle at different
contraction levels.The subjectwas asked tomaintain the force
as stable as possible for at least 3 s (preferably more than 5 s).
The actual percent MVC for each contraction was calculated
afterwards by normalizing the force measurement (averaged
from the stable force period) to each subject’s MVC. A
Refa128 amplifier (TMS International BV, Netherlands) was
used to record surface EMG signals.The signals were sampled
at 2 kHz per channel, with a bandpass filter setting at 10–
500Hz. Totally 91 experimental surface EMG signals (35 ±
27%MVC, range: ∼1% to ∼100%MVC) were decomposed by
PFP andCKC, respectively.The two decomposition processes
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were independent of each other and they were operated by
two different operators. The decomposition by CKC was first
processed by an automatic program, and a manual motor
unit selecting process was used to ensure the reliability of the
results. In particular, recently introduced pulse-to-noise ratio
(PNR) metrics [18] has been employed to assess the accuracy
of motor unit identification and only the motor units with
PNR ≥ 30 dB (sensitivity in identification of motor unit
discharges≥ 90%)were keptwhereas all the othermotor units
were discarded. For the PFP, manual monitoring was used to
guarantee the reliability when using constrained FastICA to
assess the identified spike trains.

2.4. Data Analysis. The matching rate (MR) was calculated
to precisely measure the matching degree of the commonly
identifiedmotor units from the two decompositionmethods.
For each commonmotor unit, thematching rate between two
decompositions was calculated as

MR =
2 ⋅ 𝑁COM
𝑁CKC + 𝑁PFP

⋅ 100%, (3)

where𝑁COM stands for the number of discharges of a motor
unit that were identified by both decomposition techniques
(i.e., the number of corresponding discharges within time
tolerance of ±1ms). 𝑁CKC and 𝑁PFP are the total number of
discharges which were identified by CKC and PFP, respec-
tively. Note that if either of the two spike trains is considered
as the “standard” spike train, MR is actually an 𝐹1-score
measure [19]. In this study we consider a motor unit as a
common one only whenMR between the two decomposition
methods is higher than 90%.

A cross-correlation function method introduced in [16]
was used to facilitate the identification of coupling discharge
spike trains from the two decomposition algorithms and
calculate MR. The following parameters were calculated:
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where 𝑅
⋅,⋅
(𝑡) represents cross-correlation function, 𝑠

𝐶,𝑖
stands

for the 𝑖th spike train identified from CKC, and 𝑠
𝑃,𝑗

is the 𝑗th
spike train identified from PFP. 𝜌∗

𝑖
is the maximum cross-

correlation coefficient between 𝑠
𝐶,𝑖

and 𝑠
𝑃,𝑗
. If 𝜌∗
𝑖
≥ 0.3, we

accepted potential existence of a spike train coupling between
𝑠
𝐶,𝑖

and 𝑠
𝑃,𝑗
. For the identified “coupling”, 𝑗∗

𝑖
was used as the

indicator of the corresponding spike train and the value of
MRwas used to determinewhether the two spike trains really
correspond or not. For this purpose, the corresponding delay
𝑡
∗

𝑖
has been estimated and 𝑠

𝐶,𝑖
and 𝑠
𝑃,𝑗

aligned in time. After
such a time shift, MR has been calculated as defined in (3).

3. Results
Figure 1 shows an example of discharge instants for motor
units identified from an isometric contraction at the level of
approximately 18% MVC. The red spike trains represent the
results obtained by the CKC, and the blue ones are the results
obtained by the PFP. In this example, 19 commonmotor units
were identified, whose discharge patterns are aligned together
in the figure. Black dots represent few locations where the
two methods generated inconsistent discharge instants. In
addition, each method also identified two different motor
units, respectively, as shown in the figure.

Ninety-one trials of 9 subjects were processed with signal
duration ranged from 3.2 to 11.2 s (7.9 ± 1.8 s), from which
the matching rate was calculated. There were a total of 1477
motor units identified from the two methods, including 969
commonmotor units. On average, 10.6 ± 4.3 commonmotor
units were identified from each trial, which showed a very
high matching rate of 97.85 ± 1.85%. We did not observe a
clear dependence of the number of commonmotor units and
the matching rate on the contraction level. In addition to the
common motor units which accounted for the majority of
the decomposition yield, the two methods also identified a
relatively small number of differentmotor units, such as those
demonstrated in Figure 1, where 4 different motor units were
identified from the two methods. Across the 91 trials, there
were 5.6 ± 2.8 different motor units identified per trial from
the two methods.

4. Discussion

Both CKC and PFP methods are designed for high density
surface EMG decomposition, using blind source separation
approaches based on a sparse shift-invariant model. The
sparsity assumption for the motor unit discharge patterns
ensures the algorithm can obtain sufficient information to
separate themotor units. Unlikemost of other decomposition
methods primarily relying on MUAP template matching, the
two algorithms focus on the underlying discharge patterns
(i.e., the sparse components) in the EMG signal. The key
iterative rules of the two algorithms also have a similar
structure. Because of these similarities, the two methods
achieved high agreement for high density surface EMG
decomposition, as demonstrated in this study.

When comparing the decomposition yield fromCKC and
PFP methods, we only focused on the motor unit discharge
instants, from which the MUAP waveforms can be estimated
using spike triggered averaging (actually, during the PFP
decomposition, theMUAPwaveforms already emerge).Thus,
if high agreement can be achieved in motor unit discharge
instants between the twomethods, high agreement inMUAP
waveforms can also be expected.

In addition to the majority of common motor units,
the two methods also identified a relatively small portion
of different motor units. This might be due to differences
between the PFP and CKCmethods, such as in cost function
and motor unit searching strategy (in dealing with the
local convergence problem in gradient-based algorithm). For
example, the CKC acts on original signal and each time the
initial value is properly selected (at motor unit discharge
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Figure 1: An example of discharge instants for motor units identified from an isometric contraction at ∼18% MVC. The red spike trains
represent the results obtained by the CKC, and the blue ones represent the results obtained by the PFP. Black dots represent the locations
where the two methods generated inconsistent discharge instants.

instants) to ensure that the algorithm can converge to reliable
results. Furthermore, the CKC adopts a probabilistic strategy,
by blindly running the algorithm multiple times (e.g., 100
runs) and Gram-Schmidt orthogonalization of separation
vectors to allow the algorithm to have sufficient probability to
find those difficult convergent solutions and finally integrate
all the results. Conversely, PFP adopts a different deflation
strategy. When new solutions are obtained, the algorithm
uses the information from discharge patterns of the already
identified or validated motor units to estimate their MUAP
trains and subtract them from the original signal and then
applies FastICA to the residual signal to search other motor
units. Such a deflation strategy mitigates the effect of the
already identified motor units on the FastICA convergence,
so extra motor units can emerge. However, it may lead to a
cumulative error problem; that is, the early estimation error
will be accumulated and magnified in the later process (this
is why the constrained FastICA is used to ensure the accuracy
of the identified spike trains).

Given that the CKC based surface EMG decomposition
has been extensively validated in different situations [13–15],

the high degree of agreement of common motor units
between the decomposition results to some extent supports
the accuracy of the PFP decomposition (and the accuracy of
theCKCdecomposition aswell). To further confirm the accu-
racy of the PFP decomposition, simultaneous intramuscular
EMG recording is necessary so a two-source validation can
be performed.

Finally, it is noteworthy that some components of one
method can be combined with the other. For example, the
PFP can use the probability strategy (as used in the CKC)
during each iteration to achievemore solutions.TheCKC can
adopt the MUAP estimation and the motor unit spike train
validation mechanism similar to the constrained FastICA.
Such a combination of CKC and PFP methods needs further
investigation and might have a potential to increase the
decomposition yield.
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